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Abstract

Accurately assigning folds for divergent protein sequences is a major obstacle to structural studies. Herein, we outline an
effective method for fold recognition using sets of PSSMs, each of which is constructed for different protein folds. Our
analyses demonstrate that FSL (Fold-specific Position Specific Scoring Matrix Libraries) can predict/relate structures given
only their amino acid sequences of highly divergent proteins. This ability to detect distant relationships is dependent on
low-identity sequence alignments obtained from FSL. Results from our experiments demonstrate that FSL perform well in
recognizing folds from the ‘‘twilight-zone’’ SABmark dataset. Further, this method is capable of accurate fold prediction in
newly determined structures. We suggest that by building complete PSSM libraries for all unique folds within the Protein
Database (PDB), FSL can be used to rapidly and reliably annotate a large subset of protein folds at proteomic level. The
related programs and fold-specific PSSMs for our FSL are publicly available at: http://ccp.psu.edu/download/FSLv1.0/.
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Introduction

It has been proposed that the number of distinct native state

protein folds is extremely limited [1]. In addition, structure is more

conserved than sequence similarity [1–3]. Taken together, these

attributes underscore the inverse protein folding problem; whereby

the vast and varied numbers of primary amino acid sequences that

exist in biology occupy a relatively limited number of structural

folds. Due to the extreme divergence (#25% pairwise identity)

that can exist between structurally determined (template) sequenc-

es and structurally unknown (target) sequences, fold recognition is

often compromised. Thus, the crucial information specifying

protein structure must be contained in a very small fraction of the

amino acid sequence, making the informative points hard to

measure. Therefore, any solution to the inverse protein folding

problem using template-based modeling must be able to identify

these information points and use them to relate targets to

appropriate template sequences.

PSSMs (Position Specific Scoring Matrices) are a simple but

powerful tool to measure remote homology based on the substitution

information in related sequences. It is well-established that PSSMs

contain more information than individual sequences [7–9]. In

previous studies [4–6], we demonstrated that well-curated library of

PSSMs for a particular protein characteristic (e.g., protein function or

structure) and low identity alignment from the library are effective for

annotating protein sequences for a specific protein characteristic. In

this study, we extend this idea to structural similarity detection.

Herein, we report that FSL (Fold-specific PSSM Libraries) is a fast

and robust method for fold recognition which works in the ‘‘twilight-

zone’’ of sequence similarity. We propose that, with further library

development, this method is sufficiently fast that protein sequences

can be annotated at proteomic scales.

Methods

Fold-specific PSSM Libraries
The power behind our method is derived from user-defined

libraries of PSSMs of structurally similar proteins. We take

advantage of the increased information content of PSSMs and the

speed of BLAST to measure structural similarities among highly

divergent proteins. There are three features which make our

method distinct from traditional sequence analysis methods. First,

we measure target protein sequences with multiple structure-

specific PSSM libraries. Second, we quantify low identity
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alignments, which are traditionally considered statistically insig-

nificant. Third, we consider all relationships (to the same fold and

different folds) to extract meaningful signals, which appear to be

important for measurements in the ‘‘twilight zone’’ [4–6,10].

Our method involves four steps to infer remote structural

similarity among proteins (Fig. 1). For these experiments, we

generated PSSM library for 1,086 fold (SCOP 1.65) using domain

sequences of each SCOP fold as reference sequences. SCOP folds

have been hand-curated, making them a reliable resource for

building our initial FSL. Importantly, these reference sequences

have #40% pairwise identity to each other, making them highly

divergent. Except in cases where large numbers of reference

sequences already exist (e.g. SCOP fold b.1; Immunoglobulin-like

beta-sandwich fold which already has .1000 sequences), all fold

groups were expanded by PSI-BLAST [8] search against NCBI

NR database using references sequences of the fold groups as

queries. The settings for PSI-BLAST were 3 maximum number of

iterations (-j option), 30 maximum number of database sequences

returned at each iteration (-b option), 1.0e-6 e-value threshold for

including sequences for PSSM generation at each iteration (2h

option), and other options remained as default. The sequences

similar to the queries ($90% identity) were removed.

