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Identification of neurotoxic 
cytokines by profiling Alzheimer’s 
disease tissues and neuron culture 
viability screening
Levi B. Wood1, Ashley R. Winslow2, Elizabeth A. Proctor1,3, Declan McGuone4,5, 
Daniel A. Mordes4,5, Matthew P. Frosch2,4,5, Bradley T. Hyman2, Douglas A. Lauffenburger3 
& Kevin M. Haigis1

Alzheimer’s disease (AD) therapeutics based on the amyloid hypothesis have shown minimal efficacy 
in patients, suggesting that the activity of amyloid beta (Aβ) represents only one aspect of AD 
pathogenesis. Since neuroinflammation is thought to play an important role in AD, we hypothesized 
that cytokines may play a direct role in promoting neuronal death. Here, we profiled cytokine 
expression in a small cohort of human AD and control brain tissues. We identified AD-associated 
cytokines using partial least squares regression to correlate cytokine expression with quantified 
pathologic disease state and then used neuron cultures to test whether cytokines up-regulated in 
AD tissues could affect neuronal viability. This analysis identified cytokines that were associated 
with the pathological severity. Of the top correlates, only TNF-α reduced viability in neuron culture 
when applied alone. VEGF also reduced viability when applied together with Aβ, which was surprising 
because VEGF has been viewed as a neuro-protective protein. We found that this synthetic pro-death 
effect of VEGF in the context of Aβ was commensurate with VEGFR-dependent changes in multiple 
signaling pathways that govern cell fate. Our findings suggest that profiling of tissues combined with 
a culture-based screening approach can successfully identify new mechanisms driving neuronal death.

Alzheimer’s disease (AD) afflicts more than 30 million people worldwide. In the United States, due to 
an aging population and the lack of an effective therapy, AD is the only disease out of the six leading 
causes of death that featured a sharply increasing death rate during the last decade1. AD is characterized 
pathologically by the progressive appearance of senile plaques composed of amyloid beta (Aβ ), followed 
by microglial and astrocytic immune responses2,3, formation of neurofibrillary tangles (NFTs), neuronal 
dystrophy, and neuronal death4. Despite the clear relevance of Aβ  accumulation as an early marker of 
AD, clinical trials aimed at reducing Aβ  burden by inhibiting cleavage of the amyloid precursor protein5 
or via antibodies targeting Aβ  have not been successful in slowing disease progression. Moreover, it has 
recently been reported that some mismatch individuals exhibit unusually high levels of Aβ  accumulation 
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in the brain without suffering significant cognitive decline or neuronal loss6. One important difference 
between mismatch and AD brains is that the mismatches exhibit a reduced level of neuroinflammation.

Glia serve the dual roles of acting as the primary immune system in the brain3,7 and regulating home-
ostasis of the tissue microenvironment8,9. Microglia initiate the inflammatory response in AD by migrat-
ing to surround Aβ  plaques10. Fibrillar Aβ , found in plaques, is known to stimulate microglial secretion 
of pro-inflammatory cytokines, including IL-1, IL-6, and TNF-α 11,12. Moreover, cytokines expressed by 
microglia (e.g., MIP-1α , MCP-1) have been shown to stimulate astrocyte chemotaxis13, leading to astro-
cyte envelopment of the plaques. Whether these microglial and astrocytic responses are protective or 
deleterious has been a matter of debate. One line of thought is that microglial and astrocytic responses 
reflect a protective immune function aimed at sequestering and degrading plaques14. There is mounting 
evidence, however, that glial responses to secreted cytokines and Aβ  contribute to AD pathogenesis by 
producing factors, such as nitric oxygen synthase, that contribute to neuronal death15,16. Moreover, cer-
tain cytokines, such as TNF-α , IFN-γ , and IL-6, have been implicated in neuronal death17–19 and IL-6 has 
been reported to up-regulate amyloid precursor protein synthesis and processing20, thereby accelerating 
plaque formation and disease progression.

We hypothesized that cytokines may directly contribute to neuronal death in AD. By extension, certain 
cytokines may represent previously unappreciated therapeutic targets. In this work, we analyzed cytokine 
concentration in a small cohort of postmortem human tissue samples to identify a profile of AD-associated 
cytokines that we used as a hypothesis generating tool for use in a neuron culture viability screen. By 
analyzing tissues from multiple regions of each brain, we were able to exploit the spatio-temporal nature 
of AD progression to identify cytokines that were most strongly associated in the most degenerated tis-
sues. Our analysis identified vascular endothelial growth factor (VEGF), a cytokine that has been consid-
ered to be neurotrophic21,22, as the strongest correlate with the most severe AD pathology. Though our 
analysis was based on a small cohort, a screen of the top three cytokine correlates (VEGF, TNF-α , and 
IL-5) in primary cultures revealed that TNF-α  reduced neuronal viability when applied either alone or 
together with Aβ . Surprisingly, VEGF also reduced viability, but only in the presence of Aβ . The effect 
of VEGF was commensurate with a broad decrease in pro-survival signaling and could be abrogated by 
co-application of a VEGFR1/2 inhibitor or brain-derived neurotrophic factor (BDNF). These results sug-
gest that this pathway could be a target for AD therapy. More broadly, our findings suggest that in vitro 
screening based on proteomic analysis of primary tissues represents a viable methodology for identifying 
neurotoxic factors in AD.

