XRCC1 Gene Polymorphisms and Glioma Risk in Chinese Population: A Meta-Analysis

CrossMark click for updates

Li-Wen He^{1,29}, Rong Shi¹⁹, Lei Jiang³⁹, Ye Zeng⁴, Wen-Li Ma¹, Jue-Yu Zhou¹*

1 Institute of Genetic Engineering, Southern Medical University, Guangzhou, China, 2 Zhujiang Hospital, Southern Medical University, Guangzhou, China, 3 Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China, 4 Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China

Abstract

Background: Three extensively investigated polymorphisms (Arg399GIn, Arg194Trp, and Arg280His) in the X-ray repair cross-complementing group 1 (XRCC1) gene have been implicated in risk for glioma. However, the results from different studies remain inconsistent. To clarify these conflicts, we performed a quantitative synthesis of the evidence to elucidate these associations in the Chinese population.

Methods: Data were extracted from PubMed and EMBASE, with the last search up to August 21, 2014. Meta-analysis was performed by critically reviewing 8 studies for Arg399Gln (3062 cases and 3362 controls), 8 studies for Arg194Trp (3419 cases and 3680 controls), and 5 studies for Arg280His (2234 cases and 2380 controls). All of the statistical analyses were performed using the software program, STATA (version 11.0).

Results: Our analysis suggested that both Arg399Gln and Arg194Trp polymorphisms were significantly associated with increased risk of glioma (for Arg399Gln polymorphism: Gln/Gln vs. Arg/Arg, OR = 1.82, 95% Cl = 1.46–2.27, P = 0.000; Arg/Gln vs. Arg/Arg, OR = 1.25, 95% Cl = 1.10–1.42, P = 0.001 and for Arg194Trp polymorphism: recessive model, OR = 1.78, 95% Cl = 1.44–2.19, P = 0.000), whereas the Arg280His polymorphism had no influence on the susceptibility to glioma in a Chinese population.

Conclusions: This meta-analysis suggests that there may be no association between the Arg280His polymorphism and glioma risk, whereas the Arg399Gln/Arg194Trp polymorphisms may contribute to genetic susceptibility to glioma in the Chinese population. Nevertheless, large-scale, well-designed and population-based studies are needed to further evaluate gene-gene and gene–environment interactions, as well as to measure the combined effects of these XRCC1 variants on glioma risk.

Citation: He L-W, Shi R, Jiang L, Zeng Y, Ma W-L, et al. (2014) XRCC1 Gene Polymorphisms and Glioma Risk in Chinese Population: A Meta-Analysis. PLoS ONE 9(11): e111981. doi:10.1371/journal.pone.0111981

Editor: Robert Lafrenie, Sudbury Regional Hospital, Canada

Received March 23, 2014; Accepted October 3, 2014; Published November 6, 2014

Copyright: © 2014 He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported by the National Natural Science Foundation of China (81201565, 81101536), Program of the Pearl River Young Talents of Science and Technology in Guangzhou, China (2013J2200042), Natural Science Foundation of Guangdong Province, China (S2012010009404, S2012010009294) and Specialized Research Fund for the Doctoral Program of Higher Education of China (20124433120001). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: zhoujueyu@126.com

• These authors contributed equally to this work.

Introduction

Glioma is the most common and aggressive malignant primary brain tumor in humans, especially in adults, accounting for approximately 30% of all brain and central nervous system (CNS) tumors and 80% of all malignant brain tumors [1,2]. Currently, the therapy for glioma is a combined approach, using surgery, radiation therapy, and chemotherapy. The prognosis for glioma patients is still poor, except for pilocytic astrocytomas (WHO grade I). Fewer than 3% of glioblastoma patients are still alive at 5 years after diagnosis, with an older age being the most significant and consistent prognostic factor for poorer outcome. Despite decades of research, the etiology of glioma is poorly understood. Many environmental and lifestyle factors including several occupations, environmental carcinogens, and diet have been reported to be associated with an elevated glioma risk, but the only factor unequivocally associated with an increased risk is high dose exposure to ionizing radiation [3,4]. However, only a minority of those exposed to ionizing radiation eventually develop glioma, suggesting that genetic factors, such as single nucleotide polymorphisms (SNPs), may be crucial to modify the risk for glioma [5,6].

DNA repair genes play a major role in the DNA mismatch repair pathway, including base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR) and double strand break repair (DSBR), and are essential for maintaining the integrity of the genome [7,8]. The X-ray repair cross-complementing group 1 (XRCC1) gene is an important component of DNA repair and encodes a scaffolding protein that participate in the BER pathway [9–11] for repairing small base lesions derived from oxidation and alkylation damage [12]. Several nonsynonymous coding polymorphisms were identified in this gene, and the three which are most extensively studied are Arg399Gln on exon 10 (rs25487, G/A), Arg194Trp on exon 6 (rs1799782, C/T) and Arg280His on exon 9 (rs25489, G/A) [13]. These polymorphisms, which involve amino acid changes at evolutionarily conserved sequences, could alter the function of XRCC1, which may diminish repair kinetics in individuals with the variant alleles and increase the risk of glioma in humans.

To date, several epidemiologic studies have been performed to elucidate the effect of these SNPs on glioma risk. However, the results are to some extent divergent, but nevertheless intriguing. The inconsistency of these studies may be explained by differences in population background, source of controls, sample size, and also by chance. Actually differences in the allele frequencies of these three polymorphisms in Asians and Caucasians have been reported [14,15]. Since most of the previous association studies focused on Caucasians [16-25], few, if any, large-scale studies have been performed in Chinese populations. The genetic effect of XRCC1 polymorphisms on glioma risk in Chinese populations remains largely inconclusive. In addition, several new related studies of glimoa risk in Chinese populations [26-28] have since been published. Therefore, in the present study, we performed a meta-analysis to elucidate the relationship between XRCC1 polymorphisms and glioma risk in Chinese populations by combining all available studies.

Materials and Methods

Search strategy

We performed a comprehensive literature search of PubMed and EMBASE for relevant studies that tested the association between XRCC1 polymorphisms and the risk of glioma up to August 21, 2014. The following search terms and keywords were used: ("DNA repair gene" OR XRCC1 OR "X-ray repair crosscomplementation group 1") AND (polymorphism OR variant OR variation OR mutation) AND (glioma OR "brain tumor"). In addition, references cited in the retrieved articles were reviewed to trace additional relevant studies missed by the search.