Given the expanded sequences for each fold group, redundant

or highly similar sequences ($40% identity by Needleman-

Wunsch algorithm [18]) were also eliminated. Fold-specific

libraries for 1,086 fold groups were then constructed by generating

PSSMs from the expanded sequences by PSI-BLAST (-j 2 –h 1.0e-

6) [19]. Following, fold-specific PSSMs were compiled as a

BLAST compatible database [13] (Fig. 1b).

Second, each query sequence is then searched against the fold-

specific PSSM libraries using rps-BLAST. The alignments returned

from the search are filtered out if they do not satisfy our e-value and

coverage thresholds (i.e., alignment length as a function of library

PSSM length). In this study, alignments were collected using either

of e-value 0.01, no coverage or e-value 1010, 80% coverage

thresholds. These settings were chosen based on our previous study

which demonstrated that both settings provide unique and accurate

solutions [20]. Unless otherwise denoted, the results from this study

use an e-value 0.01 and no coverage thresholds.

From the alignments to a fold-specific library, a fold-specific score

is calculated. For every alignment returned from an rps-BLAST

search of a given query against a given fold-specific PSSM library,

each amino acid of a query which is identically or positively (non-

identical, but conserved) aligned is scored with BLOSUM62 score

for the aligned pairs. These scores are summed for each amino acid

of the query (i.e., positional score). The fold-specific score for a

query protein is calculated as:
1

n

Xn

i~1

riif riw0 where n is the length

of a protein sequence and ri is a positional score of ith amino acid of

the protein. Then each query is encoded in a structural sequence

profile which is a vector of fold-specific scores (Fig. 1c).

Next, as a quantitative measure of how two proteins are structurally

similar (i.e. the structural similarity score), we calculate a Pearson’s

correlation coefficient between their vectors. Pearson’s correlation

coefficient between structural sequence profiles X and Y, PC(X, Y), is

calculated as: PC(X ,Y )~
1

n

Xn

i~1

Xu{mX

dX

� �
Yi{mY

dY

� �
where n is

the number of measuring folds, and mX and dX are the average and

standard deviation of X.

Results

Initially, we tested the efficacy of our method using the TZ-

SABmark, which is a carefully curated benchmark set of fold-

specific sequences of remote homology [11]. Each sequence group

of TZ-SABmark represents a SCOP fold classification [12] of

related sequences with #25% pairwise sequence identity. From

the original TZ-SABmark, 534 sequences from the first 61 fold

groups (avg. length of 135.27+89.39 s.d.) were used as a test set.

SCOP domains in TZ-SABmark set were not used as reference

sequences for fold-specific library construction. Since we used

SCOP domain reference sequences with #40% pairwise identity,

pairwise identities between TZ-SABmark test sequences and the

reference sequences should be also #40%.

Alignment Comparisons and Information Content
We first evaluated sequence similarity between TZ-SABmark

test sequences and the expanded sequences used for building fold-

specific libraries. Figure 2a plots cumulative frequency distribu-

tions of pairwise identity between pairs of TZ-SABmark test

sequences and the sequences from their true- and false-fold

libraries. These statistics demonstrate that ,95% of all same-fold

pairs have ,20% pairwise identity. Indeed, this distribution is

negligibly distinct from comparisons of different-fold pairs.

Additionally, we compared the sequence similarity between the

SCOP reference sequences and the sequences which were

obtained through their PSI-BLAST expansion. The sequences

used to define fold-specific libraries are also in the ‘‘twilight zone’’.

Taken together, this indicates that our information source is: (i)

derived from low-identity alignments, (ii) improved by including

intermediate sequences in the library, and (iii) not due to

redundancy.

