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Mathematical expertise modulates 
the architecture of dorsal and 
cortico-thalamic white matter 
tracts
Hyeon-Ae Jeon 1,2, Ulrike Kuhl   3 & Angela D. Friederici3

To what extent are levels of cognitive expertise reflected in differential structural connectivity of 
the brain? We addressed this question by analyzing the white matter brain structure of experts 
(mathematicians) versus non-experts (non-mathematicians) using probabilistic tractography. Having 
mathematicians and non-mathematicians as participant groups enabled us to directly compare profiles 
of structural connectivity arising from individual levels of expertise in mathematics. Tracking from 
functional seed regions activated during the processing of complex arithmetic formulas revealed an 
involvement of various fiber bundles such the inferior fronto-occipital fascicle, arcuate fasciculus/
superior longitudinal fasciculus (AF/SLF), cross-hemispheric connections of frontal lobe areas through 
the corpus callosum and cortico-subcortical connectivity via the bilateral thalamic radiation. With the 
aim of investigating expertise-dependent structural connectivity, the streamline density was correlated 
with the level of expertise, defined by automaticity of processing complex mathematics. The results 
showed that structural integrity of the AF/SLF was higher in individuals with higher automaticity, while 
stronger cortico-thalamic connectivity was associated with lower levels of automaticity. Therefore, we 
suggest that expertise in the domain of mathematics is reflected in plastic changes of the brain’s white 
matter structure, possibly reflecting a general principle of cognitive expertise.

Researchers have strived to reveal the underlying neural mechanisms of the mesmerizing performance exhibited 
by experts. Along with the development of neuroimaging techniques, a myriad of studies has shown expertise 
dependent modulation of functional patterns, including dynamic changes of task-dependent activation and func-
tional connectivity across brain areas1–8. From a structural perspective, evidence suggests that becoming an expert 
modulates the brain’s architecture, inducing specific changes in grey matter volume9–13, cortical thickness14,15 and 
white matter structure11,16–18.

Understanding how such an expertise-dependent modulation in the brain—in terms of either function or 
structure—relates to inter-individual differences in behavior across experts and non-experts lies at the heart 
of studying respective neural correlates. Therefore, measuring expert behavior appropriately is critical to con-
firm that neural findings reflect a genuine effect of expertise19. Unfortunately, neuroimaging studies that focus 
on structural brain changes sometimes overlook the significance of associating behavior with brain data when 
attempting to characterize neural correlates of expertise, which causes three problems. Firstly, various studies 
compare pre-defined expert groups based on vocational qualification along with controls10,15,18,20,21. However, an 
occupation-based definition disregards individual variation within the expert and non-expert groups that may 
also be reflected in terms of neural differences. Secondly, in correlational studies, researchers have associated 
changes in brain structures with training time22, resting on the assumption that repeated practice leads to the 
development of expertise23. However, practice time explains only part of the variance in individual performance 
in complex tasks24. Thirdly, correlational analyses prominently describe structural changes in the brain related to 
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speed-up of processing regardless of an improvement of performance16,25 or increases of performance independ-
ent of time needed to complete tasks26. However, one of the defining behavioral features of outstanding perfor-
mance in experts is enhanced automaticity characterized as fast speed of processing while maintaining high levels 
of accuracy27–30. Therefore, previous investigations of brain plasticity in expertise do not seem to fully capture 
specific correlates of expert level processing, missing the critical link between neural correlates and automaticity 
of behavioral performance.

Enhanced automaticity is characterized as a reorganization (routinization) of serial execution of component 
processes with decreasing requirements for attention28,31–33. It shows that considerable amounts of information 
are organized and stored in the long-term memory of experts34. With practice, people gradually build up chunks 
of information to represent and process their knowledge with fewer steps1. Consequently, experts show effortless 
processing of relevant knowledge in their areas of expertise to which they have quick and reliable access35,36. As 
automaticity is a defining factor of expert performance, it will be an overarching attempt to interrogate neural 
dynamics of functions and structures in the brain in relation to automaticity in experts’ behavior.