Inclusion criteria

Included studies were considered eligible if they met all of the following criteria: 1) studies with full text articles; 2) a case–control study evaluating at least one of these three polymorphisms in the XRCC1 gene; 3) enough data to estimate an odds ratio (OR) with 95% confidence interval (CI); 4) no overlapping data. For the studies with the same or overlapping data by the same authors, we selected the ones with the most subjects.

Data extraction

Data were extracted independently by three investigators. For conflicting evaluations, an agreement was reached following discussion. For each study, the following characteristics were collected: first author, publication year, source of controls, genotyping method, numbers of cases and controls, genotype frequency of cases and controls, and the results of the Hardy– Weinberg equilibrium test.

Quality score evaluation

The quality of the included studies was independently assessed by three investigators (LWH, RS and LJ) according to the quality assessment criteria (shown in Table S1) that was amended from previous published meta-analyses [29,30]. All disagreements were resolved by consensus after discussion. Study quality was evaluated on a numerical score ranging from 0 to 12. If the score was \geq 7, the study was categorized as "high quality"; otherwise, the study was categorized as "low quality".

Statistical analysis

We assessed the deviation from HWE for the genotype distribution in controls using a chi-squared goodness-of-fit test (P < 0.05 was considered significant). ORs with the corresponding 95% CI were used as the common measures of assessing the strength of association between XRCC1 polymorphisms (Arg399Gln, Arg194Trp, and Arg280His) and glioma risk for each study. The pooled ORs were calculated in an additive model (a allele versus A allele, a was for the minor allele and A was for the major allele), a dominant model (aa+Aa versus AA), recessive model (aa versus Aa+AA) and a codominant model (aa versus AA, Aa versus AA). If the overall gene effect was statistically significant, further comparisons of OR_1 (aa versus AA), OR_2 (Aa versus AA) and OR_3 (as versus Aa) were explored with a designated as the risk allele. The above pairwise differences were used to determine the most appropriate genetic model. If $OR_1 = OR_3 \neq 1$ and $OR_2 = 1$, then a recessive model was indicated. If $OR_1 = OR_2 \neq 1$ and $OR_3 = 1$, then a dominant model was indicated. If $OR_2 = 1/$ $OR_3 \neq 1$ and $OR_1 = 1$, then a complete over-dominant model was indicated. If $OR_1 > OR_2 > 1$ and $OR_1 > OR_3 > 1$, or $OR_1 < OR_2 < 1$ 1 and $OR_1 < OR_3 < 1$, then a co-dominant model was indicated [31]. The significance of the pooled ORs was determined using a Z-test, and the level of statistical significance was established as P < 0.05. The heterogeneity among studies was checked by the Q test [32]. The I^2 statistic, which is a quantitative measure of the proportion of the total variation across studies due to heterogeneity [33], was also calculated. If the *P* value for the heterogeneity test was greater than 0.05, the Mantel-Haenszel method-based fixed effects model [34] was used to calculate the pooled OR. Otherwise, the DerSimonian and Laird method-based random effects model [35] was performed. Sensitivity analysis was performed by limiting the meta-analysis to studies conforming to HWE and omitting each study in turn to assess the stability of results, respectively. Potential publication bias was evaluated by visual inspection of the Begg funnel plots in which the standard error of log (OR) of each study was plotted against its log (OR). We also performed an Egger's linear regression test (P < 0.05 was considered a significant publication bias) [36]. All of the statistical analyses were performed using a software program, STATA version 11.0 (Stata, College Station, TX, USA).

Results

Extraction process and study characteristics

According to our search criterion, 132 articles were retrieved. Among them, the majority were excluded after the first screening based on abstracts or titles, mainly because they were overlapped citations, not relevant to the XRCC1 polymorphisms and glioma risk, reviews, conference abstracts, or not a related gene polymorphism. Afterwards, a total of 19 full-text articles [16– 28,37–42] were preliminarily identified for further detailed evaluation (Figure 1). Of these, 10 studies were excluded [16– 25] because the country of source was not from China. Eventually, nine case-control studies [26–28,37–42] were selected, including 8 studies for the Arg399Gln polymorphism (3062 cases and 3362 controls), 8 studies for the Arg194Trp polymorphism (3419 cases and 3680 controls), and 5 studies for the Arg280His polymorphism

Figure 1. Flow of Included Studies. doi:10.1371/journal.pone.0111981.g001

(2234 cases and 2380 controls). With respect to the assessment of study quality, the vast majority of the included studies were high quality (shown in Table S2) except for the study by Liu *et al.* [41]. The characteristics of these included studies and the genotype distribution and allele frequency of XRCC1 polymorphisms in case and control subjects is shown in Table 1.

Meta-analysis results

The main results of the meta-analysis are shown in Table 2. According to the principle of genetic model selection by Thakkinstian *et al.* [31], the most appropriate genetic model for the Arg399Gln/Arg194Trp polymorphisms was the codominant model and the recessive model, respectively. Our results revealed that the Arg399Gln polymorphism was significantly associated with an increased risk of glioma in the Chinese population (Gln/Gln vs. Arg/Arg: OR = 1.82, 95% CI = 1.46-2.27, P = 0.000; Arg/Gln vs. Arg/Arg: OR = 1.25, 95% CI = 1.10-1.42, P = 0.001; recessive model: OR = 1.63, 95% CI = 1.32-2.01, P = 0.000; dominant model: OR = 1.34, 95% CI = 1.19-1.44,

P = 0.000; Figure 2, Table 2). For the Arg194Trp polymorphism, a significant association between this polymorphism and glioma risk was also observed (Trp/Trp vs. Arg/Arg: OR = 1.82, 95% CI = 1.48 - 2.25, P = 0.000; recessive model: OR = 1.78, 95% CI = 1.44-2.19, P = 0.000; dominant model: OR = 1.17, 95% CI = 1.06 - 1.30, P = 0.001; additive model: OR = 1.23, 95% CI = 1.13 - 1.33, P = 0.000; Figure 3, Table 2), with the exception of the heterozygote comparison model (OR = 1.08, 95%) CI = 0.97 - 1.20, P = 0.169, Table 2). But, for the Arg280His polymorphism, we did not detect any significant association with glioma risk in any genetic model (Table 2). Since several original papers depart from the HWE which could cause unreliable results, we performed stratification analysis according to the status of HWE. Because ethnicity of all studies was Chinese and the source of controls was hospital-based, we did not carry out subgroup analysis. In addition, the subgroup analysis according to quality assessment scores is not shown because only one included study was low quality which did not materially change the corresponding pooled ORs.