It is reasonable to consider that a protein would have a larger

fold-specific score for its true-fold than for its false-folds; this is

confirmed in Figure 2b and demonstrates that our fold libraries

are specific. We observe that 99.8% of the query sequences have

fold-specific scores ƒ0.1 for different-folds, while only 24.3% of

them have scores ƒ0.1 for same-folds. Given these data, if we

annotate each protein by the highest fold-specific score, the folds

of 70.8% of TZ-SABmark test sequences can be predicted

correctly. Figure 2c shows cumulative frequencies of structural

similarity score between pairs of same-fold (blue, 3,428 pairs) and

different-fold (red, 65,536 pairs) query sequences. ,24.2% of

same-fold pairs have structural similarity scores .0.1, while only

,0.2% of different-fold pairs have scores .0.1. Figure 2d plots

structural similarity scores between same/different-fold pairs

versus their pairwise identity. We observe an independent trend

between structural similarity score and pairwise identity whereby

true positives distribute to higher structural similarity scores (see

Fig. S1 for the statistics of e-value 1010, 80% coverage threshold

setting).

Performance Evaluation
To compare our performance for relating structurally related

proteins against other benchmarking methods, we utilized

receiver operating characteristic (ROC) curve analysis [14]. A

ROC curve plots sensitivity versus false-positive rate, where a left-

shifted curve is considered more accurate. Sensitivity and false-

positive rates are calculated as: Sensitivity =
TP

TPzTN
, false

positive rate = 1{
TN

TNzFP
, when TP = the number of true

positives, TN = the number of true negatives, and FP = the

number of false positives. SAM-T2K, prof_sim, HHsearch 1.5.0

and FFAS03 are used as benchmark methods [15–17].
Settings. For SAM-T2K, blastall in NCBI BLAST 2.2.15 is

used for the target2k script in the SAM3.5 package for searching

the sequence database to collect sequences for HMM generations

of the 534 test sequences. When a query sequence is scored given a

Predicting Protein Folds
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HMM model by hmmscore, the Smith-Waterman algorithm was

used by default. For prof_sim, sequence profiles were generated by

PSI-BLAST and profile-profile alignment was done with the local

alignment setting. For HHsearch 1.5.0, PSI-BLAST was used for

HHsearch to build HMMs of TZ-SABmark test sequences with

the setting of –j 5 –h 1.0e-3. The database of TZ-SABmark

HMMs were generated and searched for each query HMM with

default settings. For all of four benchmark methods, NCBI NR

database with 6,419,591 protein sequences was used as a sequence

database. FFAS03 was run by a member of Godzik lab [15] to a

false-positive rate ,0.01. In the result of each method, all-against-

all comparison of TZ-SABmark test sequences were performed,

and for each sequence, all other sequences were sorted by

structural similarity score (in case of our method) or e-value/p-

value (in case of benchmarking methods) for ROC curve analysis.

In all cases, the settings used were chosen as to give each method

the best chance of performing well.

Results. In Figure 3a, we compare ROC curves of our

method with two different settings (e-value 0.01, no coverage and

e-value 1010, 80% coverage thresholds, see Fig. S2b for the results

of different threshold settings) versus two traditional fold

recognition methods (FFAS03 and HHsearch [15], see Fig. S2a

for prof_sim and SAM-T2K [16,17]). The results demonstrate

that our method in both settings outperform these benchmarking

methods. The sensitivity of our method using only statistically

significant alignments from rps-BLAST (e-value 0.01, no coverage)

is ,0.6 at false positive of 0.01. At the setting of e-value 1010 and

80% coverage, we obtain similar sensitivity at a false positive rate

,0.04, but its sensitivity increases up to ,0.7 at a false positive

rate 0.1 due to the additional alignments obtained. Intriguingly,

the alignments obtained from both filtering strategies reside in the

‘‘twilight zone’’ (Fig. 3a inset).