Recently, using functional magnetic resonance imaging (fMRI), we investigated the functional specificity and 
connectivity in experts’ brain mediated by levels of automaticity in the processing of complex arithmetic formu-
las, with the aim of understanding the neural underpinnings of expertise linked to exceptional performance3. 
Experts functionally showed focal activation in the left precentral gyrus (PrCG) whereas non-mathematicians 
depicted a broad pattern of activation spanning the anterior-posterior axis of the prefrontal cortex (PFC). This 
result indicated that the level of mathematical expertise produced a modulating effect on the functional spec-
ification of the PFC. Moreover, this pattern was correlated with participants’ behavioral index of automaticity 
in mathematics, supporting a close relationship between automatized information processing and neural effi-
ciency reflected by a decreased involvement of controlled or attentional processes primarily in frontal regions of 
experts33,37. We also observed expertise-dependent functional connectivity using psychophysiological interaction 
(PPI). Here, proficient participants recruited a fronto-parietal network whereas people with lower proficiency 
relied on fronto-striatal connections, supporting the divergent involvement of long-range connections deter-
mined by mathematical expertise.

While our previous work3 clearly demonstrated a modulatory effect of mathematical expertise with respect to 
functional specificity and connectivity in the human brain, the question for concomitant changes affecting ana-
tomical structure remains unanswered. In accordance with the principle of neuroplasticity, that is, the assumption 
that experience constantly alters the brain’s structural organization38, anatomical differences between mathemati-
cians and non-mathematicians are also to be expected. In fact, a comprehensive analysis of structural correlates of 
expertise might elucidate the dynamic changes in the brain when it comes to mathematicians’ outstanding perfor-
mance. Most studies investigating structural connectivity in relation to mathematical processing have focused on 
numerical cognition in children, normal controls, or patients with dyscalculia (for a review, see Moeller et al.39). 
Expanding the research question to anatomical signatures of expertise will augment our knowledge of structural 
alterations induced by increased proficiency, thereby extending the established understanding of the roles of dis-
tinct white matter pathways within the scope of expertise.

Therefore, in the present study we scrutinized the anatomical connections of an expert group (mathemati-
cians) in comparison with normal controls (non-mathematicians) using diffusion-weighted magnetic resonance 
imaging (dMRI) that assesses the connectivity of white matter tracts between brain regions40. We evaluated struc-
tural connectivity in mathematicians and non-mathematicians using probabilistic tractography40, a method that 
enables us to draw indirect conclusions about specific functions of fiber tracts from the functional characteristics 
of their target regions41. The target areas of the present study, being used as regions of interests (ROIs) for the 
tractography, were located in the brain regions from our previous study3. Specifically, we selected all clusters 
exhibiting common activation for both mathematicians and non-mathematicians in the processing of complex 
arithmetic formulas (Fig. 1a compared to Fig. 1b). These areas comprise the left insula, left PrCG, left superior 
parietal lobe (SPL) and bilateral medial premotor cortex (mPMC) encompassing the anterior cingulate cortex 
(ACC). Since these regions were not only observed in our study but also in other studies where people were 
involved in numerical cognition or solving mental arithmetic formulas4,39,42,43, we chose these as the ROIs for our 
probabilistic tractography.

Figure 1.  A schematic illustration of conditions in the previous fMRI experiment. (a) The complex arithmetic 
formulas comprise two parts. One is exemplified by “5y + 7 + 3y” (blue) having a long-distance computation 
between “5y” and “3y”. The other is exemplified by “(4 + 2)” (pink) being an inserted formula attached to “5y” 
using a multiplication symbol (*). (b) The simple arithmetic formulas only have the long-distance computation 
between “4y” and “7y” without an inserted formula. Here we have provided tree structures of algebraic 
expressions to help understanding of the formulas. In the actual experiment, the six stimuli were visually 
presented one by one (denoted by a square) after the lead-in stimulus “(2 + 3) * 0+”. Adapted, with permission, 
from5.
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In particular, we investigated the contribution of the white matter tracts connecting these ROIs with other 
regions in the brain. Given their location, several adjoining tracts qualify as potential candidates supporting 
expertise-dependent processing. For instance the arcuate fasciculus/superior longitudinal fasciculus system (AF/
SLF), connecting the temporal and frontal lobes via the parietal cortex44, has been scrutinized with respect to 
experts’ performance (e.g., chess players, phonetics experts or musicians)45–47 or training-related changes (e.g., 
reading, music or mathematics)16,17,48. Moreover, the AF/SLF has been known to support mathematics42,49, math-
ematics learning50 and mental arithmetic skills51,52. Along with the AF/SLF, cortico-thalamic connections also 
deserve attention, as they connect various cortical regions such as dorsolateral PFC, lateral orbital cortex, or ACC 
with the thalamus. These connections contribute to a wide range of cognitive processes that encompass learn-
ing, memory, inhibitory control and decision-making53,54. Previous studies provide evidence that the strength of 
the cortico-thalamic connection covaries with individual levels of mathematical proficiency as well as cognitive 
control3,55,56. Taken together, we expect an inextricable link between the involvement of the AF/SLF as a major 
cortico-cortical pathway along with the cortico-thalamic pathway and automatic processing in mathematical 
expertise.

