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Linking clinical narratives to standardized vocabularies and coding systems is a key

component of unlocking the information in medical text for analysis. However, many

domains of medical concepts, such as functional outcomes and social determinants

of health, lack well-developed terminologies that can support effective coding of

medical text. We present a framework for developing natural language processing (NLP)

technologies for automated coding of medical information in under-studied domains,

and demonstrate its applicability through a case study on physical mobility function.

Mobility function is a component of many health measures, from post-acute care

and surgical outcomes to chronic frailty and disability, and is represented as one

domain of human activity in the International Classification of Functioning, Disability,

and Health (ICF). However, mobility and other types of functional activity remain under-

studied in the medical informatics literature, and neither the ICF nor commonly-used

medical terminologies capture functional status terminology in practice. We investigated

two data-driven paradigms, classification and candidate selection, to link narrative

observations of mobility status to standardized ICF codes, using a dataset of clinical

narratives from physical therapy encounters. Recent advances in language modeling

and word embedding were used as features for established machine learning models

and a novel deep learning approach, achieving a macro-averaged F-1 score of 84% on

linking mobility activity reports to ICF codes. Both classification and candidate selection

approaches present distinct strengths for automated coding in under-studied domains,

and we highlight that the combination of (i) a small annotated data set; (ii) expert

definitions of codes of interest; and (iii) a representative text corpus is sufficient to produce

high-performing automated coding systems. This research has implications for continued

development of language technologies to analyze functional status information, and the

ongoing growth of NLP tools for a variety of specialized applications in clinical care

and research.
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INTRODUCTION

Automatically coding information in narrative text according to
standardized terminologies is a key step in unlocking Electronic
Health Record (EHR) documentation for use in health care.
Mapping variable descriptions of clinical concepts to well-
defined codes—for example, mapping “chronic heart failure” and
“chron CHF” to the same ICD-10 code of I50.22—not only
improves search and retrieval of medical information from EHRs
or published literature (1), but also enables adding evidence
from narrative documentation into artificial intelligence-driven
predictive analytics and phenotyping (2). Free text is an especially
valuable source for information that is not systematically
recorded, or difficult to capture in standardized EHR fields, such
as social determinants of health (3, 4). EHR narratives contain a
rich diversity of health information types beyond drugs, diseases,
and other well-studied areas (5, 6), which have the potential
to be unlocked with new natural language processing (NLP)
technologies. This article presents a framework for expanding
NLP technologies for coding under-studied domains of health
information in the EHR, using a case study on physical function.

Functional status information (FSI), which captures an
individual’s experienced ability to engage in different activities
and social roles, is one of these under-studied domains of health
information in the EHR (7). Functional status, and its sister
concept of disability, describe how individuals interact with
their environment, and how health condition can affect different
activities. FSI thus consists of measurements and observations
of individuals’ level of functioning, and is central to estimating
service needs and resource use in health systems (8). FSI is
typically coded according to the World Health Organization’s
(WHO) International Classification of Functioning, Disability,
and Health (ICF) (9), which categorizes human activity into
discrete domains such asmobility, communication, and domestic
life, as well as more complex social roles such as community
and civic life. Linking health information to the ICF has
demonstrated positive impact in clinical research (10), health
system administration (11), and clinical decision making (12).
However, these linkages have largely been restricted to surveys
and questionnaire instruments, and have required high effort
through expert-driven, manual processes (13). Achieving similar
power in linking information in EHR narratives to the ICF
requires approaches that can scale to the volume and flexibility
of text data in the EHR.

Automatically linking EHR narratives and other health-

related text to the ICF has significant potential to help address

several barriers to effectively leveraging information on function
in health care. Nicosia et al. (14) show that while clinicians
support the importance of measuring function as part of primary
care, a lack of standardized locations to record and retrieve FSI
hinders its adoption. Narrative text, underpinned by NLP-based
coding, reduces the need for standard data elements and allows
clinicians to record function as part of normal documentation.
Scholte et al. (15) demonstrate that where FSI is recorded in EHR
narrative, it is comparable in quality to information collected
using specialized surveys, and highlight the need for NLP
technologies to standardize FSI as a driver of improved quality

measurement for physiotherapy. Hopfe et al. (8) and Alford et al.
(16) describe the value of the ICF in capturing outcomes relevant
to the patient, and Vreeman et al. (17) and Maritz et al. (18)
argue that systematic integration of the ICF has the potential
to improve both physical therapy and occupational therapy
documentation. When interactive ICF coding has been built in
to documentation workflows, it has led to improved progress
monitoring and treatment recommendation (19–21), and NLP-
based capture of FSI improves patient outcome prediction (22).

Despite these benefits, automatically coding EHR text for
functional status has lagged behind the rapid advancement
of coding technologies for the International Classification of
Diseases (ICD) and other coding systems (23, 24). Kukafka et al.
(25) developed hand-built rules to link five distinct ICF codes in
rehabilitation discharge summaries; to the best of our knowledge,
no paper since has presented a fully-automated approach to ICF
coding. However, research on identifying descriptions of FSI
(without necessarily linking to the ICF) has grown in recent
years, including frailty-focused studies targeting selected aspects
of physical function (26–29), broader extraction of physical
and cognitive function information for rehospitalization risk
prediction (22), and studies on extracting reports of activity
performance within the ICF’s mobility domain (30, 31). In
order to fully utilize these systems for FSI analysis, they must
be combined with coding technologies that link the extracted
information to the ICF.

This article presents a general-purpose approach to expanding
NLP technologies to assign standardized codes to new types of
information in the EHR, and applies this approach to produce
new technologies for linking EHR text to the ICF. Existing
NLP technologies for coding medical information, as well as for
linking text to other kinds of controlled inventories such as real-
world named entities, largely rely on curated resources such as
standardized vocabularies (32, 33), expert knowledge graphs (2,
34), and/or large-scale data sets with many thousands of samples
(35, 36). However, such resources have not yet been developed
for the functional status domain (7), and are in fact difficult
to procure for most under-studied medical concept domains,
necessitating the development of new approaches.We investigate
two common paradigms for coding, classification and candidate
selection, and demonstrate that both achieve high performance in
coding information about patient mobility in a dataset of physical
therapy documents. These findings illustrate how NLP can help
to unlock new types of health information in text, even without
standardized terminologies, and lay the groundwork for more
systematic capture of FSI in EHR narratives.