Figure 3b quantifies the independence between predictions of

FSL with two different settings (e-value 0.01, no coverage vs. e-

value 1010, 80% coverage) for true-positives, false-positives, and

false-negatives. Interestingly, we observe a significant number of

unique true-positive pairs at both e-value settings. This suggests

that comparative measurements are likely to be useful for the

identification of true-positive pairs. We made the same compar-

ison between our method (e-value 0.01, no coverage), FFAS03,

Figure 1. Computational Pipeline. (a) Basic pipeline for FSL method. For each fold, structurally determined sequences are collected, expanded by
PSI-BLAST, and used to generate PSSMs to create a fold-specific library. Each fold-specific library, compiled as rps-BLAST database, can be searched at
varying e-value thresholds. Given the alignments returned after filtering by coverage, a fold-specific score for the query is calculated. By repeating this
process using different fold-specific libraries, the query protein can be represented as a structural sequence profile, which is a vector of fold-specific
scores. To calculate structural similarity score of two proteins, Pearson’s correlation coefficient of their structural sequence profiles is calculated. (b)
Expansion of reference sequences. SCOP domain sequences with known fold are collected, and expanded by PSI-BLAST search against NCBI NR
database with each of the reference sequences as a query. After removing redundant or highly similar sequences, PSSMs are generated from the
collected sequences by PSI-BLAST for a fold-specific library. (c) Calculation of fold-specific scores. Given an alignment between a query and a fold-
specific PSSM, each query amino acid is scored with BLOSUM62 score for identical or conserved matches. After scoring with all alignments against
PSSMs from the fold-specific library, the fold-specific score of a protein is calculated by dividing the sum of all positive positional scores by a query
sequence length.
doi:10.1371/journal.pone.0020557.g001
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and HHsearch (Fig. 3c, see Fig. S3 for comparisons using e-value

1010, 80% coverage threshold). The diagrams indicate that FSL

obtain more unique true-positive pairs and false-negative pairs

while predicting fewer false-positive pairs. The most dramatic

increase occurs between unique true positives whereby FSL obtain

5.6 fold increase over FFAS03 and a 10.3 fold increase over

HHsearch.

Additionally, we tested how our method performs when

building fold-specific libraries only using reference sequences

which have ,30% (FSL-2) and ,25% (FSL-3, FSL-4) sequence

identity to TZ-SABmark test sequences (Fig. 3d). As expected, as

we limit references sequences by their similarity to TZ-SABmark

test sequences, our performance degrades (FSL-1, FSL-2, FSL-3).

Instead of only using SCOP domains whose sequence identity is

,25% to the test sequences as references, we allowed PSI-

BLAST to return a larger number of sequences while expanding

reference sequences using more relaxed settings (-j 5, 2b 60, 2h

1.0e-3). By this simple change of PSI-BLAST setting for

expansion, we could build sensitive FSL, which outperforms all

benchmarking methods, with this very limited set of reference

sequences (FSL-4).

Applications for Fold Classification
Based on the promising results described above, we sought to