The goal of the present study was to investigate to what extent structural connectivity measured by dMRI was 
modulated by the mathematical expertise, providing a comprehensive view of the neural mechanisms of expertise 
in mathematics. As mentioned above, we previously showed a distinct difference between mathematicians and 
non-mathematicians in their pattern of functional activation and connections3. In the present study, fiber track-
ing from seed ROIs that were commonly activated in both groups was conducted to assess structural integrity 
of the observed white matter structures in terms of their streamline density. Next, we examined the relationship 
between structural coherence of these tracts and mathematical expertise by correlating the streamline density 
with the coefficient of variation in reaction times (CVRT). CVRT is known to provide an index of processing 
automaticity related to the level of expertise28,31,32,36. We hypothesized that fiber tracts connecting regions such 
as PrCG, insula, mPMC/ACC, and SPL would differentially support the processing of complex arithmetic for-
mulas between experts and non-experts. Consequently, distinct correlations between streamline density of fiber 
tracts and CVRT were expected. More specifically, we hypothesized that the AF/SLF would show a high stream-
line density as the level of mathematical automaticity increased, based on the well-known involvement of AF/
SLF in experts’ performance16,17,45,47,48,57. On the contrary, we expected increased cortico-subcortical connectiv-
ity between the medial PMC (mPMC)/ACC and thalamus with decreasing levels of mathematical automaticity, 
based on the pivotal role of fronto-striatal connections during demanding cognitive processes32,55,58–60.

Results
Higher levels of automaticity in mathematicians compared with non-mathematicians.  The 
CVRT as an index of processing automaticity was calculated for both mathematicians and non-mathematicians 
while they computed arithmetic formulas. By running a Shapiro-Wilk normality test, we found that the CVRT val-
ues were not normally distributed (W = 0.9418, p-value = 0.0481). Therefore, we performed a Wilcoxon ranked-
sum test to assess group differences. Mathematicians showed a significantly higher degree of automaticity when 
processing complex arithmetic formulas in comparison with non-mathematicians (W = 360, p < 0.0001).

Fiber tracts involved in the processing of complex arithmetic formulas across the groups.  We 
initiated fiber tracking from seed ROIs that were commonly activated in both mathematicians and 
non-mathematicians3. Figure 2 shows average tract masks that served as basis for statistical analysis, generated 
from seeding within the respective ROIs. Seeding in the left insula yielded streamlines along the ventrally located 
inferior fronto-occipital fascicle (IFOF), which connects frontal regions with the posterior temporal and occipital 
cortex (Fig. 2a). The cluster in the left PrCG projected dorsally via the AF/SLF, connecting the PMC to STG and 
MTG (Fig. 2b). Seeding in the two medially located left and right mPMC/ACC clusters yielded cross-hemispheric 
connections of the frontal lobe areas through the corpus callosum, as well as cortico-subcortical connectivity via 
the bilateral thalamic radiations (Fig. 2c,d). Finally, seeding in the left SPL revealed cross-hemispheric projections 
along the corpus callosum as well as ventral connections as part of the IFOF and corticospinal tract (Fig. 2e).