The remainder of this article is organized as follows. In the
Materials and Methods section, we describe our case study on
physical function, including the data used, the implementation of
classification and candidate selection frameworks for the specific
task of coding FSI according to the ICF, and a novel model for
candidate selection using a learned, context-sensitive projection
of medical code representations. The Results section presents the
results of our experiments and comparative analysis of aspects
of classification and candidate selection. The Discussion section
places our findings in context and discusses: implications for
automated coding in new and under-studied concept domains;
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FIGURE 1 | An example activity report describing a clinical observation of

mobility, indicating: (i) the Action being described, (ii) a source of Assistance

involved in activity performance, and (iii) the Quantification outcome of the

measurement setting. The Action in this activity report is assigned ICF code

d450 Walking.

next steps for FSI-focused NLP; conceptual differences between
classification and candidate selection and their roles in under-
studied concept domains; alternative approaches to coding
clinical text; and limitations of the study.

MATERIALS AND METHODS

Mobility Activities
We targeted the scope of our study to the mobility domain of
the ICF, one of nine chapters in the Activities and Participation
branch of the classification. Limitations in mobility are some
of the most common factors in U.S. disability claims (37),
and thus represent a high-impact application of ICF linking
without requiring addressing the full breadth of human activity
as represented in the ICF. Mobility activities are structured into
20 three-digit codes, and grouped together into “Changing and
maintaining body position,” “Carrying, moving and handling
objects,” “Walking and moving,” and “Moving around using
transportation” (9). Each three-digit code, such as d450 Walking,
is further classified into specific four-digit codes for variants
of the activity, such as d4500 Walking short distances, d4501
Walking long distances, d4502 Walking on different surfaces, and
d4503 Walking around obstacles.

The FSI Mobility domain describes the experienced ability of
a specific individual to perform one of these activities, resulting
from the interaction between the individual, their personal
capacities, and their environment (38). Environmental factors
may include both barriers (e.g., rough terrain or lack of physical
supports) and facilitators (e.g., ramps or assistive devices), and
are central to functional outcomes (39). Descriptions of mobility
outcomes, termed as activity reports (7), are thus complex phrases
including the activity in question, the individual performing
the activity, and the environment in which it occurs. Figure 1
illustrates an example mobility activity report, following the
conceptual framework introduced by Thieu et al. (40).

Analyzing activity reports thus requires two processes:
extraction and coding. First is extracting the reports from free
text and determining the level of limitation described, which
we have studied in our previous work (30, 31, 41). The second
process is linking the report to the activity it describes in the
ICF, which is the focus of this article. We highlight opportunities

TABLE 1 | ICF code descriptions and frequencies in physical therapy

notes dataset.

Code Description Frequency

d410 Changing basic body position 838

d415 Maintaining a body position 612

d420 Transferring oneself 522

d430 Lifting and carrying objects 44

d435 Moving objects with lower extremities 2

d440 Fine hand use 10

d445 Hand and arm use 66

d450 Walking 1,603

d455 Moving around 378

d460 Moving around in different locations 176

d470 Using transportation 38

d475 Driving 77

Other – 161

Total 4,527

Descriptions given are the preferred name of each code in the ICF.

for future research on combining these processes into a single
approach in the Discussion section (see “Jointly Modeling
Extraction and Coding”).

Mobility Dataset
While several studies have investigated the terminology used to
describe physical function (42–44), annotation of activity reports
in EHR data has remained a significant challenge since the first
research on coding EHR narratives with the ICF (25). Following
our prior work, in this study we used a dataset of 400 Physical
Therapy records from the NIH Clinical Center, described by
Thieu et al. (40). These documents were annotated for mobility
activity reports, including the activity being performed, any
sources of assistance observed, and any measurements described.
Each activity report was further assigned either a three-digit
ICF mobility code for the referenced activity (e.g., d450 Walking
for “Pt ambulated 300ft”), or Other if no appropriate ICF code
could be identified. Table 1 provides the frequencies of each of
the 12 ICF mobility codes found in this dataset, along with the
Other label. The label frequencies are strongly right-tailed: d450
accounts for 35% of all samples, and the top three most frequent
codes (d450, d410, and d415) cover 67% of dataset samples.

Representing Activity Reports for Machine
Learning
The ICF presents a classification of functioning (i.e., categorizing
and organizing different aspects of functioning and types of
activity), but it is not intended as a terminology: it does
not capture the diversity of ways that functional status can
be described. Standardized medical terminologies also fail to
capture observed descriptions of functional status (42); thus, the
terminology-driven approaches commonly used in NLP coding
(5, 45) are of limited utility for FSI. Data-driven approaches such
as machine learning enable the construction of coding models
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without comprehensive terminologies, provided sufficient data to
observe consistent patterns.

We experimented with two strategies for representing activity
reports in machine learning models: (i) lexical information
(unigrams); and (ii) word embedding features that represent
words in a real-valued vector space (46). Unigram features model
the task as determining patterns in the usage of specific words;
word embedding features, in effect, abstract out from specific
words to groups of words that are used in similar fashions,
increasing model flexibility to different written texts. While
word embedding features generally yield better performance
than unigram features, they are less easily interpreted, and
experimenting with both allows for evaluation of the baseline
complexity of the task (i.e., the degree to which it can be resolved
using lexical triggers alone) and the performance gains provided
by embedding features. Both approaches are widely used in
health informatics applications and are easily implemented,
making them strong initial baselines for analysis of a new kind
of health information.

Unigram Features
Unigram features represent activity reports in terms of the
unique words (unigrams) used. As activity reports vary widely
in length, from 1 to 76 tokens in our dataset1, we experimented
with two representation methods: binary indicators and term
frequency inverse document frequency (TF-IDF) values. With
binary features, an activity report is represented as a binary
vector where each index corresponds to a unique word and a 1
indicates that the corresponding word appeared in the activity
report; this allows us to minimize effects of activity report length
on the magnitude of our feature vectors. With TF-IDF values,
a unigram weighting method commonly used in information
retrieval and text classification, an activity report is represented
as a real-valued vector where each index i corresponds to a
unique word wi, and the value at index i is the frequency of
word wi in the activity report multiplied by the log of the fraction
of documents (here, activity reports) in which wi occurs. This
allows us to take relative frequency of words into account while
controlling for words that are common to all types of activity
reports (e.g., “independence”).

Word Embedding Features
Word embedding representations are created for an activity
report in one of two ways. Static embeddings, such as word2vec
(48) or GloVe (49), represent each word type in a vocabulary with
a separate real-valued vector that does not change in different
contexts. Contextualized embeddings, such as ELMo (50) and
BERT (51), calculate dynamic vectors for each word in a given
sequence, so that “cold” is represented with a different vector in
“cold pack” than it is in “cold and fever.” In this study, we used
word2vec and BERT for static and contextualized embeddings
respectively, as they are the most commonly-used models and
de facto standards. We note that these are representative choices
only; a wide variety of other algorithms and models may also be

1Calculated using spaCy (47) tokenization, which includes punctuation marks as

separate tokens.

chosen, as described in the Discussion section (see “Alternative
Coding Approaches”).