perform a forward-engineering and blind experiment using targets

from the 9th Critical Assessment of Techniques for Protein

Figure 2. Characterization of Structural Similarity Scores. (a) The distribution of percent pairwise identity between pairs of TZ-SABmark
sequences and the library sequences of the same-fold (blue) and different-folds (red) and percent pairwise identity between the original PDB
sequences and PSI-BLAST expanded sequences (green). All three comparisons demonstrate that nearly all of the sequence alignments reside in the
‘‘twilight-zone’’ of sequence similarity. The pairwise identity was calculated from Needleman-Wunsch global alignments] with BLOSUM62], Gap
opening penalty 10, and Gap extension penalty 0.5. (b) The distributions of query sequence scores for each fold-specific library. (c) Cumulative
frequencies of the structural similarity scores between pairs of same-fold (blue) and different-fold (red) query sequences. For this measurement, 3,428
same-fold pairs and 65,536 different-fold pairs were measured from 534 sequences. (d) Structural similarity scores between pairs of same-fold and
different-fold query sequences were plotted versus their pairwise sequence identity. This data shows an independent trend between the structural
similarity score and pairwise identity in the ‘‘twilight-zone’’ of sequence similarity. For different-fold pairs, randomly selected 10,000 data points were
plotted. The statistics in the Fig.S1 b, c, and d were obtained given the setting of e-value 0.01, no coverage threshold.
doi:10.1371/journal.pone.0020557.g002
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Figure 3. Fold Recognition Performance and Comparative Statistics. (a) Comparison of ROC curves of FSL with two different settings,
FFAS03 and HHsearch. Pairwise identities of the alignments between queries and the PSSMs from their true fold-specific library, which were collected
with different e-value and coverage thresholds, are shown (inset). (b) Comparison of true-positive, false-positive, and false-negative pairs in top-9
result (sequences returned with the highest 9 structural similarity scores or the lowest 9 e-value/p-value for each of TZ-SABmark queries) of FSL at two
different settings of e-value 0.01 and 1010. The numbers of true-positive, false-positive, and false-negative pairs predicted by FSL of e-value 1010 are
2,616, 2,190, and 4,240, respectively. (c) Comparison of true-positive, false-positive and false-negative pairs in top-9 result of FSL (e-value 0.01, no
coverage), FFAS03, and HHsearch. The numbers of true-positive pairs predicted by FSL, FFAS03, and HHsearch are 2,773, 2,030, and 1,769,
respectively. The numbers of false positive pairs are 980, 2,776, 3,037, while the numbers of true negative pairs are 4,069, 4826, and 5,087 (FSL,
FFAS03, and HHsearch respectively). (d) Comparison of ROC curves of FSL given fold-specific libraries built with different sets of reference sequences
(e-value 0.01, no coverage) and FFAS03. FSL-1 is the result using PSSM libraries built from the SCOP reference sequences only after removing TZ-
SABmark test sequences. FSL-2 and FSL-3 are the results using PSSM libraries built from SCOP domains whose sequence identity is ,30% and ,25%
to TZ-SABmark sequences. FSL-4 is the result using PSSM libraries built from SCOP domains whose sequence identity is ,25% to TZ-SABmark
sequences at less stringent settings for PSI-BLAST for expansion.
doi:10.1371/journal.pone.0020557.g003
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Structure Prediction (CASP) competition that recently finished.

We present here a few target results (T0520, T0523, and T0590 in

Fig 4 a, b, & c respectively) only to demonstrate that our approach

can be applied to template-based structure modeling. These

challenging proteins were provided as ‘‘human/server targets’’

(i.e., Template Based Modelling {TBM}) because of their weak

similarity to known structures. All of our results for the

competition are provided in Table S1 a–d.

We first determined which of the SCOP fold libraries had the

highest fold-specific score with the target. To select the best

template, we create a structural sequence profile for the

representatives of the best fold and then perform hierarchical

clustering using Pearson’s correlation coefficient as a similarity

metric. The SCOP domains with high Pearson’s correlation

coefficients to the target are then used as templates for template-

based structure modeling (purple boxes). Sequence identity

between the SCOP domains and these targets are highly

divergent (grey text). Following clustering, the sequences of the

selected SCOP domains and the target were aligned using

MUSCLE [21] and threaded models were generated using

Modeller [22]. We observe that our backbone models for these

three targets accord well to the crystal structures as shown in the

Fig 4. These results suggest that this application holds promise for

structural modeling.

We were unable to model all CASP9 targets as successfully as

the targets described above. When compared to FFAS03n and

HHPredA, we obtained a ‘‘best template’’ as determined by the

CASP9 curators for 24/43 human/server targets, while FFAS03n

obtained 26/43 best templates and HHPredA obtained 33/43 best

templates. When we examined our data for the 19 unsuccessful

targets, 18/19 targets had less than 6 PSSMs in their FSL (Table

S1a–d). Thus, our performance can be improved by making more

comprehensive FSLs that include all PDB structures.