Polymorphism First author Vest Design Sample size (case/control) Cons A		teol		
Additional state Additional state<			HWE in control	MAF
Arg390cin Gao 2014 HB 326 375 126 155 45 178 16 Xu 2013 HB 886 886 451 365 70 469 37 Pan 2013 HB 843 226 190 27 244 11 Vang 2013 HB 296 415 111 134 51 109 23 Wang 2011 HB 271 289 123 113 37 147 11 Yun 2011 HB 271 289 73 37 29 37	AA Aa aa AA	Aa aa		
χ_{1} 2013 HB 886 851 355 70 469 37 F_{10} 2013 HB 443 226 190 27 244 17 L_{10} 2013 HB 296 415 111 134 51 189 18 V_{ang} 2012 HB 624 580 270 279 57 300 214 11 V_{ang} 2011 HB 624 580 237 23 37 147 117 V_{ang} 2011 HB 271 289 37 29 30 37 37 310 117 310 </th <th>126 155 45 178</th> <th>168 29</th> <th>0.215</th> <th>0.301</th>	126 155 45 178	168 29	0.215	0.301
Pan 2013 HB 443 443 226 190 27 244 11 Luo 2013 HB 296 415 111 134 51 189 13 Wang 2012 HB 524 580 270 279 57 244 11 Wang 2011 HB 521 289 121 219 279 57 300 217 117 Khu 2011 HB 212 249 53 37 23 37 217 117 117 Lu 2011 HB 326 376 237 23 37 23 37 316 317 316 317 316 317 316 317 316 317 317 317 317 317 317 317 317 317 312 312 Luo	451 365 70 469	372 45	0.008	0.261
Luo 2013 HB 296 415 111 134 51 189 18 Wang 2012 HB 624 580 270 279 75 300 23 Zhou 2011 HB 211 289 121 113 37 147 11 Zhou 2011 HB 271 289 58 27 28 27 247 14 Lu 2011 HB 89 89 23 37 29 28 37 Ava19477 Gao 2013 HB 826 886 53 301 16 279 307 Ava19477 Luo 2013 HB 886 886 533 301 16 279 301 Luo 2013 HB 2013 HB 2014 413 301 116 27 327 201 Luo 2013 HB 2013 116	226 190 27 244	178 21	0.108	0.248
Wang 2012 HB 624 580 270 279 75 300 231 Zhou 2011 HB 271 289 121 113 37 147 11 Hu 2011 HB 271 289 121 113 37 147 11 Lu 2011 HB 87 249 58 37 27 28 37 Ary194TP Gao 2014 HB 326 376 235 317 27 28 37 Ary194TP Gao 2013 HB 326 376 37 37 37 37 37 37 Ary194TP Gao 2013 HB 346 36 37	111 134 51 189	181 45	0.866	0.327
	270 279 75 300	232 48	0.739	0.283
Hu 2011 HB 127 249 58 48 21 145 75 Arg194Tp Gao 2011 HB 89 89 23 73 29 28 34 Arg194Tp Gao 2014 HB 326 376 235 73 18 279 84 Arg194Tp Gao 2013 HB 866 886 525 301 69 34 31 Par 2013 HB 2013 HB 244 443 301 116 27 327 10 Lu 2012 HB 297 415 204 63 336 337 33	121 113 37 147	118 24	0.963	0.287
Liu 2011 HB 89 89 23 37 29 28 34 Arg134Trp Gao 2014 HB 326 376 235 73 18 279 84 Arg134Trp Gao 2013 HB 886 886 555 301 60 540 31 Pan 2013 HB 444 443 301 116 27 327 10 Luo 2012 HB 297 441 443 204 63 30 297 30 297 30 Luo 2012 HB 244 442 204 63 336 30 307 30 307 30 307 30 30 307 30 30 307 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 <th>58 48 21 145</th> <th>75 29</th> <th>< 0.001</th> <th>0.267</th>	58 48 21 145	75 29	< 0.001	0.267
Arg194Tv Gao 2014 HB 326 376 235 73 18 279 84 Xu 2013 HB 886 886 525 301 60 540 31 Pan 2013 HB 244 443 301 116 27 327 10 Luo 2013 HB 297 415 204 63 30 279 30 31 30 31 30 31 30 31 30 31	23 37 29 28	34 27	0.026	0.494
Xu 2013 HB 886 525 301 60 540 31 Pan 2013 HB 444 443 301 116 27 327 10 Luo 2013 HB 444 443 301 116 27 327 10 Luo 2012 HB 297 415 204 63 30 297 96 Wang 2012 HB 624 580 376 218 30 314 89 Vand 2011 HB 624 580 376 218 30 315 20 Lhu 2011 HB 271 289 145 112 14 159 11 Arg280His Gao 2013 HB 326 21 23 53 54 Vag280His Gao 2013 HB 326 56 112 14 159 17 Vag3	235 73 18 279	84 13	0.041	0.146
Pan 2013 HB 444 413 301 116 27 327 10 Luo 2013 HB 297 415 204 63 30 297 96 Lu 2012 HB 297 415 204 63 30 297 96 Vang 2012 HB 624 580 376 218 30 355 20 You 2011 HB 624 580 376 218 30 355 20 Zhou 2011 HB 271 289 145 112 14 159 11 Argsonis Gao 2014 HB 326 21 38 64 Mrgsonis Gao 2013 HB 326 250 66 10 313 57 Vagsonis Gao 2013 HB 326 260 161 17 91 17 91 17	525 301 60 540	311 35	0.236	0.215
Luo 2013 HB 297 415 204 63 30 297 96 Liu 2012 HB 444 442 294 63 30 297 96 Wang 2012 HB 624 580 376 218 30 355 20 Vang 2011 HB 624 580 376 218 30 355 20 Zhou 2011 HB 271 289 145 112 14 159 11 Hu 2011 HB 271 289 71 38 163 64 Arg280His Gao 2013 HB 326 376 250 66 10 313 57 Vag2 2013 HB 886 886 618 177 91 63 57 Vang 2012 HB 624 580 506 115 3 473 98 Zhui 2013 HB 210 200 506 115 3 <	301 116 27 327	101 15	0.045	0.148
Liu 2012 HB 444 422 294 105 45 334 89 Wang 2012 HB 624 580 376 218 30 355 20 Zhou 2011 HB 271 289 145 112 14 159 11 Hu 2011 HB 127 249 71 38 163 64 Arg280His Gao 2014 HB 326 376 250 66 10 313 57 Wang 2013 HB 886 886 618 177 91 61 17 Wang 2012 HB 624 580 506 115 3 473 98 Arcs. 2011 HB 624 506 115 91 62 Arcs. 2011 HB 624 500 50 62 62 63 64 64 64	204 63 30 297	96 22	< 0.001	0.169
Wang 2012 HB 624 580 376 218 30 355 20 Zhou 2011 HB 271 289 145 112 14 159 111 Zhou 2011 HB 271 289 145 112 14 159 111 Hu 2011 HB 127 249 71 38 163 64 Arg280His Gao 2014 HB 326 376 250 66 10 313 57 Wang 2013 HB 886 886 618 177 91 61 17 Wang 2012 HB 624 580 506 115 3 473 98 Zhou 2011 HD 201 201 201 200 47 98	294 105 45 334	89 19	< 0.001	0.144
Zhou 2011 HB 271 289 145 112 14 159 11 Hu 2011 HB 127 249 71 38 163 64 Arg280His Gao 2014 HB 326 376 250 66 10 313 57 Vag280His Gao 2013 HB 326 376 250 66 10 313 57 Wang 2013 HB 886 886 618 177 91 621 17 Wang 2012 HB 624 580 506 115 3 473 98 Zhou 2011 HD 2011 UD 201 <td< th=""><th>376 218 30 355</th><th>205 20</th><th>0.143</th><th>0.211</th></td<>	376 218 30 355	205 20	0.143	0.211
Hu 2011 HB 127 249 71 38 18 163 64 Arg280His Gao 2014 HB 326 376 250 66 10 313 57 Xu 2013 HB 886 886 618 177 91 621 17 Wang 2012 HB 624 580 506 115 3 473 98 Zhui 2011 UD 211 200 200 210 17 91 621 17	145 112 14 159	117 13	0.138	0.247
Arg280His Gao 2014 HB 326 376 250 66 10 313 57 Xu 2013 HB 886 886 618 177 91 621 17 Wang 2012 HB 624 580 506 115 3 473 98 7hou 2011 HB 624 580 506 115 3 473 98	71 38 163	64 22	< 0.001	0.217
Xu 2013 HB 886 818 618 177 91 621 17 Wang 2012 HB 624 580 506 115 3 473 98 This 2011 UP 271 200 210 21 200	250 66 10 313	57 6	0.079	0.092
Wang 2012 HB 624 580 506 115 3 473 98 74,000 74,000 74,000 74,000 76,000 74,000	618 177 91 621	178 87	< 0.001	0.199
	506 115 3 473	98 9	0.140	0.100
	218 45 8 240	44 5	0.085	0.093
Hu 2011 HB 127 249 72 28 27 153 58	72 28 27 153	58 38	< 0.001	0.269