Knowing Where the Action Is: The Action Oracle
As illustrated in Figure 1, an activity report is a complex
statement describing a particular action being performed by an
individual in a specific environment. Thus, we can distinguish
between the activity report (describing the complete functional
outcome) and the specific action being described in it (a separate
component from any environmental factors; see “walking” in
Figure 1). The annotations in our Physical Therapy dataset
include annotations of which words in an activity report are
describing the specific action being performed (e.g., “walking”
in “Pt has difficulty walking at home without assist”)2. However,
previous work on extraction of mobility activity reports (30, 31)
did not include extraction of the action component (which we
write as “Action” for the remainder of themanuscript, for clarity).
Thus, while extracting the Action mentioned inside an activity
report is highly relevant for ICF coding, it cannot be assumed
based on current technologies.

To reflect both the best-case scenario (including extracted
Actions) and the immediate case (activity reports only), we
experimented with an Action oracle setting, in which the span
of an Action within an activity report could be provided a
priori to the coding model. Without access to the Action oracle,
activity report representation with both static and contextualized
embeddings consisted of averaging the embedding vectors for
each word in an activity report. With the Action oracle, our
approaches diverged: as contextualized embeddings already
capture context within the activity report, we represented the
report using averaged embeddings of Action words only; with
static embeddings, we averaged the vectors for each non-Action
word in the activity report (i.e., context words) and concatenated
this vector with the averaged embedding of each word in
the Action. We note that while contextualized embeddings
are affected by word order (e.g., “walking independently” is
represented differently from “independently walking”), our use
of static embeddings follows a “bag of words”-style approach
that ignores word order (i.e., “walking independently” and
“independently walking” will have the same representation).

Hybrid Representations
Figure 2 illustrates our experimental settings for activity report
representation. We also experimented with concatenating
unigram features and word embedding features together to use
a hybrid approach.

Text Corpora Used for Learning Word Embedding

Features
The choice of text corpus used to pre-train word embedding
models (e.g., Wikipedia articles, PubMed abstracts, etc.) strongly
affects the ability of the learned embeddings to represent
information of interest in specialized applications. We have
previously demonstrated that mobility FSI extraction is sensitive
both to the representativeness of the pre-training corpus (in

2These Action components are in fact what were assigned the 3-digit ICF codes by

Thieu et al. (40).
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FIGURE 2 | Experimental settings for representing activity reports for machine learning models. Unigram and embedding features were used both separately and

together.

terms of capturing EHR language) and its size (30). To
evaluate the effects of the two different variables of corpus
representativeness and corpus size in pre-training embeddings
for ICF coding, we experimented with several training corpora
with different balances between these variables, detailed in
Table 2.

For static embedding features, we used the word2vec
algorithm (48) to train word embeddings, and experimented
with four corpora with that increase in representativeness while
decreasing in size:

• GoogleNews. We used a set of benchmark embeddings3

trained on a portion of the Google News dataset. This corpus
is large-scale, and low in representativeness.

• MIMIC. We trained embeddings on the text notes in the
MIMIC-III critical care admissions dataset (52), including
approximately twomillion EHRnotes. This corpus ismedium-
scale, and representative of EHR language.

• NIHCC. We obtained a dataset of approximately 155,000
EHR notes from departments across the NIH Clinical
Center, including a large portion of documents from the
Rehabilitation Medicine Department. This corpus is small-
scale, and representative of the same institution as our
dataset, with high representation of specialties focused on
functional status.

• PT-OT.We obtained a further dataset of approximately 63,000
EHR notes from Physical Therapy and Occupational Therapy
encounters at the NIH Clinical Center, over a 10-year period.
This corpus is very small-scale, but highly representative of
language focused on functional status.

For our trained MIMIC, NIHCC, and PT-OT embeddings, we
used the following corpus preprocessing: all text was lowercased,
punctuation was removed, all numbers were replaced with
zeros, and de-identification placeholders were mapped to generic
strings (e.g., “FIRST_NAME”).

For contextualized embedding features, we used the BERT
method (51). The computational demands of re-training BERT

3Downloaded from https://code.google.com/archive/p/word2vec/.

precluded training customized models on our internal corpora.
We therefore experimented with three benchmark pre-trained
BERTmodels, ranging from large and non-representative of EHR
text to small and more representative:

• BERT-Base (51). This model was trained on a benchmark web
corpus (55) and released as a general-purpose language model
with an implementation of the BERT method4.

• BioBERT (53). This model was trained on biomedical
abstracts from PubMed5.

• clinicalBERT (54). This model was trained in two stages:
first on biomedical abstracts from PubMed, followed by a
fine-tuning stage on EHR data from the MIMIC-III database6.

Coding Activity Reports According to the
ICF
Given an activity report as input, the goal of the systems
described in this study is to output the 3-digit ICF mobility code
for the action being described. We investigated two common
paradigms for coding medical information in text. The first
was classification, in which the set of codes a piece of text
information (e.g., “chronic heart failure” or “difficulty walking”)
can be linked to is modeled as a fixed set of options, typically
without incorporating information about the codes themselves.
The second was candidate selection, in which the set of codes
are represented mathematically based on coding hierarchy, code
definitions, etc., and each piece of text information can be
compared to a dynamic set of options to determine which code
is most representative.

For our study, under the classification paradigm, ICF codes
(and the Other label) are modeled as orthogonal outputs of
a discriminative classifier, without direct information about
the codes themselves; under the candidate selection paradigm,
activity reports and ICF codes are represented as numeric
vectors, and the code that is most similar to a given activity
report is chosen as the output label. Figure 3 illustrates the

4Downloaded from https://github.com/google-research/bert.
5Downloaded from https://github.com/naver/biobert-pretrained.
6Downloaded from https://github.com/EmilyAlsentzer/clinicalBERT.
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TABLE 2 | Text corpora used to pre-train embedding models for use in ICF coding experiments.