Discussion

In this manuscript we reveal the power of FSL for fold

recognition in the ‘‘twilight-zone’’ of sequence similarity. Our

results support the hypothesis that FSL provides a robust user-

defined structural modeling application. This is supported by

several key findings from our measurements: (i) ‘‘twilight-zone’’

pairwise alignments are informative (Fig. 2), (ii) they outperform

multiple benchmarking methods in TZ-SABmark by providing

more unique true-positive pairs (Fig. 3), and (iii) they are capable

of reconstituting structural fold classifications, including sub-fold

groupings (i.e., SCOP superfamilies) that are not encoded in the

PSSM library (Fig. 4). A number of broad implications can be

derived from this study.

We previously reported that low-identity alignments are a rich

source of information, which can be used to unmask the

fundamental properties of proteins, including protein structure,

function, and evolution using simple arithmetic [4,5,10]. We take

advantage of the information content provided by PSSMs to

increase the signal-to-noise ratio inherent to low-identity align-

Figure 4. Structure prediction of CASP9 targets. The structures of the three targets T0520, T0523, and T0590 from CASP9 were predicted based
on the folds predicted FSL. First, the fold of each target was determined as the fold with the highest fold-specific score. To select the best template
structures from the fold, all SCOP domains in the fold (SCOP 1.75) and the target were represented in a vector of (percent identity | percent
coverage) score of an alignment to each PSSM in the fold-specific library and then performed hierarchical clustering using Pearson’s correlation
coefficient as a similarity metric. The SCOP domains which have high Pearson’s correlation coefficients to the target were selected as template
structures for template-based structure modeling (purple boxes in a dendrogram). Sequence identity between the SCOP domains and the target is in
the twilight zone (grey text). The sequences of the selected SCOP domains and the target were aligned using MUSCLE. Given the alignment, Modeller
was used to predict a structure. Structural superposition of each target to its experimental structure is given (cyan: experimental structure, purple: our
model).
doi:10.1371/journal.pone.0020557.g004
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ments. In addition, we demonstrate that a coverage threshold is an

effective filter of noisy alignments (Fig S2c). When fold-specific

scores are encoded into a vector (i.e., structural sequence profiles),

multiple data mining algorithms can be used reliably to measure

fold attributes.

We also evaluated the performance of FSL to relate divergent

structural folds of test sequences by correlating their structural

sequence profiles, which are generated for test sequences after

measured with fold-specific PSSM libraries. When compared to

popular profile-based algorithms such as FFAS03, HHsearch,

SAM-T2K, and prof_sim, FSL obtains a significant portion of

unique true-positive pairs and reduced false-positives. Taken

together, this underlies our increased performance. Interestingly,

all methods including FSL recover a substantial number of unique

pairs. While relating these unique pairs (outside of our own) is

difficult, if a scoring function could be assigned to unique

information obtained from each server (e.g. similar to the

MULTICOM or RAPTOR algorithms [22,23], it is likely that

further improvements could be achieved.

Considering the current genomic explosion of sequences, fold

recognition methods are needed as they are a true watershed in

Biology. Based on the results presented here, conversion and PSI-

BLAST expansion of the PDB into fold-, superfamily-, and family-

specific PSSM libraries would, in theory, synergize and improve

structural modeling in general. In this study, we used FSLs

comprised of sequences exclusively derived from SCOP fold

classifications. Thus, the current weakness of our method is our

incomplete PSSM fold-specific libraries. Future work is aimed at

expansion and improvement of these libraries using all available

information in structural databases.