arnhieme mylou of VBCC1 dictributions viod+ bac a hurin 4 Ş of etudias included in the Tolda 1 Chart

Name	Year	(/	4)	OR (95% CI)	% Weight
All in H	IWE		1		
Gao	2014			2.19 (1.30, 3.69)10.62
Pan	2013		-	1.39 (0.76, 2.52)10.06
Luo	2013			— 1.93 (1.21, 3.07)13.86
Wang	2012			- 1.74 (1.17, 2.58	20.54
Zhou	2011			1.87 (1.06, 3.30	9.70
Subto	tal (I-squared =	= 0.0%, p = 0.843)	\diamond	1.82 (1.46, 2.27)64.78
Not in	HWE				
Xu	2013			1.62 (1.09, 2.40)21.54
Hu	2011	-		1.81 (0.96, 3.43	3)7.30
Liu	2011			- 1.31 (0.61, 2.80)6.38
Subto	tal (I-squared =	= 0.0%, p = 0.812)	$\langle \rangle$	1.60 (1.18, 2.18	3)35.22
Overa	II (I-squared =	0.0%, p = 0.945)	\diamond	1.74 (1.46, 2.08	3)100.00
	.271	1	i	3.69	
Name	Year	(3)	OR (95% CI)	% Weight
All in H	WE				
Gao	2014			1.30 (0.95, 1.79)10.48
Pan	2013	_	•	1.15 (0.88, 1.51)14.91
Luo	2013	_	2	1.26 (0.91, 1.74)10.15
Wang	2012		• •	1.34 (1.05, 1.70)18.00
Zhou	2011		-	1.16 (0.82, 1.66	8.89
Subtota	al (I-squared = (0.0%, p = 0.929)	\diamond	1 25 (1.10, 1.42	2)62.42
Not in H	HWE				
Xu	2013	-	•	1.02 (0.84, 1.24)31.44
Hu	2011		-	1.60 (1.00, 2.57)4.14
Liu	2011			1.32 (0.64, 2.73	3)1.99
Subtota	al (I-squared = 3	38.3%, p = 0.198) <	\bigcirc	1.10 (0.92, 1.31)37.58
Overall	(I-squared = 0.	0%, p = 0.610)	\diamond	1.19 (1.08, 1.33	3)100.00
	.367		1	2.73	

Figure 2. Forest plots of ORs with 95% CI for XRCC1 Arg399Gln polymorphism and the risk of glioma observed in Chinese population (fixed effects). The center of each square represents the OR, the area of the square is the number of sample and thus the weight used in the meta-analysis, and the horizontal line indicates the 95%CI. (A) Gln/Gln vs. Arg/Arg. (B) Arg/Gln vs. Arg/Arg. (doi:10.1371/journal.pone.0111981.g002