Paradigm (method) Name Corpus Num. words (Approx.) Description Representativeness |

size

Static (word2vec) GoogleNews (48) Google News 100 billion Large-scale web text Low | Large

MIMIC MIMIC-III (52) 497 million EHR text from ICU admissions Medium | Medium

NIHCC NIHCC Large 75 million EHR text from NIH Clinical

Center departments

Higher | Smaller

PT-OT NIHCC

PT/OT

1.2 million Physical therapy and

occupational therapy records

Highest | Smallest

Contextualized (BERT) BERT-Base (51) Billion Word

Benchmark

1 billion Large-scale web text Low | Large

BioBERT (53) PubMed 2.6 billion Biomedical abstracts Medium | Large

clinicalBERT (54) PubMed,

MIMIC-III

2.6 billion, 497 million Pre-trained on biomedical

abstracts, then fine-tuned on

EHR text from ICU admissions

Higher | Smaller

(fine-tuning)

Representativeness judgments are relative to coding ICF information in physical therapy notes.

overall workflow of the ICF coding task under each of these
paradigms. Details of our classification and candidate selection
approaches are described in the following subsections; further
discussion of differences between the two paradigms and their
implications for FSI analysis more broadly is provided in the
Discussion section (see “Implications for Classification and
Candidate Selection Paradigms”).

Coding as Classification
Under the classification paradigm, ICF codes are treated as
categorical outputs of a discriminative model, which takes an
activity report as input and produces either a single decision
or a probability distribution over available codes as output. The
set of codes is fixed for all activity reports, and no information
about the semantics of each code is represented in the model. The
classification paradigm is commonly used for ICD coding (24, 56)
as well as various types of patient phenotyping (57).

Classification Models
ICF coding is both a new task for classification and one for
which we only have a relatively small dataset. As no particular
classification approach can thus be considered best a priori,
we experimented with three established classification models
commonly used in current research: (i) k-Nearest Neighbors
(KNN); (ii) linear-kernel Support Vector Machine (SVM); and
(iii) a feed-forward Deep Neural Network (DNN). Each of these
models leverages different aspects of the features space—KNN
relies on locality, linear-kernel SVM on linear separability, and
DNNs on complex non-linear relationships between points—and
can be used with unigram features, embedding features, or both.
We used the implementations of all three models in the Python
SciKit-Learn package (58) (version 0.20.3), using the following
parameters: KNN−5 neighbors, uniform weighting; SVM—
linear kernel; DNN−1x100 hidden layer, maximum training
iterations=1000, Adam optimizer7.

7All other parameters were set to default values, which may be found in the online

documentation: https://scikit-learn.org/0.20/modules/classes.html.

In addition, we experimented with BERT fine-tuning (51), in
which contextualized representations from BERT are tuned and
passed through a learned classifier to predict the appropriate label
(here, ICF codes); this has become a de facto standard for text
classification tasks in recent work, and is an important baseline
for measuring the performance of large-scale neural models for
new tasks. We used the reference implementation of the fine-
tuning method released by Google8. Taken together, these four
classification approaches establish well-rounded baselines that
provide an initial characterization of the complexity of the ICF
coding task.

Coding as Candidate Selection
Under the candidate selection paradigm, each activity report is
compared to a set of candidate ICF codes, and the most similar
code is chosen as output. In broad-coverage settings such as
coding to SNOMED CT, the set of candidate codes can be chosen
dynamically for each sample (59); due to the strict focus of our
study on the mobility domain, we used the same set of 12 ICF
codes (i.e., those observed in the Physical Therapy dataset) for
all activity reports. The candidate selection paradigm has three
components: (i) representation of samples (here, activity reports);
(ii) representation of candidate codes (here, ICF codes); and (iii)
the method of calculating similarity between samples and codes.

We experimented with both unigram features and word
embedding features for representing samples and candidate
ICF codes. ICF code representations were derived from the
definitions provided for each code in the ICF. We experimented
with using just the definition of each 3-digit code or extending it
with the combined definitions of all 4-digit codes underneath it
(e.g., appending definitions of d4400 Picking up, d4401 Grasping,
d4402 Manipulating, and d4403 Releasing to the definition
of d440 Fine hand use), following the definition construction
approach of McInnes et al. (60).

We explored three different approaches for candidate
selection using ICF code definitions: (1) lexical overlap between

8Available from https://github.com/google-research/bert/blob/master/

run_classifier.py.
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FIGURE 3 | ICF coding workflow. EHR texts are analyzed to identify activity reports (provided a priori for this study), which are assigned ICF codes under either the

classification or candidate selection paradigms.

activity reports and code definitions; (2) cosine similarity
between embedded representations of activity reports and code
definitions; and (3) cosine similarity between activity report
embeddings and transformed embeddings of code definitions,
using a projection function learned directly for the ICF
coding task. These approaches represent increasing degrees of
abstraction for matching between an observed activity report and
the definitions of ICF codes, and explore the degree to which code
definitions are predictive of practical usage in clinical text.

Unigram-Based Candidate Selection
As our first candidate selection approach, we calculated similarity
between the words of an activity report and the words in ICF
code definitions using the adapted Lesk algorithm described by
Jimeno-Yepes and Aronson (61). We represented each ICF code
i with profile wi

code
, a binary vector indicating the set of words in

the code definitions. For each activity report, we then calculated
wact , a binary vector indicating the set of words in the full activity
report text, and calculated the cosine similarity between wact and
each wi

code
using the following equation:
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The texts of both code definitions and activity reports were
preprocessed with Porter stemming, lower-casing, and removal
of English stopwords, using the Python NLTK package (version
3.4.1). For example: activity report “Pt gets to work on foot”
would be represented using indicator variables for {“pt,” “get,”
“work,” “foot”} and the truncated definition for d450 “Walking:
moving along a surface on foot” would be represented as {“walk,”
“move,” “along,” “surface,” “foot”}; their cosine similarity would
therefore be 0.2. Activity reports with zero lexical overlap with all
ICF codes were assigned d450, the most frequent code.

Embedding-Based Candidate Selection
In our second candidate selection approach, we moved beyond
exact lexical matches to compare activity reports to code
definitions based on word usage patterns, as captured with
word embedding features. We represented ICF codes as the

averaged embeddings of the words in each code’s definition
(either the 3-digit code definition alone or the extended
definition). Punctuation was removed for representation with
static embeddings. With contextualized embeddings, where
representations are conditioned on their contexts, we segmented
each definition into sentences, processed each sentence with
BERT separately, and averaged the sentence-level embeddings.
We averaged the hidden states from the last four layers of the
BERTmodels, following Devlin et al. (51)9. Following Pakhomov
et al. (62), extended definitions were down-weighted by 50% to
focus on the primary 3-digit code definition.

Under this approach, activity report similarity to code
embeddings10 was calculated using cosine similarity between the
activity report embedding and ICF code embeddings; the ICF
code with highest similarity to the report was chosen as output.