Results
Multivariate regression identifies a profile of cytokines dysregulated in AD. To gain insight 
into the state of the cytokine signaling network in AD, we performed high-throughput screening of 
cytokine protein concentrations on tissues collected at the ADRC brain bank between 10/18/2011 and 
6/7/2012. We began by analyzing the entorhinal cortices (ECs) of AD brains (N =  11) and non-AD con-
trols (N =  5), since the EC is the earliest and most profoundly impacted brain region in AD patients23. 
We analyzed pathology reports and assessed disease severity in terms of Braak stage23, Thal phase for 
Aβ  plaques24, and CERAD score for neuritic plaques25 (Supplementary Table S1), which we combined 
to compute a composite “ABC” AD severity score26 (Supplementary Table S2). We then quantified 48 
cytokines in each sample using Bio-Plex (Bio-Rad) (Fig.  1a). We also measured 5 biomarkers of neu-
rodegenerative disease using the same technology (Millipore). All of these biomarkers were positively 
correlated with disease demonstrating that Bio-Plex technology is able to measure relevant proteins from 
postmortem tissues.

To account for the multivariate nature of the cytokine/AD relationship, we turned to a multivariate 
regression modeling approach, partial least squares regression (PLSR), that exploits highly multivariate 
datasets to distinguish signaling changes that correlate with disease severity score from unrelated noise in 
the measurements27–30. While this approach has rarely been applied to in vivo systems, we have success-
fully used it to identify signaling mechanisms related to TNF-α  induced apoptosis in the mouse intestinal 
epithelium31. The regression analysis was able to separate subjects using a profile called a latent variable 
(LV) that correlated cytokine expression with pathological severity (Fig. 1b). The variable, LV1 (Fig. 1c), 
was composed of a collection of cytokines that positively or negatively correlated with ABC score in AD 
patients. Our regression revealed that, rather than isolated changes in cytokine signaling in AD, there 
was a widespread change in the intercellular signaling network.

As a check for over-fitting, we used a leave-one-out cross validation30 to verify that the regression 
model was able to predict the ABC severity of samples not used for generating the model. In turn, we 
left each sample out during the model generation and then predicted ABC score using the model gen-
erated from the remaining data points. Comparison of the model prediction with the true value pro-
duced a correlation coefficient of R = 0.83 (Supplementary Table S3) and most of the cytokines showed 
low-to-moderate variability between each of the 16 models (Fig. 1d). This validation demonstrated that 
the regression model was a good predictor of pathological severity and that the involvement of each 
cytokine in LV1 was not the result of a contribution by any single sample. Repeating the PLSR analysis 
using only the A, B, or C score as the phenotypic variable yielded similar results (Supplementary Fig. S1),  
suggesting that the three methods for pathological scoring likely reflect similar changes in cytokine 
signaling.
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While age distributions were similar between CTRL and AD groups (Supplementary Fig. S2a), a 
potential concern with our analysis was that the samples in the CTRL group were mostly from males, 
while the samples from the AD group were mostly from females (Supplementary Table S2). As such, 
our PLSR analysis may have identified a LV that merely discriminated between individuals of different 
gender. To check whether the cytokines in LV1 (Fig.  1c) were identified based on gender differences, 
we individually plotted EC measurements from the top 9 LV1 cytokines vs. gender and disease group 
(Supplementary Fig. S2b). Inspecting these top correlates does not indicate a consistent bias associated 
with gender, but also does not provide sufficient statistical power to indicate whether any one signal 
is statistically significant. Our goal, however, is to identify whether there is any bias based on the data 
points plotted in a multivariate model space, and by extension whether the model (i.e., LV1) distin-
guishes samples based on gender. To answer this question, we plotted the scores for the EC model and 
labeled them with AD-severity and gender, and added 95% confidence intervals for the CTRL and AD 
groups in the scores space (Supplementary Fig. S2c). The scores plots do not suggest a gender-associated 
bias in the model. Furthermore, plotting the scores along LV1 for each disease/gender group suggests 
that the AD male and female groups are not significantly different, while each of these groups is signif-
icantly different from the male CTRL group (Supplementary Fig. S2d).

Gene expression profile reproduces changes in published data, but does not identify key 
changes in protein expression. Because our specimen cohort was relatively small and gender 
imbalanced (Supplementary Table S2), we wanted to gain confidence that PLSR analysis applied to our 
cohort could identify a cytokine profile that was consistent with previously published data. Our interest 
is in identifying proteins that may be directly harmful to neurons. Nevertheless, we decided to use gene 

Figure 1. Computational modeling of cytokine protein expression in primary brain samples from 
AD patients. (a) Heat map of z-scored cytokine (black bar) and neurodegeneration signal (red bar) data 
measured from the EC of each subject using Bio-Plex analysis. Values in parentheses are the Pearson’s 
correlation coefficients relating each signal to ABC score. (b) A PLSR model constructed from the cytokine 
dataset regressed against “ABC” AD severity26. The model identifies a latent variable (LV1) that scores 
subjects based on cytokine protein expression measurements and predicts disease severity. LV2 is related to 
variation that is not connected to disease severity, perhaps genetic or environmental differences. LV1 and 
LV2 account for approximately 18% and 16% of the dataset variation, respectively. (c) LV1 is composed 
of a profile of cytokines that are elevated in either AD (positive) or control subjects (negative) and is able 
to predict disease severity. In a leave-one-out cross validation, the model predicts the true ABC value 
with a correlation coefficient R =  0.83 using the first two LVs (Supplementary Table S3). (d) Variation in 
contribution of each individual signal to LV1 for each of the 16 computational models generated in a leave-
one-out cross validation (mean ±  SD across LV1 generated for all models in the cross validation).
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expression as the basis for comparison, since published gene expression data is publically available, and 
these data encompass the genes for all of the proteins used in our Bio-Plex analysis.