Cortico-cortical and cortico-thalamic pathways correlated differently with mathematical 
expertise.  We correlated streamline densities along the identified fiber bundles (Fig. 2) with the participant’s 
individual CVRT scores to quantify which of the fiber tracts were specifically related to the level of mathematical 
expertise. We found two significant fiber tracts. Figure 3(a) shows a significant cluster (blue, r = −0.57, 67 voxels) 
denoting a negative correlation of streamline density with CVRT residing within a cortico-cortical pathway, that is, 
the left AF/SLF pathway after seeding in the left PrCG. Thus, the relative number of streamlines within this clus-
ter increased as the participant’s automaticity in the processing of mathematical formulas increased (denoted by 
decreased CVRT). Conversely, shown in Fig. 3(b), we found a positive correlation between CVRT and the stream-
line density in a cortico-thalamic pathway (red, r = 0.63, 94 voxels) positioned within the left thalamus after seed-
ing in the right PMC/ACC. Therefore, streamline density in this cluster increased as the participant’s automaticity 
in the processing of mathematical formulas decreased (indicated by increased CVRT) (Table 1).

In order to make sure that the direction and significance of the observed associations were not driven by 
either mathematicians or non-mathematicians alone, we additionally performed correlation analyses of mean 
streamline density within the previously identified clusters and CVRT scores for each group separately. These, too, 
became highly significant, replicating the direction of the respective correlation within the whole study sample. 
Specifically, for streamline density within the left AF/SFL cluster, there was a significant negative correlation 
with CVRT scores for mathematicians (r = −0.59, p = 0.0063) and non-mathematicians (r = −0.63, p = 0.0053), 
respectively (see Supplementary Fig. S1). Likewise, the association between our structural measure within the 
left thalamus cluster and our automaticity score was also significant (mathematicians: r = 0.68, p = 0.0009; 
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non-mathematicians: r = 0.49, p = 0.0391). An additional statistical comparison of both sets of correlations using 
Fisher’s z revealed no significant differences between the strength of associations between both groups (AF/SLF 
cluster: z = −0.1800, p = 0.8572; left thalamus cluster: z = −0.8273, p = 0.4081).

Discussion
The present study clearly demonstrated that the architecture of cortico-cortical and cortico-thalamic white mat-
ter tracts is modulated by mathematical expertise, with a diverging involvement of AF/SLF and thalamic path-
ways. More specifically, we found that the streamline density within the AF/SLF and thalamic pathways was 
differentially correlated with the degree of automaticity in mathematical expertise. Participants exhibiting a high 
level of automaticity showed increased streamline density in the left AF/SLF, whereas the streamline density in 
the left thalamic pathway was decreased. The novelty of the present study is that we investigated the structural 

Figure 2.  Tract masks at the group level in MNI space and corresponding seed regions. The masks were derived 
by averaging and thresholding the normalized tractograms aligned to the MNI152_T1_1mm_brain.nii.gz image 
as provided in FSL. Seed region of interests (green blob) are functional clusters which were commonly activated 
in complex arithmetic condition compared with simple arithmetic condition in the mathematics domain in 
the previous fMRI study3. (a) IFOF (brown) seeded in left insula, (b) dorsal pathway D1 (violet) seeded in the 
left PrCG, (c) corpus callosum, bilateral anterior thalamic radiation, and left cingulum (orange) seeded in left 
mPMC/ACC, (d) corpus callosum, bilateral anterior thalamic radiation, and right cingulum (yellow) seeded in 
right mPMC/ACC, (e) corpus callosum, IFOF, and corticospinal tract (navy) seeded in left SPL. (ACC, anterior 
cingulate cortex; IFOF, inferior fronto-occipital fascicle; PrCG, precentral gyrus; mPMC, medial premotor 
cortex; SPL, superior parietal lobule).
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connectivity of white matter tracts associated with the level of automaticity in processing complex arithmetic 
formulas within experts (mathematicians) and non-experts (non-mathematicians).

The dorsal pathway and mathematical processing.  We found that the dorsal pathway consisting of 
the AF/SLF support mathematical processes. This finding regarding the functional interpretation should be con-
sidered with caution because the function of fiber tracts can only be interpreted indirectly by functional activa-
tion of the grey matter61. The AF/SLF is known to have anatomically distinguished sub-parts62,63. The detailed 

Figure 3.  Clusters of significant negative and positive correlation between streamline density and CVRT 
scores across mathematicians and non-mathematicians. (a) Seeding in the left PrCG (green) showed negative 
correlation between CVRT and streamline density having its peak (blue) being located in the AF/SLF (violet). 
(b) Seeding in the right mPMC/ACC (green) yielded positive correlation between CVRT and streamline density 
having its peak (red) being positioned, specifically in thalamus (a part of yellow tract). Reported clusters are 
size corrected at p < 0.05 and Bonferroni corrected for the number of seed regions. (AF/SLF, arcuate fasciculus/
superior longitudinal fasciculus; ACC, anterior cingulate cortex; PrCG, precentral gyrus; mPMC, medial 
premotor cortex; SPL, superior parietal lobule).