Test of heterogeneity and sensitivity analyses

The results of heterogeneity test indicated that there was no significant heterogeneity for the Arg399Gln/Arg194Trp polymorphisms across studies. However, we found heterogeneity for the Arg280His polymorphism only in an additive model ($P_{\rm h} = 0.002$, $I^2 = 77.1\%$). To explore the potential sources of heterogeneity

across studies, we determined that the study by Zhou *et al.* [40] could contribute to substantial heterogeneity because heterogeneity was significantly decreased, in the additive model ($P_{\rm h} = 0.117$, $I^2 = 49.0\%$), after exclusion of this study. Although there were 3 and 2 studies that deviated from HWE for the Arg399Gln/Arg280His polymorphisms, respectively, the corresponding pooled

Figure 3. Forest plots of ORs with 95% Cl for XRCC1 Arg194Trp polymorphism and the risk of glioma observed in recessive model among Chinese (fixed effects). The center of each square represents the OR, the area of the square is the number of sample and thus the weight used in the meta-analysis, and the horizontal line indicates the 95%Cl. doi:10.1371/journal.pone.0111981.g003

ORs were not materially altered by including or not including these studies (Table 2). Similarly, the results of the Arg194Trp polymorphism remained practically unchanged in a recessive model and a codominant model when excluding the 5 studies that departed from HWE. Nevertheless, this polymorphism was no longer associated with the risk of glioma in a dominant model (OR = 1.06, 95% CI = 0.93–1.21, P = 0.392) and an additive model (OR = 1.10, 95% CI = 0.99–1.23, P = 0.089). Additionally, we also assessed the influence of each individual study on the pooled ORs by sequential omission of individual studies. The results showed the pooled ORs of these three polymorphisms were not materially altered by the contribution of any individual study, suggesting that the results of this meta-analysis are credible (data also not shown).

Publication bias

Publication bias was assessed by performing Funnel plot and Egger's regression tests under all contrast models. All of these three genetic polymorphisms showed consistent results, indicating no publication bias. Usinge the Arg399Gln polymorphism as an example; the shapes of the funnel plot did not indicate any evidence of obvious asymmetry in a codominant model (Figure 4), and the Egger's test also suggested that there was no evidence of publication bias (P = 0.185 for a dominant model, P = 0.296 for a recessive model, P = 0.300, or for an additive model, P = 0.108 for Arg/Gln vs. Arg/Arg and P = 0.552 for Gln/Gln vs. Arg/Arg, respectively).

Discussion

DNA damage, which leads to gene deletions, amplifications, rearrangements, and translocations occurs very frequently and results in the formation of a tumor [7,43]. Many of these mutations may lead to less effective DNA repair than normal. It is

acknowledged that glioma is appreciably associated with specific mutations causing by exposure to ionizing radiation in the DNA mismatch repair pathway. XRCC1 is an essential DNA repair gene involved in BER pathway and the vast majority of previous studies have been focused on three polymorphisms (Arg399Gln, Arg194Trp, and Arg280His) in this gene. Genetic variations in this gene confers a susceptibility to tumorogeneis through the alteration of base excision repair functions [44]. At present, several systematic reviews and meta-analyses have been carried out as preliminary studies to determine the association between XRCC1 variants and glioma risk based on pervious published studies [45-54]. However, none of these studies collected sufficient data to draw a solid conclusion in a Chinese population and some results remain contradictory. Thus, Zhang et al. [52] reported that XRCC1 Arg194Trp polymorphism was not a risk factor for glioma risk in a Chinese population, which was the opposite of the conclusions made in a previous study [51]. Considering the paradoxical and underpowered conclusions of the individual studies, we conducted the most comprehensive meta-analysis using available eligible data to provide more reliable results to determine the association between the variants of the XRCC1 gene and glioma risk in the Chinese population.

Overall, our combined results based on available data from of all the studies revealed that the Arg399Gln polymorphism in XRCC1 gene was associated with increased risk of glioma among Chinese people in all genetic models, which was consistent with the conclusion of individual studies involving the Arg399Gln polymorphism [26–28,37–41]. Meanwhile, we also detected that individuals harboring the Trp/Trp genotype of the Arg194Trp polymorphism might have an increased risk of developing glioma, which was in line with the majority, but not all, previous studies [26–28,37,38,51]. As for the Arg280His polymorphism, our results did not provide any evidence of such an association with glioma risk in any genetic model, which coincided with the conclusions of

polymorphisms and the risk of glioma in Chinese population.
g280His
p and Ar
Arg194Tr
Arg399Gln,
ysis for
meta-anal
Results of
ble 2. F
Ta