We reasoned that gene expression differences from an available hippocampus microarray dataset may 
correlate with differences in the EC since the hippocampus is adjacent to the EC and is affected by NFTs 
just after the EC according to Braak stage23. The dataset32 consisted of microarray analysis of the CA1 
region of the hippocampus (9 control and 22 AD cases), and was recently used for gene ontology (GO) 
analysis33. To compare against our protein dataset, we extracted expression values for the genes corre-
sponding to our Bio-Plex cytokine panels. Similar to our ABC analysis, the authors quantified disease 
severity (i.e., none, low, moderate, and high) based on MiniMental State Examination score, NFT quan-
tification, amyloid pathology, and Braak stage. We converted these severity scores to numerical values 
(0–3, respectively), and used PLSR to regress the gene expression data against these scores. The resultant 
profile along LV1 segregated controls (none) and low cases on the left, intermediate cases in the middle, 
and advanced AD cases to the right in the scores plot (Fig. 2a and Supplementary Fig. S3a). The regres-
sion model produced R =  0.74 in a LOOCV (Supplementary Table S3).

To directly compare against our samples against the published dataset, we next used a Quantigene 
assay (Affymetrix) to quantify gene expression in our tissue samples (Supplementary Fig. S3b). We used 
PLSR to regress the Quantigene data against the ABC score for each sample, generating a profile that 
substantially overlapped with the profile obtained for the published dataset (Fig. 2b and Supplementary 
Fig. S3c). To assess similarity between the published mRNA dataset, our Affymetrix analysis, and our 
Bio-Plex analysis, we plotted mean and standard deviation for each signal in each model using a LOOCV 

Figure 2. PLSR analysis of gene expression from our cohort is similar to a published dataset, but 
does not identify several important differences observed in the protein dataset. (a) PLSR of published 
hippocampal CA1 gene expression dataset32 was able to predict severity score with a correlation coefficient 
of R =  0.74 in a LOOCV. IL-12p35 was used as a surrogate for IL-12p70 in this analysis. LV1 is shown in 
Supplementary Fig. S3a. (b) PLSR analysis of gene expression from our EC tissues (Supplementary Fig. S3b) 
produced a model with ABC-score prediction capability (R =  0.85 in a LOOCV) that was similar to our 
Bio-Plex protein analysis (Fig. 1). LV1 is shown in Supplementary Fig. S3c. (c) Mean ±  standard deviation 
of signals in LV1 for each model from the published mRNA, EC mRNA, and EC protein datasets. Plotting 
the LV1s together revealed many similarities between our EC mRNA data and the published dataset. Signals 
are highlighted to be consistent between the EC mRNA model and either the published mRNA model 
or the Bio-Plex EC model if the sign of the signal is the same for both models and it has a coefficient of 
variation <  0.25 for both models. (d) A PLSR model built on the top and bottom 5 correlates from the 
published dataset was able to distinguish AD vs. control cases, and predict ABC severity of our EC samples 
based on Quantigene-measured gene expression with R =  0.76.
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(Fig.  2c). Signals possessing with same sign and with coefficients of variation < 0.25 were labeled as 
consistent between datasets. Of the top 5 and bottom 5 correlates in the profile from our samples, 7 of 
them were consistent with the profile obtained for the published dataset (Fig.  2c). To further demon-
strate the similarity between the published dataset and ours, we generated a PLSR model from the top 
and bottom 5 correlates from the published dataset, which are most likely to be robust in distinguishing 
samples based on gene expression. The result was that the new PLSR model was able to distinguish 
severity of our samples, with control cases clustered on the left, intermediate cases clustered toward 
the origin, and high-severity AD cases clustered toward the right (Fig.  2d). The model predicted the 
true ABC severity scores of our samples with a correlation coefficient R =  0.76. Together, these results 
demonstrate that changes observed in our small cohort reflect many of the same changes found in an 
independently-derived dataset with larger sample size.

While the gene expression datasets shared many similarities in their LV1 profiles, we noted that there 
were important differences between the gene expression and protein analysis for our samples. The protein 
profile (Figs 1c and 2c) showed correlated up-regulation of known AD-associated cytokines, including 
TNF-α 17,34, and VEGF35, which were not up-regulated in AD based on either gene expression datasets 
(Fig. 2c). Since protein, rather than gene expression, governs cellular function, these differences suggest 
that gene expression may fail to identify important changes in protein concentration that drive disease.

Cytokine profile is region-specific. While our PLSR analysis was able to identify a cytokine sig-
nature that could reliably discriminate between AD patients and controls, the biological relevance of 
any given cytokine in the signature was unclear because the EC of AD patients differs so significantly 
from normal brain in terms of, for example, cellular representation. AD does not strike all brain regions 
equally and simultaneously, but rather progresses through the brain, starting in the EC and spreading 
outwardly to the limbic system (including the hippocampus and amygdala) and then the cerebral cor-
tex (Fig.  3a)23,36. We reasoned, therefore, that different regions of the same brain represent different 
stages of pathological severity. To characterize how signaling differs in tissues that are relatively mildly 
and moderately degenerated, we analyzed cytokine protein expression in the amygdala and superior 
frontal gyrus (SFG) (Supplementary Fig. S4), which first develop with NFTs at Braak stages III–IV and  
V–VI, respectively23. As with the EC, PLSR modeling identified LVs that distinguished AD patients from 
non-AD controls (Fig. 3b,c).