Seeds Clusters correlated with CVRT

Area
Center of gravity 
(x, y, z) Area

Coordinates (x, 
y, z)

Voxel 
size

Correlation 
coefficient (r)

Left PrCG −43 6 31 Left AF/SLF −34 −39 25 67 −0.57

Right mPMC 8 23 38 Left thalamus −7 −18 −3 94 0.63

Table 1.  Fiber tracts showing a significant correlation with CVRT. Clusters are corrected at p < 0.05 and 
Bonferroni corrected for the number of seed regions. (AF/SLF, arcuate fasciculus/superior longitudinal 
fasciculus; mPMC, medial premotor cortex; PrCG, Precentral Gyrus;).
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discussion of the sub-parts of the AF/SLF is beyond the scope of the present study. However, it is important to 
note the distinction of two sub-parts of a dorsal connections: a direct pathway (long segment) connecting from 
temporal cortex to Broca’s area, and an indirect pathway (anterior and posterior segments) connecting from tem-
poral cortex to PrCG via the parietal cortex62,63. The parietal cortex, being a region comprising an integral propor-
tion of the indirect pathway of AF/SLF, has been known to be a crucial area implicated in mathematical cognition 
including intraparietal sulcus, superior parietal lobule and angular gyrus39,64,65. Therefore, the involvement of AF/
SLF in the present study may be adduced in support of arithmetic calculation.

Previous studies have investigated the structural connectivity in numerical cognition (for a review, see Moeller 
et al.39). For instance, difficult addition that requires bridging to ten (e.g., 28 + 47) or magnitude processing in 
healthy adults are processed by dorsal connections as part of the AF/SLF system along with ventral fiber con-
nections, whereas ventral tracts such as the middle longitudinal fascicle were predominantly found supporting 
processing of easy addition problems (e.g., 28 + 41)42. Another study also supports this dissociation of dorsal 
and ventral connections with respect to task difficulty, showing that difficult numerical magnitude processing is 
specifically supported by the dorsal AF/SLF as well as ventral connectivity including the external/extreme cap-
sule fiber system66. Considering the experimental design of our previous functional MRI study, the processing of 
complex arithmetic formulas was more difficult than mere numerical fact retrieval involved in simple single-digit 
addition or retrieval of multiplication table facts. Therefore, our observation of the AF/SLF conforms to the pre-
vious studies suggesting a supporting role of the dorsal tract in the processing of relatively complex formulas. In 
the next section, we discuss the AF/SLF pathway in relation to the degree of automaticity in mathematics in more 
detail.

Streamline density of the dorsal pathway related to automatic processing in mathematics.  It 
has been shown that the speed of information processing is dependent on several factors such as the axonal 
diameter, density of axons, the intermodal spacing of the myelin, and the degree of myelination itself 67. Together 
with this, mathematicians’ high degree of automaticity in the processing of complex arithmetic formulas seems 
to be supported by stronger streamline density of the AF/SLF pathway (Fig. 3a). It is interesting to note that the 
direct pathway of the AF/SLF connecting temporal cortex and Broca’s area plays an eminent role in language for 
the processing of complex sentence structures68,69. Developmental studies comparing the automaticity of process-
ing complex language structures in adults and children reveal that adults, but not 7-year-old children, possess a 
fully developed direct segment of the AF/SLF pathway, suggesting that the structural maturation of dorsal tract 
targeting Broca’s area might be the prerequisite for the automatic process of complex structures in language68. A 
recent study also indicated that children with a more mature AF are more accurate and faster in processing com-
plex syntax compared to those who have less maturation of AF69. In line with these previous studies, our result 
also showed that mathematicians who had high level of automaticity (denoted by low CVRT) showed a significant 
correlation with the streamline density of the indirect segment of the AF/SLF. To sum up, we render new evidence 
that the streamline density of the AF/SLF is related to the degree of automaticity in the processing of complex 
arithmetic formulas in mathematics.