Genetic mod	iel	Recessive mod	le			Dominant mod	e			Homozygote				Heterozygote				Additive model			
Arg399GIn	۲	Gln/Gln vs. Arg/(GIn + An	g/Arg		Gln/Gln + Arg/Gl	n vs. Arg/#	٧g		GIn/GIn vs. Arg/#	Vrg			Arg/Gln vs. Arg/A	D,			Gln vs. Arg			
		OR(95%CI)	$P_{\rm OR}$	$l^{2}(%)$	Ph	OR(95%CI)	$P_{\rm OR}$	1 ² (%)	Ph	OR(95%CI)	$P_{\rm OR}$	P ² (%)	$P_{\rm h}$	OR(95%CI)	$P_{\rm OR}$	P^(%)	$P_{\rm h}$	OR(95%CI)	$P_{\rm OR}$	P ² (%)	$P_{\rm h}$
Total	8(3062/3326)	1.57(1.32–1.86)	0.000	0.0	0.926	1.27(1.15–1.41)	0.000	0.0	0.506	1.74(1.46–2.08)	0.000	0.0	0.945	1.19(1.08-1.33)	0.001	0.0	0.610	1.26(1.17–1.36)	0.000	0.0	0.567
All in HWE	5(1960/2102)	1.63(1.32–2.01)	0.000	0.0	0.877	1.34(1.18–1.51)	0.000	0.0	0.842	1.82(1.46–2.27)	0.000	0.0	0.843	1.25(1.10–1.42)	0.001	0.0	0.929	1.31(1.19–1.44)	0.000	0.0	0.750
Not in HWE	3(1102/1224)	1.46(1.10-1.96)	0.010	0.0	0.621	1.17(0.99–1.38)	0.063	39.1	0.194	1.60(1.18–2.18)	0.003	0.0	0.812	1.10(0.92-1.31)	0.281	38.3	0.198	1.18(1.04–1.35)	0.010	16.2	0.303
Arg194Trp	Ę	Trp/Trp vs. Arg/ī	Trp + Ar	g/Arg		Trp/Trp + Arg/Trp	o vs. Arg/≜	rig		Trp/Trp vs. Arg/#	١rg			Arg/Trp vs. Arg/A	ĝ			Trp vs. Arg			
		OR(95%CI)	$P_{\rm OR}$	$l^{2}(%)$	ď	OR(95%CI)	$P_{\rm OR}$	J ² (%)	P _h	OR(95%CI)	$P_{\rm OR}$	$P^{2}(%)$	$P_{\rm h}$	OR(95%CI)	$P_{\rm OR}$	P^(%)	$\mathcal{P}_{\rm h}$	OR(95%CI)	P _{OR}	$P^{2}(%)$	Ph
Total	8(3419/3680)	1.78(1.44–2.19)	0.000	0.0	0.831	1.17(1.06-1.30)	0.001	15.0	0.312	1.82(1.48–2.25)	0.000	0.0	0.782	1.08(0.97-1.20)	0.169	0.0	0.666	1.23(1.13–1.33)	0.000	42.7	0.094
All in HWE	3(1781/1755)	1.54(1.13–2.11)	0.006	0.0	0.605	1.06(0.93-1.21)	0.392	0.0	0.980	1.55(1.13–2.13)	0.007	0.0	0.641	1.01(0.88-1.16)	0.920	0.0	0.966	1.10(0.99–1.23)	0.089	0.0	0.850
Not in HWE	5(1638/1925)	1.98(1.50–2.62)	0.000	0.0	0.875	1.32(1.14–1.53)	0.000	0.0	0.485	2.07(1.56-2.75)	0.000	0.0	0.852	1.17(1.00–1.38)	0.049	0.0	0.578	1.40(1.24–1.58)	0.000	1.5	0.398
Arg280His	Ē	His/His vs. Arg/h	His + Arg	//Arg		His/His + Arg/His	vs. Arg/Ai	6		His/His vs. Arg/A	ſġ			Arg/His vs. Arg/Ai	6			His vs. Arg			
		OR(95%CI)	$P_{\rm OR}$	$l^{2}(%)$	Å	OR(95%CI)	$P_{\rm OR}$	J ² (%)	$P_{\rm h}$	OR(95%CI)	$P_{\rm OR}$	$P^{2}(%)$	$P_{\rm h}$	OR(95%CI)	$P_{\rm OR}$	P^(%)	$\mathcal{P}_{\rm h}$	OR(95%CI)	$P_{\rm OR}$	$P^{2}(%)$	Ph
Total	5(2234/2380)	1.14(0.89–1.46)	0.306	39.9	0.155	1.11(0.97-1.27)	0.128	0.0	0.424	1.14(0.89–1.47)	0.295	41.6	0.144	1.10(0.94-1.28)	0.224	0.0	0.623	1.30(1.00–1.69)	0.053	77.1	0.002
All in HWE	3(1221/1245)	1.11(0.60-2.05)	0.740	63.3	0.065	1.19(0.97–1.46)	060.0	20.3	0.285	1.15(0.62–2.12)	0.658	64.6	0.059	1.19(0.97–1.47)	0.096	0.0	0.517	1.46(0.90–2.36)	0.124	84.3	0.002
Not in HWE	2(1013/1135)	1.14(0.87–1.50)	0.331	18.2	0.269	1.05(0.87–1.26)	0.606	0.0	0.460	1.14(0.87–1.50)	0.343	16.6	0.274	1.00(0.81–1.25)	0.974	0.0	0.929	1.07(0.93–1.24)	0.346	35.6	0.213
P _{OR} P values otherwise, fi doi:10.1371/	for pooled C ixed-model w 'journal.pone.	R from Z-test. <i>P</i> as used. 0111981.t002	h P valı	les for	heteroç	geneity from Q t	est. <i>I</i> ² , th	e percen	itage of vi	ariability in OR a	ıttributak	ale to het	erogene	·ity. Random-effé	ects mo	del was	used wh	en <i>P</i> value for h	leterog	eneity to	est <0.05;

Figure 4. Begg's funnel plots of Arg399Gln polymorphism and glioma risk for publication bias test. Each point represents a separate study for the indicated association. Log (OR), natural logarithm of OR. Horizontal line, mean effect size. (A) Gln/Gln vs. Arg/Arg. (B) Arg/Gln vs. Arg/Arg.

doi:10.1371/journal.pone.0111981.g004

all previous studies [28,37,39,40]. For example, Xu *et al.* [28] suggested that the Arg280His polymorphism was unlikely to be associated with the risk of glioma.

It is generally agreed that departures from HWE in controls may be due to genotyping error, chance, nonrandom mating, genetic drifting, population stratification, and selection bias. Although there were 3, 2 and 5 studies that deviated from HWE for the Arg399Gln, Arg280His, and Arg194Trp polymorphisms, respectively, the studies that appeared to deviate from HWE should not be excluded mechanically in the meta-analysis unless there are other convincing grounds for doubting the quality of the study [55]. Also, there is no consensus on what to do with studies that are not in HWE in the meta-analysis of genetic association studies. Some authors suggest performing sensitivity analyses, pooling both with and without the studies that appear not to be in HWE and assessing whether studies classified as not being in HWE provide a different estimate of the genetic effect [56,57]. Furthermore, Mao et al. [58] emphasized that authors of genedisease association meta-analyses may need to pay more attention to HWE issues, and sensitivity analyses including and excluding the HWE-violating studies may need to be routinely performed in meta-analyses of genetic association studies. In this study we performed sensitivity analyses by excluding the HWE-violating studies to check the robustness of our conclusions, and the corresponding pooled ORs were not materially altered. In addition, we comprehensively assessed the publication bias using several means including the Begg's and Egger's tests as well as funnel plot tests, indicating no publication bias for all these three genetic polymorphisms. In view of this, we are strongly convinced that the methods are appropriate and well described and the results or data of our meta-analysis, in essence, are sound and reliable.

Additionally, there is still a lack of uniform and standardized quality score methods for evaluating case-control gene association studies although it is crucial for a meta-analysis to assess the quality of the individual included studies. Here we used a self-made rating scale for study quality assessment, which was modified based on two previously published meta-analyses [29,30]. The quality score assessment results showed that almost all of individual studies were high quality except for the study by Liu *et al.* [41], indicating that the quality of the included studies was generally high, which lends support to our conclusions. However, considering that highquality studies may offer quite different outcomes from that of lowquality studies [59], we recommend that researchers carry out study quality assessment and stratification analysis based on the quality appraisal scores when performing the quantitative synthesis of the genetic polymorphism association studies.