Finally, our third and most flexible candidate selection
approach investigated adapting code representations for the ICF
coding task. We designed a novel learned context-dependent
projection of the code embeddings, illustrated in Figure 4, which
works as follows:

(1) The model takes as input the embedding of an activity report
and an array of embeddings for the candidate ICF codes.

(2) The activity report embedding and each ICF code
embedding are passed into a feed-forward DNN, which
outputs a new, projected representation of the ICF code.
The same DNN parameters are used to project all ICF
code embeddings.

(3) Projected code embeddings are compared to the
(unmodified) activity report embedding using the vector
similarity method proposed by Sabbir et al. (63), which
combines cosine similarity with the magnitude of the

9BERT embeddings of activity reports only used the last layer, as this consistently

yielded better performance in our experiments than averaging the last four layers.
10In both embedding-based approaches, when using the Action oracle setting with

static word embeddings, we duplicated the code embedding vectors to match the

dimensionality of the concatenated activity reports (see section word embedding

features).
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FIGURE 4 | Diagram of novel context-dependent projection model for code

embeddings. The deep neural network (DNN) takes an activity report and an

individual code embedding as input and produces a projected version of the

code embedding as output. The same DNN was applied to all code

embeddings; similarity scoring is performed using the combined cosine

similarity and projection magnitude method of Sabbir et al. (63). After training

the model, the softmax operation is removed and similarity scores are

produced as output.

projection of the activity report onto each code embedding11.
Let vact be the activity report embedding, and vi
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(4) The code with highest similarity score with the activity report

is chosen as output.

The dimensionality of the projected code embeddings is the
same as the original embeddings, to allow for cosine similarity
calculation with the activity report embedding. This approach
allowed us to focus on different parts of the embedding space
for different activity reports, while still using an intuitive vector
similarity approach.

11We experimented with using the similarity score of Sabbir et al. (63) for un-

projected similarity as well. The combined scorer produced the same results as

cosine similarity alone; we therefore report cosine similarity for un-projected

results for simplicity.

To train our context-dependent projection model, we passed
each activity report in our training data into the model, together
with the embeddings of all ICF codes in the dataset, to produce
projected code embeddings. The projected code embeddings
were compared to the activity report to calculate a vector of
similarity values (one per candidate code). This similarity vector
was then normalized using softmax, and the network parameters
were trained using cross-entropy loss. At test time, the softmax
operation is omitted and the code with highest cosine similarity
after projection is chosen as output. Due to the small size of
the dataset, the projection model was trained for 50 epochs. Our
projection function was a feed-forward deep neural network. We
experimented with the number of hidden layers from 1-10, and
constrained the hidden layer size to match the dimensionality
of the output (i.e., 300 for static embeddings without the Action
oracle, 600 for static embeddings with the Action oracle, and 768
for all BERT experiments).

Handling the Other Label
As our candidate selection approach was based on the definitions
of ICF codes, this did not provide us with a way to select the
Other label (which has no definition). While the ICF chapter on
mobility does include two catch-all codes (d498 Mobility, other
specified and d499 Mobility, other unspecified), these codes have
no written definition and could not stand in for the Other label.
Candidate selection approaches to coding information typically
operate on the closed world assumption—that is, that all valid
things a mention could be linked to are represented in the set
of possible candidates. We conformed to this assumption in
this study and did not include an approach for detecting Other
samples in our candidate selection experiments: we excluded
them from the training phase, and predicted the most similar
of the 12 ICF codes in the dataset at test time. We highlight
addressing the closed world assumption as an important aspect
of future work on automated coding, particularly for new types of
information where coding inventories are likely to be incomplete.

Training and Evaluation Procedure
We used 10-fold cross validation over the full Physical Therapy
dataset for all of our machine learning-based experiments12.
For parameter selection, including (i) selection of static and
contextualized embedding models; (ii) selection of input features
for classification models; (iii) selection of ICF code definition
sources; and (iv) selection of highest-performing classification
and candidate selection approaches; we held out 10% of data
of each fold as development data (leaving 80% of the data for
training and 10% for testing) and chose the settings that yielded
best performance on this held-out data.

Evaluation was performed using macro-averaged F-score, to
account for the label skew in the dataset and to reflect that our
goal was a coding system that performed well across all codes
irrespective of frequency.

All experiments and analyses were conducted using Python 3
on an NVIDIA DGX-1 server, using one 20-core Intel Xeon E5

12As adapted Lesk similarity and base cosine similarity are deterministic, we ran

these experiments on the full dataset.

Frontiers in Digital Health | www.frontiersin.org 8 March 2021 | Volume 3 | Article 620828

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Newman-Griffis and Fosler-Lussier Coding Under-Studied Medical Concepts

FIGURE 5 | Macro-averaged F-1 performance on classifying mobility activity reports with ICF codes or Other. Results are reported on development data. (A) reports

on selection of embedding corpus for word2vec (static embeddings), (B) reports on selection of BERT model, (C) reports on selection of unigram feature weighting,

and (D) reports on experiments with different feature sets, with and without the Action oracle.

CPU and one Tesla P100 GPU; each experiment took between
2–50min of runtime. Tokenization and sentence segmentation
were performed using the spaCy library (47) (version 2.1.4);
tokenization for BERT processing was performed using
WordPiece (64). Statistical significance testing for differences
in macro-averaged F-1 score was performed using bootstrap
resampling of evaluation data (65), with 1000 replicates.

RESULTS

Identifying the Best Classification Method
Figure 5 illustrates the results of our experiments with the
different models and features we experimented with for
classifying mobility activity reports according to ICF codes.
For static (word2vec) embedding features (Figure 5A),
performance improved with the representativeness of the
data (Google News to MIMIC to NIHCC to PT-OT), despite
the decrease in corpus size. BERT features (Figure 5B)
followed the same pattern, with clinicalBERT outperforming
or matching the other models across all four classification
methods. For unigram features (Figure 5C), TF-IDF values
yielded better performance than binary features with KNN
and SVM classification, but a small but statistically significant
(p = 0.008) degradation in performance with DNN classification.
With all of word2vec embeddings, BERT embeddings,
and unigram features, SVM classification achieved the best
overall performance.

Static embedding features outperformed both unigram
features and BERT embeddings (Figure 5D); combining static
embeddings and unigrams failed to improve performance either
with or without the Action oracle. Having access to oracle
information about the Action mentioned in activity reports
significantly improved performance (p ≪ 0.0001) by 12–20%
macro F-1 when using embedding features, but decreased
performance when combining embedding and unigram features.
Access to the Action oracle does not affect use of unigram features
alone. We thus used SVM with PT-OT embeddings and no
unigram features as our best classification method.