Comparative analyses of the LOOCV PLSR models from SFG, amygdala, and EC demonstrated that 
the SFG and amygdala were more consistent with one another than with the strongly affected EC. For 
example, some of the strongest cytokine correlates in the EC (e.g., TNF-α , IFN-γ ) were not as strong in 

Figure 3. The cytokine profile distinguishing AD and control tissues varies spatially. (a) AD progresses 
spatio-temporally beginning in the EC, then into the limbic regions (including the amygdala), and finally 
reaching the SFG. (b) A PLSR model constructed from the cytokines measured from the SFG of the same 
control and AD subjects analyzed in Fig. 1. Data and LV1 are shown in Supplementary Fig. S4a,b. (c) A 
PLSR model constructed from the cytokines measured from the amygdala of the same control and AD 
subjects analyzed in Fig. 1. Data and LV1 are shown in Supplementary Fig. S4c,d. (d) ) Mean ±  standard 
deviation of signals in LV1 for each model from the SFG, amygdala, and EC (in ascending order of 
pathological severity) plotted side-by-side. The signals are sorted in descending order of LV1 from the SFG. 
The signals correlating most strongly with AD are different in the different brain regions.
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the SFG and amygdala, while other cytokines (e.g., IL-7) were stronger in the SFG and amygdala than in 
the EC (Fig. 3d). Interestingly, this analysis revealed that IL-1α /β  expression was correlated with early 
and intermediate disease, but not late disease (Fig. 3d), which is consistent with prior work37. Altogether, 
this analysis suggested that the cytokine signaling network evolves as AD pathology progresses through-
out the brain.

Identification of cytokines linked to pathological progression. Our analysis of cytokine expres-
sion in different brain regions revealed that the cytokine signaling network evolves with AD severity. We 
reasoned that a PLSR analysis that is able to take into account the changes in cytokine expression with 
increasing pathological severity on a patient-by-patient basis would be more likely to identify cytokines 
that play a causal role in the disease.

To identify the cytokines that were up-regulated in the EC (advanced pathology) relative to the SFG 
(relatively mild pathology), we normalized the EC measurement for each cytokine by the corresponding 
measurement in the SFG from the same case and again performed PLSR (Fig. 4a). The result was a new 
profile that again showed low-to-moderate variability in each of the cytokines (Fig. 4b), and marginally 
improved the ABC prediction capability of the regression model (R =  0.86 in a LOOCV) compared 
with the model generated for the EC alone (Fig.  1c, Supplementary Table S3). To eliminate noise due 
to some signal measurements in the SFG reading at, or near, zero, we added a constant to each signal 
in the SFG (see Methods). The resulting model was insensitive to the magnitude of the constant added 
(Supplementary Fig. S5a). Like with the EC analysis, the scores plotted along LV1 did not suggest a 
gender-associated bias (Supplementary Fig. S5c,d). Importantly, the strongest cytokine signals identified 
by the ratio model differed from those in the regional models; VEGF, IL-6, IL-10, and MIP-1β  were 
among the cytokines that were more strongly correlated with AD in the ratio model (Fig. 4a).

The top three cytokines from this analysis were VEGF, TNF-α , and IL-5. Of these, both TNF-α  and 
VEGF have been connected to AD pathology. Only TNF-α  has been implicated as a driver of neuronal 
death, however, while VEGF and IL-5 have been shown to be neurotrophic (see Supplementary Results).

Profile-identified cytokines promote neuronal death in culture. To determine whether the 
cytokines identified from our regression profile could potentially drive AD pathogenesis, we assessed 
viability of primary mouse neuron cultures treated with combinations of Aβ , the top three up-regulated 
cytokines from the EC/SFG ratio analysis (VEGF, TNF-α  IL-5), and IL-12p70, which is among the top 11 
cytokines identified in all regions Fig. 1c and Supplementary Fig. S4b,d and has been implicated in AD38. 
We found that TNF-α  and IL-12p70 both reduced neuronal viability in the presence or absence of Aβ  
(Fig. 5a and Supplementary Fig S6a), which is consistent with prior work implicating them in AD patho-
genesis34,38. We did not detect significant activity associated with IL-5 in this assay, but, surprisingly, we 
found that VEGF significantly reduced viability when applied together with Aβ  (Fig. 5a). The synthetic 
pro-death effect of VEGF could be abrogated using the small molecule VEGFR1/2 inhibitor, Axitinib 
(Fig. 5b). The ability of VEGF to promote neuronal death was unexpected, since VEGF has widely been 
reported to be neurotrophic39 and involved in neuronal development40.