When interpreting the results of the current study, some limitations should be addressed. First, lacking the original data for the included studies limited our further evaluation of the association between glioma risk and other risk factors, such as age, gender, smoking status, alcohol consumption and other variables, which might have caused a serious confounding bias. Second, we did not estimate the potential interactions among gene–gene, gene–environment, or even between various polymorphic loci of the same gene, which may alter the risk of cancer. Although the analysis of haplotypes can increase the power to detect disease associations, our study was limited to analyzing a single SNP site owing to only one study [37] focused on determining the XRCC1 haplotype. Third, selection bias should be considered because the controls from the primary literatures were all hospital-based which may not be very representative of

References

- Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer genetics 205: 613–621.
- Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, et al. (2012) Primary brain tumours in adults. Lancet 379: 1984–1996.
- Ostrom QT, Barnholtz-Sloan JS (2011) Current state of our knowledge on brain tumor epidemiology. Current neurology and neuroscience reports 11: 329–335.
- Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M (2006) Epidemiology and molecular pathology of glioma. Nature clinical practice Neurology 2: 494–503; quiz 491 p following 516.
- Gu J, Liu Y, Kyritsis AP, Bondy ML (2009) Molecular epidemiology of primary brain tumors. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 6: 427–435.
- Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, et al. (2009) Genome-wide association study identifies five susceptibility loci for glioma. Nature genetics 41: 899–904.
- Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science (New York, NY) 291: 1284–1289.
- Yu Z, Chen J, Ford BN, Brackley ME, Glickman BW (1999) Human DNA repair systems: an overview. Environmental and molecular mutagenesis 33: 3– 20.
- Caldecott KW, Tucker JD, Stanker LH, Thompson LH (1995) Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells. Nucleic acids research 23: 4836–4843.
- Campalans A, Marsin S, Nakabeppu Y, O'Connor T R, Boiteux S, et al. (2005) XRCC1 interactions with multiple DNA glycosylases: a model for its recruitment to base excision repair. DNA repair 4: 826–835.
- Siciliano MJ, Carrano AV, Thompson LH (1986) Assignment of a human DNArepair gene associated with sister-chromatid exchange to chromosome 19. Mutation research 174: 303–308.
- Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesiondependent protein complexes regulated by post-translational modification. DNA repair 6: 695–711.
- Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer research 58: 604–608.
- Hamajima N, Takezaki T, Tajima K (2002) Allele Frequencies of 25 Polymorphisms Pertaining to Cancer Risk for Japanese, Koreans and Chinese. Asian Pacific journal of cancer prevention: APJCP 3: 197–206.
- Moullan N, Cox DG, Angele S, Romestaing P, Gerard JP, et al. (2003) Polymorphisms in the DNA repair gene XRCC1, breast cancer risk, and response to radiotherapy. Cancer epidemiology, biomarkers & prevention: a -

the general population. Finally, some inevitable publication bias might exist in the results because only published studies were retrieved although the funnel plot and Egger's test indicated no remarkable publication bias.

In summary, this meta-analysis provides evidence that both the Arg399Gln and Arg194Trp polymorphisms may contribute to genetic susceptibility to glioma risk in the Chinese population, whereas Arg280His polymorphism may have no impact. Nevertheless, large-scale, well-designed and population-based studies are needed to investigate the combined effects of these variants within XRCC1 gene or other BER genes in the Chinese population, which may eventually lead to better comprehensive understanding of their possible roles in gliomagenesis.

Supporting Information

Table S1Scale for Quality Assessment.(DOC)

Table S2Quality score assessment results.(DOC)

Checklist S1 Prisma 2009 Checklist for this metaanalysis.

(DOC)

Author Contributions

Conceived and designed the experiments: JYZ. Performed the experiments: LWH RS LJ. Analyzed the data: LWH RS LJ. Contributed reagents/materials/analysis tools: LWH RS LJ. Wrote the paper: LWH RS LJ. Revised manuscript: JYZ YZ WLM.

publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 12: 1168–1174.

- Bethke L, Webb E, Murray A, Schoemaker M, Johansen C, et al. (2008) Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma. Human molecular genetics 17: 800–805.
- Cengiz SL, Acar H, Inan Z, Yavuz S, Baysefer A (2008) Deoxy-ribonucleic acid repair genes XRCC1 and XPD polymorphisms and brain tumor risk. Neurosciences (Riyadh, Saudi Arabia) 13: 227–232.
- Felini MJ, Olshan AF, Schroeder JC, North KE, Carozza SE, et al. (2007) DNA repair polymorphisms XRCC1 and MGMT and risk of adult gliomas. Neuroepidemiology 29: 55–58.
- Karahalil B, Bohr VA, Wilson DM, 3rd (2012) Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk. Human & experimental toxicology 31: 981–1005.
- Kiuru A, Lindholm C, Heinavaara S, Ilus T, Jokinen P, et al. (2008) XRCC1 and XRCC3 variants and risk of glioma and meningioma. Journal of neurooncology 88: 135–142.
- 21. Liu Y, Scheurer ME, El-Zein R, Cao Y, Do KA, et al. (2009) Association and interactions between DNA repair gene polymorphisms and adult glioma. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 18: 204–214.
- Rajaraman P, Hutchinson A, Wichner S, Black PM, Fine HA, et al. (2010) DNA repair gene polymorphisms and risk of adult meningioma, glioma, and acoustic neuroma. Neuro-oncology 12: 37–48.
- Rodriguez-Hernandez I, Perdomo S, Santos-Briz A, Garcia JL, Gomez-Moreta JA, et al. (2013) Analysis of DNA repair gene polymorphisms in glioblastoma. Gene.
- Wang LE, Bondy ML, Shen H, El-Zein R, Aldape K, et al. (2004) Polymorphisms of DNA repair genes and risk of glioma. Cancer research 64: 5560–5563.
- Yosunkaya E, Kucukyuruk B, Onaran I, Gurel CB, Uzan M, et al. (2010) Glioma risk associates with polymorphisms of DNA repair genes, XRCC1 and PARP1. British journal of neurosurgery 24: 561–565.
- Luo KQ, Mu SQ, Wu ZX, Shi YN, Peng JC (2013) Polymorphisms in DNA repair genes and risk of glioma and meningioma. Asian Pacific journal of cancer prevention: APJCP 14: 449–452.
- Pan WR, Li G, Guan JH (2013) Polymorphisms in DNA repair genes and susceptibility to glioma in a chinese population. International journal of molecular sciences 14: 3314–3324.