Identifying the Best Candidate Selection
Method
Figure 6 shows the results of our experiments with different
methods and features for candidate selection-based ICF coding
of mobility activity reports. word2vec embeddings (Figure 6A)
followed the same pattern as in our classification experiments,
with the most representative PT-OT corpus achieving highest
performance with both cosine similarity and projected similarity
(not statistically significantly worse than MIMIC, p =

0.367). For BERT embeddings (Figure 6B), the web-text BERT-
Base yielded highest performance with cosine similarity; no
BERT model was statistically significantly better-performing
than the others with projected similarity (p > 0.2). As
projected similarity achieved much higher macro F-1 than
cosine similarity, we chose clinicalBERT for our contextualized
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FIGURE 6 | Macro-averaged F-1 performance, reported on development data, on candidate selection approaches to coding activity reports according to the ICF.

(A,B) report on selection of embedding models for word2vec and BERT features, respectively. (C) reports results of projected similarity experiments with different

numbers of hidden layers in the Deep Neural Network (DNN) component. (D) illustrates results using 3-digit ICF code definitions with and without extended definitions,

and (E) shows results for cosine similarity and projected similarity models with and without the Action oracle.

embedding model, as it was the most representative source and
was statistically indistinguishable from the highest-performing
BERT model. Maximum projected similarity performance with
static embeddings was achieved with three hidden layers in
the DNN (performance was not statistically significantly better
with six layers, p = 0.37); the best performance with
BERT embeddings was achieved with a single hidden layer
(Figure 6C).

Extended definitions had minimal effects on performance
with static embeddings, but significantly degraded performance
with BERT features when compared to using the 3-digit code
definitions alone (p ≪ 0.0001), for both adapted Lesk similarity
and projected similarity (Figure 6D). Cosine similarity with
static embeddings improved a small but statistically significant
(p = 0.006) amount with extended definitions, but was

statistically equivalent with BERT (p = 0.3) and still low
enough in performance to be uninformative. The cause of
the performance degradation from extended definitions with
BERT embeddings is unclear; it is possible that the extended
definitions introduce information that is spurious to the
task, but which the contextualized BERT representations are
unable to filter out. Oracle information about Actions in the
activity reports significantly improved performance for both
cosine and projected similarity with both types of embeddings
(Figure 6E; p ≤ 0.001), matching the improvements seen in our
classification experiments.

Cosine similarity without our learned projection model
yielded consistently poor performance, with a maximum of
23.6 macro-averaged F-1. Adapted Lesk similarity with 3-digit
code definitions was significantly better for coding than cosine
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FIGURE 7 | Macro-averaged F-1 performance on test data from cross validation experiments for assigning ICF codes to mobility activity reports. (A) compares our

best classification model against our best candidate selection model (with and without access to the Action oracle), taking all labels including Other into account. (B)

reports the same comparison on the 12 ICF code labels only, excluding Other.

similarity (p ≪ 0.0001), though still relatively poor at 29.5
macro F-1. Projected similarity achieved the best results of
our candidate selection methods, with clinicalBERT features
producing comparable results to classification experiments.

Comparing Classification and Candidate
Selection
Figure 7 compares test set performance of the best classification
model (SVM with PT-OT embedding features) and the best
candidate selection model (projected similarity using a 1-layer
768-dimensional DNN with clinicalBERT embeddings and 3-
digit code definitions only), both with and without access to the
Action oracle. As we were not able to represent the Other label
for our candidate selection approaches (see section Handling the
Other Label), we compared classification and candidate selection
results in two settings: (i) the application setting (Figure 7A),
using all 13 labels regardless of method limitations; and (ii) a
head-to-head comparison evaluated only on the 12 ICF codes
for which definitions were available (Figure 7B). Without access
to the Action oracle, classification performed significantly better
than candidate selection (p ≪ 0.0001). With access to Action
information, however, the improvement from using classification
over candidate selection was no longer statistically significant
(p = 0.111 for the All Labels setting), and disappeared almost
entirely when controlling for the challenge of the Other label.

Per-Code Analysis
Figure 8 breaks down model performance by label (3-digit
ICF code or Other) for our best classification and candidate
selection models, both with and without access to the Action
oracle. Absolute scores with the classification model were
higher than candidate selection for all codes other than d435
(which only had two samples in the dataset), although overall
performance differences between the two approaches were not
statistically significant.

Figure 9 contrasts the confusion matrices of each model, with
and without access to the Action oracle. Decision patterns were
broadly similar between the two approaches. Without access to
the Action oracle, both models exhibited significant sensitivity to

label frequency; adding information about where the Action is
within an activity report mostly controlled for label frequency,
with a greater reduction of effect in the classification model than
the candidate selection model.

DISCUSSION

This study demonstrates that standard NLP methods can
produce high-performing technologies for automatically coding
mobility FSI according to the ICF. Our approach provides a
template for new research on automated coding for under-
studied concept domains, which we describe in the section titled
“A Template for Expanding Automated Coding to New Concept
Domains.” Our models establish a strong baseline performance
of 84.0% macro-averaged F-1 for coding FSI in the mobility
domain in a Physical Therapy dataset; we discuss broader
implications and next steps for FSI-focused NLP, including
expansion to other domains of the ICF, in the section titled
“Implications for FSI-FocusedNLP.” Further differences between
classification and candidate selection paradigms are presented in
the section titled “Implications of Classification and Candidate
Selection Paradigms,” in terms of ease of expansion to other
codes, hierarchical coding structure, and alternate information
sources. Alternative modeling approaches for coding according
to standardized terminologies are discussed in the section titled
“Alternative Coding Approaches,” and the “Jointly Modeling
Extraction and Coding” section comments on opportunities for
research on jointly extracting and coding FSI activity reports.
Finally, limitations and next steps from the study are outlined in
the “Limitations” section.

A Template for Expanding Automated
Coding to New Concept Domains
The framework for this study is easily adaptable to other
under-studied or emerging domains of health information,
and can help to guide the development of new technologies as
medical NLP continues to expand. Under-studied domains
of health information, such as social determinants of
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FIGURE 8 | Per-label performance analysis, comparing best classification and candidate selection models without access to the Action oracle (left bars) and with

oracle access (right bars). Labels are ordered from most frequent (d450) to least (d435), with the frequency of each provided in parentheses.

health or environmental exposures, generally lack well-
developed vocabularies and terminologies that could otherwise

guide extraction and coding of information from text.