Figure 4. Ratio analysis identifies cytokines linked to advanced AD pathology. (a) PLSR analysis of the 
EC/SFG ratio for each cytokine in each patient. This analysis identified VEGF, TNF-α , and IL-5 as the three 
cytokines most strongly correlated with increased pathological severity. (b) Variation in contribution of each 
individual signal’s EC/SFG ratio to LV1 for each of the 16 computational models generated in a leave-one-
out cross validation (mean ±  SD across LV1 generated for all models in the cross validation).
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Figure 5. Aβ and VEGF cooperate to affect neuronal viability and phospho-protein signaling. (a) The 
top three up-regulated cytokines in the EC/SFG ratio model and IL-12p70 were applied to primary mouse 
neuron cultures together with a physiologic level of recombinant Aβ 1–42 (50 nM)56 or vehicle (0.001% 
w/v NH4OH) for 3 days, then assessed for viability using Live/Dead staining (Supplementary Fig. S6a). 
The color-map indicates mean viability for each condition. This analysis revealed that TNF-α  and IL-
12p70 reduced neuronal viability when applied alone, while VEGF only did so in the presence of Aβ 1–42. 
(b) VEGF significantly reduced neuron viability, but only in the context of Aβ 1–42. This effect could be 
abrogated either by applying VEGF and Aβ 1–42 together with the VEGFR1/2 inhibitor Axitnib or with 
the trophic factor BDNF. (Bars represent mean ±  SE for each condition. Left-to-right: N =  192, 120, 190, 
216, 48, 48; **p <  0.0001; two-sided Wilcoxon Rank Sum test). (c) Kinetic analysis of key phospho-protein 
signaling nodes in primary neuron cultures. Cultures were conditioned in 6-well plates with vehicle, Aβ 1–42 
(50 nM), and/or VEGF (100 ng/mL), then lysed at 0, 5, 15, and 30 min post-treatment (mean ±  SE, N =  2, 
p-values were computed using two-tailed t-test comparing the Aβ  and VEGF +  Aβ  conditions at the 5 min 
time point, no correction was used for multiple hypothesis testing). (d) PLSR modeling of 5 min time 
point phospho-protein signaling in cells treated with Aβ  and/or VEGF, and Axitnib. Signals were regressed 
against mean viability values for each condition from Fig. 5b. LV1 identifies phospho-protein signals that 
correlate with neuronal death in cells co-treated with Aβ  and VEGF. Phosphorylation of Iκ Bα  positively 
correlated with neuronal death, while a variety of signals were negatively correlated with this phenotype. 
X’s represent the predicted outcome along LV1 in cells treated with Aβ , VEGF, and BDNF, based on signals 
measured from this treatment group. The X’s cluster with samples treated with vehicle, VEGF alone, or 
VEGF +  Aβ  +  Axitnib, correctly predicting that BDNF would reverse the pro-death synthetic phenotype 
associated with Aβ  and VEGF.
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Because VEGF has not previously been implicated in promoting AD progression, we sought to identify 
a downstream signaling mechanism that is responsible for the synthetic neuronal cell death phenotype. 
To this end, we used Bio-Plex analysis to measure the activation state of key phospho-protein signaling 
nodes downstream of receptor tyrosine kinases (Supplementary Fig. S6b) that might be responsible for 
cell fate in cells treated acutely with VEGF and/or Aβ  (Fig. 5c). A similar analysis was not possible in 
primary human samples because phosphorylation signals are not retained in post-mortem tissue. While 
none of the differences between the Aβ  and VEGF+ Aβ  conditions were significant in this initial analysis, 
the temporal signaling curves suggested that multiple signals may be reduced in the VEGF+ Aβ  at the 
5 min time point, including, Erk, p38 MAPK, and Stat3 (Ser727). We next used PLSR on signaling data 
acquired from a separate experiment to identify signaling nodes at the 5 min time point correlated with 
reduced neuronal viability by regressing against mean viability values from each treatment condition 
(Fig.  5d). This analysis revealed Iκ Bα , a member of the NFκ B pathway, as the only signal positively 
correlated with neuronal death after exposure to VEGF and Aβ . There were several pro-survival sig-
nals, some of which were in the MAPK pathway, that were negatively correlated with neuronal death. 
Based on this observation, we hypothesized that an extracellular signal that could broadly activate these 
pro-survival signals independently of VEGFR would overcome the pro-death effects of Aβ  and VEGF.

To induce phosphorylation of these down-regulated signals, we used BDNF, a neurotrophic factor that 
is down-regulated in AD41 and has previously been shown to promote neuron survival via MAPK sig-
naling in neuron cultures42. We found that BDNF, could induce phosphorylation of many of the signals 
that were negatively correlated with neuronal death in cells treated with Aβ  and VEGF (Supplementary 
Fig. S6c). Moreover, when we collected signaling data from cells treated with Aβ , VEGF, and BDNF, 
our PLSR model predicted that the cells would phenocopy those treated with vehicle alone (Fig.  5d). 
Consistent with this PLSR model prediction, BDNF restored viability in neurons treated with Aβ  and 
VEGF (Fig. 5b).

Discussion
The lack of efficacy of drugs targeting Aβ  suggests that other aspects of AD pathogenesis contribute to 
neuronal death. We hypothesized that dysregulated expression of cytokines secondary to glial activation 
during neuroinflammation contributes to AD progression by promoting neuronal death. The body of 
knowledge relating cytokine expression/function to neuronal homeostasis and neurodegenerative disease 
is extensive, but lacking a cohesive investigation to identify specific cytokines promoting AD pathogen-
esis (Supplementary Results). Our methodology was founded upon the use of a multivariate regression 
analysis of cytokine expression in human brain tissues against pathological severity to suggest hypotheses 
about potentially neurotoxic cytokines. We then tested hypotheses suggested by the regression analysis in 
neuron cultures to identify whether specific cytokines could promote neuronal death.