Supporting Information

Figure S1 Characterization of Structural Similarity
Scores given e-value 1010 and 80% coverage threshold.
(a) The distributions of query sequence scores for each fold-

specific library. 97.3% of the query sequences have fold-specific

scores , = 0.1 for different-folds, while only 20.0% of them have

scores , = 0.1 for same-folds. (b) Cumulative frequencies of the

structural similarity scores between pairs of same-fold (blue) and

different-fold (red) query sequences. 66.3% of same-fold pairs have

structural similarity scores .0.1, while 39.7% of different-fold pairs

have scores .0.1. For this measurement, 3,428 same-fold pairs

and 65,536 different-fold pairs were measured from 534

sequences. (c) Structural similarity scores between pairs of same-fold

and different-fold query sequences were plotted versus their

pairwise sequence identities. This data shows an independent

trend between the structural similarity score and pairwise identity in

the ‘‘twilight-zone’’ of sequence similarity. The data points of

randomly selected 10,000 different-fold pairs were plotted.

(TIFF)

Figure S2 Fold Recognition Performance of FSL with
Different Settings Given 1,086 fold-specific libraries. (a)
Comparison of ROC curves of FSL with two different settings (of

e-value 0.01, no coverage and e-value 1010, 80% coverage),

FFAS03, HHsearch, prof_sim, and SAM-T2K (b) Comparison of

ROC curves of FSL at different coverage thresholds when e-value

threshold is fixed at 1010.

(TIFF)

Figure S3 Comparison of true-positive, false-positive
and false-negative pairs in top-9 (FSL of e-value 1010,

80% coverage threshold, FFAS03, and HHsearch1.5.0).
The numbers of true-positive pairs predicted by FSL, FFAS03, and

HHsearch1.5.0 are 2,616, 2,030, and 1,769, respectively. The

numbers of false positive pairs are 2,190, 2,776, 3,037, while the

numbers of true negative pairs are 4,240, 4,826, and 5,087 (FSL,

FFAS03, and HHsearch1.5.0 respectively).

(TIFF)

Table S1 60 CASP9 targets for the Human/Server
prediction. CASP9 released 60 targets for the Human/Server

prediction. Tertiary structure predictions are divided into two

categories namely; ‘‘Template based modeling’’ category which

include domains where a suitable template is identified that covers

all or nearly the entire target, and ‘‘Template free modeling’’

category which include models of protein for which no suitable

template or only a small portion of target is identified. The best

template for the target is picked based on the GDT_TS (Global

Distance Test_Total Score) between the aligned CA atoms in

template and the experimental structure in sequence-independent

superposition under 5Å distance cutoff. All the targets are

separated into columns and have listed the best templates for all

the targets used by CASP. A comparison table is constructed with

three main assessors namely WACLabs, FFAS03n & HHpredA in

the selection of the best template. (a) the list of 24 successful

targets predicted by WAC Labs. All the three assessors WACLabs,

FFAS03n and HHpredA picked the best template (Fold recogni-

tion) used in CASP2010 (colored blue). Here, HHpredA have

identified multiple structures to model their target, whereas WAC

Labs and FFAS03n have used a maximum of only 3 templates. (b)
the list of 19 unsuccessful targets predicted by WAC Labs. We

(WAC Labs) were unable to predict the best template when

compared to HHPredA and FFAS03n who were successful in

identifying 11 and 8 template structures out of 19 targets (colored

blue) respectively. We selected a poor template with low fold

specific score due to our incomplete fold specific library. (c) the list

of 19 unsuccessful targets predicted by WAC Labs with respect to

the PSSMs generated. For the 19 targets we were unable to

classify, we have minimal information for 12 targets and 7 targets

were not encoded in our FSLs. For the 12 targets that were present

in our library (colored red), our fold specific library does not

contain sufficient PSSMs to generate useful scores. (d) the list of 17

miscellaneous targets. Out of 17 targets, 6 were cancelled and 11

are modeled by ‘‘Template free modeling’’ (TFM). T0550 and

T0608 (colored blue) are exceptions where part of the template

region is used to model a part of the protein and later are modeled

by template free modeling.
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