For example, a recent method for extracting social risk

factors from narratives by Conway et al. (66) utilizes hand-

engineered word patterns to identify three types of risk

factors, due to the lack of coverage of relevant terms in
standardized vocabularies.

Our work illustrates that high-performing technologies for

coding medical information at a more granular level can be

achieved with a relatively small amount of expert-sourced data:

• Small set of annotated data. The expense and complexity

of obtaining expert annotations of medical information is

frequently cited as a major barrier to advancing machine

learning-based technologies in medicine (67, 68). While our

approach did require expert-annotated data, we were able to
achieve strong coding performance using a relatively small
dataset of only 400 clinical documents, compared to the
thousands of documents used in a recent study on extracting
evidence of geriatric syndrome (28) or the tens of thousands
used in foundational NLP research (69). Datasets of similar
scale have been developed for automatic coding of other
types of medical information (70), indicating that for a
new type of health information, an initial dataset of a few
hundred documents is likely to provide significant signal for
machine learning.

• Definitions of concepts of interest (codes). Large-scale
terminologies, which aim to capture a variety of common
ways of referring to medical concepts, require significant
effort to create and maintain. Our candidate selection results
join previous results (71, 72) in showing that expert-written
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FIGURE 9 | Confusion matrices for best classification and candidate selection models, without access to the Action oracle (top row) and with oracle access (bottom

row). The rows of each matrix indicate the annotated label for a sample, and columns indicate the predicted label. Labels are ordered from most frequent (d450) to

least frequent (d435).

definitions provide high-quality information for learning
to discriminate between different codes; classification or
candidate selection models can then be combined with
data-driven extraction methods (30, 31) in a complete
coding pipeline. Definitions do not necessarily need to be
extensively validated, as the ICF was (9); initial resources
could be developed through consensus of a small panel of
domain experts.

• Unlabeled text balancing representativeness and size. Our
comparison of embedding features and unigram features
clearly demonstrates the added value of lexically-abstracted
embedding features, which enable data-driven models to
capitalize on similar and related words beyond exact matches
(46, 73). As observed in prior literature (30, 74, 75),
word embeddings that balance a training corpus that is
representative of the target information with corpus size
achieve the best performance for specialized tasks. While
our results led us to use the most specialized PT-OT corpus
for our word2vec embeddings, the performance of our more
general NIHCC corpus (approximately 155,000 documents)
was comparable to PT-OT results, and MIMIC embeddings
were not far behind. Thus, neither the size of the corpus
nor its representativeness was the sole determining factor;
further experimentation is needed to measure the returns of
additional data from the same type of representative language.
For practical purposes, obtaining either (a) a relatively large

corpus that is at least somewhat related to the target task or (b)
a small corpus aligned to the task of interest is likely to provide
useful embedding features.

Implications for FSI-Focused NLP
Our study is the first to present a method for automatically
coding a set of closely-related activities according to the ICF.
Taken together with our previous work on extracting mobility
activity reports (30, 31) and detecting the level of activity
performance reported (41), along with recent research on
extracting wheelchair status (76) and walking difficulty (26–29),
clear directions are beginning to emerge for NLP research to
produce usable tools for analyzing FSI. This study establishes
strong baseline approaches for ICF coding, and highlights several
areas of further inquiry for NLP research focusing on FSI.
While the experiments reported in this study focus on mobility
activities only, the coding approaches presented have not been
tailored to the specific characteristics of mobility reports; the
classification and candidate selectionmodels used heremay easily
be applied to other types of FSI activity reports corresponding
to other chapters of the ICF as data for them becomes
available. To support further research in this direction, we
have released an implementation of our experiments at https://
github.com/CC-RMD-EpiBio/automated-ICF-coding. Pursuing
these directions to expand NLP technologies for FSI beyond the
level of standardized surveys has significant potential for impact
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in benefits administration (77), management of public health
programs (78), and measuring overall health outcomes (79, 80).

Developing FSI Terminologies
Medical information extraction often utilizes standardized
terminologies, such as the Clinical Terms collection of the
Systematized Nomenclature of Medicine (SNOMED CT), to
combine extraction and normalization into a single step.
Terminologies capture the language used to refer to common
medical concepts, such as findings, treatments, and tests, making
them invaluable resources for medical NLP technologies (33, 45).
While many structured health instruments have been linked to
the ICF for interoperability (10, 13), the ICF is not intended as
a comprehensive terminology, and neither it nor other medical
terminologies exhibit good coverage of FSI as recorded in free
text (42, 81). While retrospective analyses of medical text related
to surgical outcomes (43), frailty (82), and dementia (44) have
captured examples of FSI terminology in practice, no resource
has yet been developed to systematically capture FSI language for
NLP purposes.

The complexity of FSI, such as the three components of
mobility activity reports and the variable structure of an activity
report itself, means that terminologies alone are unlikely to
capture the full breadth of language that can be used to
describe functional status. However, the hierarchical framework
developed for mobility reports by Thieu et al. (40), together
with the frame semantic analysis of functional status descriptions
described by Ruggieri et al. (83) present useful tools for
combining specific terminologies for aspects of function with
more data-driven models like ours.

Prior analyses of FSI-related language (42–44, 82) and a recent
frailty-related ontology (84) provide a valuable starting point
for developing more targeted terminologies, for areas such as
specific actions, sources of assistance, or measurements. Key
terms highlighted in these prior studies can be used as seed items
for new terminologies, which can be expanded with both co-
occurrence-based data mining approaches (85) and application
of our trained coding models to identify potential new terms. For
example, an occurrence of a candidate term could be compared
to each ICF code using our projected similarity model to
identify which (if any) it is most representative of. Development
of focused terminological resources, combined with linguistic
knowledge andmore lexically-abstract approaches like those used
in this study, will advance both the coverage and the precision of
FSI extraction methods.

Function Beyond the ICF
The ICF has a number of limitations as a coding system
for functional status, including a lack of granularity and
missing occupationally-relevant environmental factors (86, 87).
Its adoption rate in clinical practice is quite low in the U.S. (88)
and globally (89, 90), likely due in part to a lack of integration into
billing and service management processes (91). Recent efforts
in physical therapy (92) and occupational therapy (18) describe
alternative coding frameworks for functional measurement
designed to connect more directly to clinical practice. Provided
definitions for codes in these systems, the approaches used in

this study could easily be adapted to these other coding systems;
in addition, using these types of data-driven approaches to
develop expanded terminologies may support efforts to more
systematically code FSI in practice.