A potentially confounding issue with our tissue analysis was that the samples were drawn from a 
genetically diverse population that died of unknown, and potentially multiple, causes. Despite these 
potential sources of noise in the dataset and despite the small sample size (11 AD cases, and 5 controls), 
the EC PLSR model prediction of ABC severity strongly correlated with the true pathological sever-
ity assessment in a leave-one-out cross validation (R =  0.83). We view the ability of the PLSR model 
to predict pathological severity in samples that were not included in the model — despite potentially 
confounding sources of variation in the data — as an important validation of our approach. We also 
computed the mean and standard deviation for each of the signals, in the EC and EC/SFG ratio models, 
to quantify how much the involvement of each signal varied as each sample was left out of the analysis. 
The result was that most signals had low-to-moderate variation between models (Figs 1d and 4b).

The measurement of protein concentration is a key feature of our analysis — we found that differ-
ential gene expression analysis (Fig.  2c) did not identify important changes in protein concentrations 
measured from the same collection of EC samples (Fig.  1c), including changes in TNF-α  and VEGF, 
which have previously been connected to AD pathology17,34,35. Our observed differences between gene 
and protein expression may be due to the multiple steps involved in protein synthesis and regulation 
post-gene expression. Since cell function is governed by protein expression, rather than gene expression, 
these data suggest that analysis based on protein expression measurement may be more likely to reveal 
mechanisms of disease.

The comparison between gene expression in our samples and the gene expression in the published 
dataset indicates that our small cohort may reflect a “true” profile as measured by other authors, despite 
a gender imbalance between AD and CTRL groups (Supplementary Table S2). Furthermore, plotting the 
scores for the EC and ratio models for each gender/disease does not indicate a gender bias along LV1. 
Nevertheless, we emphasize here that our protein analysis represents a hypothesis-generating tool based 
on a preliminary dataset, rather than a validated characterization of cytokine signaling in AD.

We analyzed protein data from the SGF, amygdala, and EC to determine which cytokines were most 
uniquely correlated with pathology found in the EC (Figs 3 and 4), the region most severely affected in 
AD. The EC contains long myelinated neurons that stem from layer II of the EC to form the perforant 
pathway43. These long neurons require increased axonal transport machinery and have greater metabolic 
requirements compared with neurons from other regions, which may make them more susceptible to 
homeostatic dysregulation and NFT and Aβ  pathology43,44. Since glia respond to both NFTs and Aβ  
plaques, the differences we observed in the cytokine profiles between regions may reflect dysfunction of 
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these sensitive neurons. Increased expression of neurotoxic cytokines in the EC, including TNF-α  and 
IFN-γ  (Fig. 4D), may contribute to neuronal stress through a positive feedback loop.

Despite its limitations, the ability of our PLSR profiling approach to detect cytokine drivers of AD was 
validated in that several of the signals correlated with ABC score have prior connections to the disease. 
For example, TNF-α  has previously been linked to neuronal death and AD pathogenesis17,34, and our 
PLSR analysis identified it as a top correlate in the EC and the second strongest cytokine correlate in the 
ratio model (Figs  1c and 4a). Not surprisingly, TNF-α  was a potent inducer of neuronal death in our 
neuron culture viability screen (Fig. 5a). While this type of validation is crucial, our ultimate goal is to 
use our protein profiling approach to suggest novel hypotheses about specific cytokines that may cause 
neuronal death in AD. For example, our ratio model identified VEGF and IL-5 as the first and third top 
cytokine correlates with ABC score (Fig. 4a), although neither has clearly been linked to promoting AD 
progression (Supplementary Results).

Our neuron culture viability screen was directed based on the hypotheses suggested by our cytokine 
profiling. The screen revealed that IL-5 was essentially inert (Fig.  5a). Since IL-5 has been shown to 
promote progenitor differentiation into neurons, (Supplementary Fig. S7)45, its up-regulation in human 
tissues may represent an attempt to compensate for neuronal death. VEGF, however, showed a synthetic 
death phenotype when combined with soluble Aβ  (Fig.  5a,b). These data suggest for the first time a 
deleterious role for VEGF over-expression in the context of AD.

Ours is not the first analysis to report VEGF up-regulation in AD; it has previously been reported to 
be up-regulated both in the CNS46 and plasma47. VEGF up-regulation during AD pathogenesis could be 
explained by dysregulated vascular activation in AD46, although VEGF has been shown to be expressed 
by reactive astrocytes48. In addition to its well-known vascular functions, VEGF has been shown to be 
neurotrophic21, promote neurogenesis22 and neural patterning49, and to be neuroprotective after cerebral 
focal ischemia50. Together, the compiled literature seemingly suggests that VEGF should have a positive 
effect on neuronal survival in AD, and it has been suggested that VEGF therapy might be used to treat 
neurodegenerative diseases51. But while the above studies point to a neuroprotective role for VEGF, they 
were not conducted in the presence of physiologic levels of Aβ . We found that VEGF reduced neu-
ronal viability only when applied together with Aβ 1–42 (Fig. 5a,b), demonstrating that multiple variables 
found within the context of the human disease produce a synthetic phenotype. As such, VEGF exhibits 
a deleterious function that is highly context dependent.