- 28. Xu G, Wang M, Xie W, Bai X (2013) Three polymorphisms of DNA repair gene XRCC1 and the risk of glioma: a case-control study in northwest China. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine.
- Gao LB, Pan XM, Li LJ, Liang WB, Bai P, et al. (2011) Null genotypes of GSTM1 and GSTT1 contribute to risk of cervical neoplasia: an evidence-based meta-analysis. PloS one 6: e20157.
- Yang X, Long S, Deng J, Deng T, Gong Z, et al. (2013) Glutathione Stransferase polymorphisms (GSTM1, GSTT1 and GSTP1) and their susceptibility to renal cell carcinoma: an evidence-based meta-analysis. PloS one 8: e63827.
- Thakkinstian A, McElduff P, D'Este C, Duffy D, Attia J (2005) A method for meta-analysis of molecular association studies. Stat Med 24: 1291–1306.
- Cochran W (1954) The combination of estimates from different experiments. Biometrics 10: 101–129.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ (Clinical research ed) 327: 557–560.
- Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the National Cancer Institute 22: 719– 748.
- DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Controlled clinical trials 7: 177–188.
- Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 315: 629–634.
- Hu XB, Feng Z, Fan YC, Xiong ZY, Huang QW (2011) Polymorphisms in DNA repair gene XRCC1 and increased genetic susceptibility to glioma. Asian Pacific journal of cancer prevention: APJCP 12: 2981–2984.
- Liu HB, Peng YP, Dou CW, Su XL, Gao NK, et al. (2012) Comprehensive study on associations between nine SNPs and glioma risk. Asian Pacific journal of cancer prevention: APJCP 13: 4905–4908.
- Wang D, Hu Y, Gong H, Li J, Ren Y, et al. (2012) Genetic polymorphisms in the DNA repair gene XRCC1 and susceptibility to glioma in a Han population in northeastern China: a case-control study. Gene 509: 223–227.
- Zhou LQ, Ma Z, Shi XF, Yin XL, Huang KX, et al. (2011) Polymorphisms of DNA repair gene XRCC1 and risk of glioma: a case-control study in Southern China. Asian Pacific journal of cancer prevention: APJCP 12: 2547–2550.
- Liu J, Sun H, Huang L, Hu P, Dai X (2011) Relationship between XRRC1 polymorphisms and adult gliomas. Mod Pre Med 38: 3340–3341.
- Gao K, Mu SQ, Wu ZX (2014) Investigation of the effects of single-nucleotide polymorphisms in DNA repair genes on the risk of glioma. Genet Mol Res 13: 1203–1211.
- De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19: 169–185.
- 44. Monaco R, Rosal R, Dolan MA, Pincus MR, Brandt-Rauf PW (2007) Conformational effects of a common codon 399 polymorphism on the BRCT1 domain of the XRCC1 protein. The protein journal 26: 541–546.
- Jiang L, Fang X, Bao Y, Zhou JY, Shen XY, et al. (2013) Association between the XRCC1 polymorphisms and glioma risk: a meta-analysis of case-control studies. PloS one 8: e55597.

- Li M, Zhou Q, Tu C, Jiang Y (2013) A meta-analysis of an association between the XRCC1 polymorphisms and gliomas risk. Journal of neuro-oncology 111: 221–228.
- Martinez R (2012) Beyond Genetics in Glioma Pathways: The Ever-Increasing Crosstalk between Epigenomic and Genomic Events. Journal of signal transduction 2012: 519807.
- Sun JY, Zhang CY, Zhang ZJ, Dong YF, Zhang AL, et al. (2012) Association between XRCC1 gene polymorphisms and risk of glioma development: a metaanalysis. Asian Pacific journal of cancer prevention: APJCP 13: 4783–4788.
- Wei X, Chen D, Lv T (2013) A functional polymorphism in XRCC1 is associated with glioma risk: evidence from a meta-analysis. Molecular biology reports 40: 567–572.
- Yi L, Xiao-Feng H, Yun-Tao L, Hao L, Ye S, et al. (2013) Association between the XRCC1 Arg399Gln Polymorphism and Risk of Cancer: Evidence from 297 Case-Control Studies. PloS one 8: e78071.
- Zhang H, Liu H, Knauss JL (2013) Associations between three XRCC1 polymorphisms and glioma risk: a meta-analysis. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 34: 3003–3013.
- Zhang L, Wang Y, Qiu Z, Luo J, Zhou Z, et al. (2012) The XRCC1 Arg194Trp polymorphism is not a risk factor for glioma: A meta-analysis involving 1,440 cases and 2,562 controls. Experimental and therapeutic medicine 4: 1057–1062.
- Zhang L, Wang Y, Qiu Z, Luo J, Zhou Z, et al. (2013) XRCC1 Arg280His polymorphism and glioma risk: A meta-analysis involving 1439 cases and 2564 controls. Pakistan journal of medical sciences 29: 37–42.
- 54. Zhu W, Yao J, Li Y, Xu B (2013) Assessment of the association between XRCC1 Arg399Gln polymorphism and glioma susceptibility. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine.
- Minelli C, Thompson JR, Abrams KR, Thakkinstian A, Attia J (2008) How should we use information about HWE in the meta-analyses of genetic association studies? Int J Epidemiol 37: 136–146.
- Attia J, Thakkinstian A, D'Este C (2003) Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 56: 297–303.
- Salanti G, Amountza G, Ntzani EE, Ioannidis JP (2005) Hardy-Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur J Hum Genet 13: 840–848.
- Mao C, Liao RY, Chen Q (2010) Sensitivity analyses including and excluding the HWE-violating studies are required for meta-analyses of genetic association studies. Breast Cancer Res Treat 121: 245–246.
- 59. Camargo MC, Mera R, Correa P, Peek RM, Jr., Fontham ET, et al. (2006) Interleukin-Ibeta and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 15: 1674–1687.