Implications of Classification and
Candidate Selection Paradigms
In our experiments on the Physical Therapy mobility dataset,
the classification paradigm yielded better absolute performance
than candidate selection models. There are two main aspects of
candidate selection that may have contributed to these findings.
First, while directly modeling the codes offers the opportunity
to include different kinds of information about them (e.g.,
definitions) in the model, it also constrains how the model
can detect similarity between input text and candidate codes;
classification approaches can enable detecting a wide variety
of relationships between texts and codes. Second, candidate
selection requires having information about each code a priori;
in our case, we did not have a way to represent the Other
label, leading to a much larger gap in performance between
classification and candidate selection on the full label set
compared to the 12 defined ICF codes alone.

Nonetheless, candidate selection has significant advantages for
long-term research on under-studied concept domains. By virtue
of using a dynamic set of codes as options for linking each piece
of text information, candidate selection approaches can easily
be expanded to new codes and new domains of information.
Mobility is only one of many areas of human activity; the ICF
includes other domains such as communication and self-care
which will be important to include as research on FSI analysis
grows. As classification approaches utilize a fixed set of labels
(i.e., codes), expanding to new codes and new domains requires
retraining and potentially restructuring classification models. In
addition, the ability to directly represent codes in a candidate
selection approach provides the opportunity to dynamically
introduce different information sources that can inform under-
studied domains (e.g., augmenting definitions with information
about usage patterns).

Thus, both classification and candidate selection paradigms
should be investigated in new research on under-studied
domains, and revisited as that research expands (e.g., as
the FSI code set increases beyond the mobility domain).
Successful technologies may also take a hybrid approach, such
as leveraging hierarchical coding structure and label embedding
for classification (24), or filtering candidate sets based on type
classification (93).

Alternative Coding Approaches
Automated coding according to commonly-used sources such
as ICD-9, ICD-10, and SNOMED CT is an active area of
research, including development of highly sophisticated neural
network models (24, 35, 94). Other approaches, developed for
web text, combine neural network modeling with the insights
of probabilistic graphical models to jointly link all entities
mentioned in a document (95, 96). These models, which require
large volumes of data not currently available for FSI, represent
a valuable direction for future research on ICF coding as data
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availability and complexity improves. These and other state-of-
the-art studies on ICD coding and other types of entity linking
leverage thousands or tens of thousands of annotated documents
(made easier by the standard use of ICD codes throughout global
health systems, and the volume of web text), and are evaluated on
hundreds of codes requiring hierarchicalmodeling. An intriguing
question for research on FSI coding is how these robust models
can be effectively adapted to the much lower-resourced setting
of ICF codes. One recent study demonstrated that BERT fine-
tuning (outperformed in our study by SVM classification) with
multi-lingual data achieved promising results in adapting an
ICD coding system to Italian (56), suggesting that a carefully
constructed adaptation method may be able to use advanced
neural models to improve FSI coding.

In addition, there is significant research into strategies
for learning neural representations of entities in knowledge
bases and coding systems. Past work has investigated diverse
approaches, such as leveraging rich semantic information from
knowledge base structure and web-scale annotated corpora (34,
97, 98), utilizing definitions of word senses (similar to our
use of ICF definitions) (99, 100), and combining terminologies
with targeted selection of training corpora to learn application-
tailored concept representations (101, 102). While most of the
research on entity representations requires resources not yet
available for FSI (e.g., large, annotated corpora; well-developed
terminologies; robust and interconnected knowledge graph
structure), all present significant opportunities to advance FSI
coding technologies as more resources are developed.

On a textual level, while BERT provides some degree of
flexibility to unseen words through the use of WordPiece
tokenization (64), both word2vec and BERT primarily use
lexicalized embeddings (i.e., stored at the level of individual
words). A thorough investigation of the use of character-based
representations, such as ELMo (103) and FLAIR (104) as well
as subword-based approaches such as FastText (105), is an
important direction for future work; such approaches are likely to
offer more flexible model training that can leverage morphemic
cues as well as lexical patterns.

Jointly Modeling Extraction and Coding
Our study focused on extraction and coding as separate steps of
analyzing FSI activity reports in text, and the methods described
in this article can easily be combined with our previous work on
mobility FSI extraction (30, 31, 40) to produce an end-to-end
NLP pipeline for mobility FSI similar to those used for other
types of clinical text analysis (32, 33, 45). However, there has
been significant NLP research on directly developing end-to-end
approaches that jointly model extraction and coding (36, 106);
other research has shown benefits of jointly modeling entity
extraction and the related task of inter-entity relation extraction
(107). As a joint learning strategy allows each task to provide
training signal to the other, such an approach may help to
improve FSI analysis performance in its current low-data setting.

Limitations
While our findings demonstrate clear utility for NLP technologies
in analyzing mobility FSI, there were certain limitations to our

study that inform directions for future work. In the first case, the
ICF includes several mobility codes that were not observed in our
dataset; coding to the ICF more broadly will require additional
data collection and expansion of our methodologies. Second,
the degree to which the Physical Therapy documents used in
this study are representative of mobility FSI documentation
more generally remains to be determined. All documents were
sourced from a single institution, the NIH Clinical Center; a
next step is thus to investigate how these findings generalize
to documentation patterns at other institutions, which often
exhibit variability that impacts NLP performance (108). Third,
it is well-known that clinical documentation presents significant
challenges for NLP (109), such as a lack of clear sentences (110),
frequent misspellings (111) and use of abbreviations (112), and a
variety of types of ambiguity (113). While the use of in-domain
training data in this study intrinsically helped capture some
of these issues, and we avoided use of technologies built for
biomedical literature, the effects of these characteristics on FSI
documentation and analysis have yet to be investigated. Finally,
the methods used for classification and candidate selection in this
study, while thoroughly evaluated, were by no means exhaustive.
With the strong baselines established by this study, investigating
alternative methods for ICF coding is a valuable direction for
future research.

CONCLUSIONS

Natural language processing (NLP) technologies can be used
to analyze a variety of under-studied medical concept domains
in health-related texts such as EHR notes. We have presented
a generalizable framework for developing NLP technologies
to code information in new and under-studied domains, and
demonstrated its practical utility through an applied study on
coding information on mobility functioning according to the
ICF. Provided a small, well-defined set of resources for a new
domain, both classification and candidate selection paradigms
can produce high-quality coding models for downstream
applications, and candidate selection approaches offer significant
adaptability to the changing demands of evolving research areas.
Our results lay the groundwork for increased study of functional
status information in EHR narratives, and provide a template for
further expansion of automated coding in NLP. The software
implementations used for our experiments are available from
https://github.com/CC-RMD-EpiBio/automated-ICF-coding, to
support further research in this area.
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