VEGF is a member of the platelet-derived growth factor family that signals through receptor tyrosine 
kinases. In order to understand how VEGF promotes neuronal death downstream of its receptor, we 
produced a second PLSR model based on phospho-protein signals. We observed a broad signaling shift 
through pro-survival pathways in cells treated with both VEGF and Aβ 1–42 (Fig. 5c), which is consist-
ent with the synthetic death phenotype. This pro-death activity could be rescued by treating cells with a 
growth factor, BDNF, that stimulated pro-survival signaling independent of VEGFR (Fig. 5b and Fig. S6c).  
The question remains as to how VEGF and Aβ 1–42 cooperate to affect downstream signal transduction 
in such a profound way. Aβ  can interact with both VEGF52 and VEGFR253 to inhibit VEGF signaling. 
Nevertheless, our data suggest that Aβ , rather than acting as a simply dominant negative on VEGF 
activity, produces an actively deleterious down-regulation of survival signaling. This model is supported 
by our observation that treatment of neurons with the VEGFR1/2 receptor inhibitor Axitnib can rescue 
the pro-death activity of VEGF and Aβ 1–42 (Fig. 5b).

Together, our results identify VEGF as a previously unrecognized driver of neuronal death in AD, 
and demonstrate the importance of cellular and molecular context in specifying biological activity. Given 
that multiple anti-VEGF drugs are used clinically, VEGF may be an actionable therapeutic target for 
AD pathology. More generally, our study highlights the value of using primary tissue protein profiling 
together with screening approaches to identify new mechanisms driving AD pathogenesis.

Methods
Bio-Plex tissue analysis. Bio-Plex Tissue Analysis. Tissues were collected and cryopreserved at 
the Massachusetts Alzheimer Disease Research Center in accordance with guidelines approved by the 
Institutional Review Board at the Massachusetts General Hospital. All tissues were collected post-mor-
tem from patients who had provided prior informed consent. A tissue subdivision was cut from each 
sample on dry ice, then, thawed, homogenized and lysed in Bio-Plex cell lysis kit (Bio-Rad) according 
to the recommended protocol with the addition of one cOmplete mini tablet per 5 mL of lysis buffer 
solution (Roche). Homogenized, lysed solutions were placed in microcentrifuge tubes, end-over-end 
rotated at 4 °C for a minimum of 10 min, and centrifuged for 10 min at 13.2 kRPM. Lysate supernatant 
was transferred to fresh tubes, and stored at -80°C. For Bio-Plex analysis, samples were thawed on ice, 
analyzed using a Pierce BCA (Thermo Scientific), and normalized in lysis buffer to 7.5 μ g per 25 μ L. 
Our optimization of Bio-Plex cytokine measurements of human brain tissues have shown that this con-
centration is in the center of a linear range of Bio-Plex signal vs. cytokine concentration. Samples were 
then analyzed according to kit protocols for the Bio-Plex human 27-plex and 21-plex kits (Bio-Rad), 
and Neurodegenerative Panel 4 kits (Milliplex). VEGF and IL-15 measurements in the amygdala and 
SFG suffered from high background in the 27-plex and were separately re-acquired. Samples for the 
same region on different plates were normalized to the standard provided with each kit. Panel 4 was 
further corrected for plate-to-plate variation by using a discrete-PLSR analysis against plate identity, and 
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removing the first plate-correlated component of variation. All kits were read on the Bio-Plex 200 system 
(Bio-Rad). Since Bio-Plex kits do not include an internal loading control, 27-plex and 21-plex measure-
ments were further normalized using a multivariate mathematical approach given by Eq. 3.

Sample normalization. While samples were normalized to total protein using BCA, Bio-Plex kits 
did not include any internal loading controls. We therefore used a mathematical approach, exploiting the 
multidimensionality of the datasets, to further normalize the 27-plex and 21-plex data. For a dataset 
consisting of n samples and m measurements per sample, the dataset, X, consisted of

= ( ) X x x x[ ] 1i n
T

1

where = , , , x x xx [ ]i i i j i m
T

1  were the cytokine measurements collected from the ith sample. 
Assuming that some of the cytokines were higher while others were lower in each of the control and 
disease classes, and assuming that the cytokines were in a linear range, we scaled all of the cytokines 
measured from a single sample using a single “loading” correction coefficient that minimized the 
sum-squared-error between each cytokine measurement ( ),xi j norm and the mean of that cytokine across 
the entire dataset, μj. Then the loading correction coefficient for each sample i was computed as

( )∑ µ= −
( )=

,ˆ
ˆ

a a xarg min
2

i
a j

m

i i j j
1

2

i

where µ = ∑ /= ,x nj i
n
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This method was separately applied to the 27-plex and 21-plex datasets, since each was measured in 
different wells on separate plates. To maintain consistent weighting for each cytokine in Eq. 2, each 
measurement, ,xi j, was normalized by µ j prior to computing the loading correction coefficients. This 
method was applied in MATLAB (Mathworks).

Tissue gene expression analysis. Tissue subdivisions of approximately 5 mg were cut on dry ice 
from the same samples discussed for Bio-Plex analysis above. Subdivisions were lysed using a Quantigene 
sample processing kit (Affymetrix), then heated at 65 °C for 30 min while vortexing every 10min. Samples 
were then centrifuged for 15 min at 13.2 kRPM, and the supernatant was harvested. This step was 
repeated. Gene expression was analyzed using a Quantigene 2.0 (Affymetrix) plex set with probes for all 
of the cytokines used in the Bio-Plex kit and GAPDH. The Quantigene 2.0 assay was run according to 
kit protocol, then read out on a MAGPIX instrument (Luminex). Expression values were normalized to 
GAPDH and using Eq. 3.

Partial least squares modeling. PLSR modeling was conducted in MATLAB using the partial least 
squares algorithm by Cleiton Nunes available on the Mathworks File Exchange. Bio-Plex cytokine sample 
data was pre-normalized as discussed above. All data was z-scored, and then directly inputted to the 
algorithm. For each PLSR analysis, an orthogonal rotation in the LV1-LV2 plane was used to choose a 
new LV1 that better separated phenotype/Y-variable. To avoid division-associated noise in the EC/SFG 
ratio analysis, a constant equal to the maximum signal value was added to each cytokine in the SFG 
dataset. Predictive modeling for LOOCV was conducted using the first two latent variables for each 
model. 95% confidence ellipsoids were computed using the inverse χ 2 distribution with 2 degrees of 
freedom54. p-values for the slope of the ABC severity prediction curve for each LOOCV was computed 
using the regstats () t-statistic in MATLAB. To correct for sign reversals between models in the LOOCV, 
each sub-sampled LV1 and LV2 was multiplied by the sign of the scalar product of the new LV and the 
corresponding LV from the total model.

Published gene expression data. The hippocampus CA1 gene expression dataset (Affymetrix 
Human Genome U133A Array) was downloaded from the NCBI Gene Expression Omnibus under 
accession number GSE 1297 (samples GSM21203-233). The gene identifiers were converted to Entrez 
Gene ID using the table for the microarray under accession number GPL96, and the individual genes 
corresponding to our Bio-Plex cytokine analysis were selected using MATLAB.

Primary mouse neuron cultures. Neuron cultures were derived from E14–15 CD1 embryos 
(Charles River), according to a protocol approved by the Massachusetts General Hospital Institutional 
Animal Care and Use Committee. Embryo cortices were isolated according to an existing protocol55 and 
triturated in warm plating medium using a 1 mL pipette tip. Plating medium consisted of Neurobasal 
Medium (Invitrogen) with 10% FBS, 1x Glutamax (Gibco), and 1x antibiotic solution (Sigma). Cell con-
centration was measured using a hemocytometer, and cells were plated at 6750 cells/mm2 in poly-d-lysine 
(Sigma)-coated 96-well and 6-well plates for viability and Bio-Plex phospho-protein analysis, respectively. 
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Cells were left to attach overnight in plating medium, then switched to neuron medium containing 
1x B27 supplement (Invitrogen) instead of FBS. After 3 days in vitro, 5 μ M 5-Fluoro-2-deoxyuridine 
(Sigma) was added to prohibit glial proliferation. Cultures were matured for a total of 9–11 days in vitro, 
then used for condition experiments. Conditions were applied together with a change of one-half of the 
medium in each well.

For viability studies, wells in 96-well plates were treated for 3 days with combinations of HFIP 
pre-treated recombinant human Aβ 1–42 (50 nM; rPeptide, Bogart, GA) in 1% w/v NH4OH vehicle (final 
concentration of 0.001% NH4OH), Axitinib (1 μ M; Selleckchem) and cytokines (100 ng/mL): TNF-α  
(Abazyme), VEGF164 (R&D), IL-12p70 (R&D), IL-5 (R&D), BDNF (R&D). Conditions were applied 
together with a change of one-half of the medium in each well. After 3 days, live/dead viability was 
assessed by staining with 1 μ M Calcein AM (Invitrogen) and 2 μ M Ethidium Homodimer (Invitrogen) 
for 15 mins. Wells were imaged using a 10x objective on a Nikon TE-2000S microscope with 1 second 
exposure time. Two locations were imaged at opposite sides of each well and treated as independent 
measurements. Each condition was applied to two separated rows in each plate to control for the effect 
of position on viability. For viability quantification, the background was first subtracted from all images 
in ImageJ (National Institutes of Health, USA) using the rolling ball algorithm with a radius of 800pixels. 
Subsequently, the images were imported into MATLAB. For the dead stain, the images were thresholded 
at 0.1 and number of spots was counted using the regionprops () function. For the live stain, all images 
were thresholded at 0.15 and the total area was summed. In each experiment, all values were normalized 
to the mean viability of an appropriate vehicle-treated condition. The Jarque-Bera test revealed that the 
viability data were not derived from a normal distribution. Therefore, we used the two-sided Wilcoxon 
Rank Sum test to assess significance.

For phospho-protein signaling studies, Aβ 1–42 was pre-oligomerized overnight at 37 °C and 5% 
CO2. Vehicle was similarly incubated for non-Aβ 1–42 wells. Subsequently, vehicle or Aβ 1–42 was 
co-incubated at 37 °C and 5% CO2 with the cytokine (100 ng/mL) co-condition for 1 hr, then applied to 
6-well plates together with a change of one-half of the medium. During the medium change, the re-used 
old medium was extracted from the wells, mixed, and centrifuged for 10 min at 5 kRPM to remove cell 
debris. After the treatment period, the cells were lysed using the same Bio-Plex lysis buffer used for tis-
sue homogenates, as discussed above. Samples were normalized using the BCA assay and the Bio-Plex 
phospho-protein assay was conducted according to kit protocol with polystyrene beads for p-Iκ Bα , 
p-MEK1, p-GSK3α /β , p-ATF-2, p-Stat3 (Y705), p-Akt, p-Jnk, p-Erk1/2, p-p38 MAPK, p-Stat3(S727) 
(Bio-Rad). Measurements from the BDNF culture experiment were normalized to the model-generating 
dataset using mean measurement values for each signal from (N =  3) wells harvested at 0 min. Since the 
control and VEGF conditions in the phospho-protein dataset for model generation represents the max-
imum realizable viabilities, the signaling measurements from the BDNF condition were thresholded to 
the maximum values obtained from the model-generating dataset prior to projection.
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