Streamline density of the subcortical pathways related to controlled processing in mathematics.  
In the present study, the streamline density in a cluster within the left thalamus increased as the level of automa-
ticity decreased (denoted as increasing CVRT, Fig. 3b). Here, we suggest that cortico-thalamic connections, spe-
cifically fibers reaching the thalamus, actively accommodate the performance of demanding and less automatic 
processes. Previous studies discussed the role of thalamus from the perspective of functional specificity focusing 
on its activation in association with less automated processing. For example, attention demanding operations 
revealed thalamic activation with increasing task difficulty70–72. The interaction between high order association 
cortices with the thalamus is necessary for attention demanding tasks where people need to focus on a spe-
cific target among multiple distractors73,74. Fiber tracts starting from dorsolateral PFC to the thalamus showed 
increased modulation of the pathway in accordance with increased attentional effort75,76. Processing structures 
composed of random visual symbols or linguistic stimuli in the second language also revealed the activations of 
subcortical areas including caudate nucleus and thalamus, particularly when the level of processing was demand-
ing55. Putting all these studies together, cortico-thalamic pathways may be modulated by the increased cognitive 
load that coincides with less automaticity77–79, resulting in the strong streamline density as the level of automatic-
ity decreased in the present study.

It should be noted that our cortico-thalamic connections are inter-hemispheric, not intra-hemispheric. Such 
an inter-hemispheric connection is a rather unusual finding, given that most studies quantifying thalamic con-
nectivity exclusively focus on unilateral fiber tracts. However, there are a few tracer studies that report contralat-
eral thalamo-cortical connections in rodents80,81 and primates82,83, even though their functional importance has 
not been fully understood. For humans, the potential role of inter-hemispheric thalamo-cortical connectivity for 
cognition cannot be easily determined. As a rare example, Philip et al.84, using a connectivity-based parcellation, 
demonstrated that right thalamic volume, derived from connectivity with the left precentral regions, correlated 
significantly with performance in a motor coordination task. Given that our inter-hemispheric connection should 
be interpreted with caution, future work is needed to delineate the structural characterization and functional role 
of contralateral thalamo-cortical connectivity in humans.

Methodological considerations of probabilistic tractography and streamline density.  Methodological  
advantages and disadvantages inherent to the use of probabilistic tractography and streamline density as a measure 
of structural connectivity are worth noting here. Even though this method has been used repeatedly for measuring 
connectivity strength of white matter pathways, one should consider its limitations. For instance, the quality of trac-
tography is influenced by various factors including subject motion, physiological noise or hardware limitations that 
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determine spatial resolution85. Tracer studies in monkeys revealed that probabilistic tractography reliably shows prom-
inent pathways86,87, while being prone to identify false positive connections88. These problems are caused by the lack 
of a gold standard for validation of tractography. However, even with these critical problems, streamline density has 
been one of the key methods in assessing white matter structures and their supporting roles in cognitive functions89. 
Unlike single fiber models, tractography based on probabilistic sampling from the distributions of voxel-wise principal 
diffusion directions allows for higher sensitivity to non-dominant fiber directions. This is a fundamental feature when 
tracking in areas with complex white matter configurations such as crossing fibers90. Tractography based on multi-fiber 
models has provided valuable information on the role of white matter structures and their changes in various research 
fields such as cognitive functions (e.g. attention91, musical syntax processing92, goal directed action control93) and dis-
ease (e.g. autism94,95, Parkinson disease96, stuttering97,98). Therefore, by using multi-fiber models, we could successfully 
uncover expertise-related changes in white matter tracts and the correlation of streamline densities of the fibers with the 
degree of automaticity in different functional domains.

Conclusion
We provide first in vivo evidence for structural connectivity of cortico-cortical and cortico-thalamic pathways 
reflecting automaticity in the processing of complex arithmetic formulas. These insights were derived from 
an analysis of white matter structural integrity across a group of experts and non-experts in mathematics. 
Importantly, seed ROIs for tracking were selected based on fMRI evidence from previous studies allowing a func-
tional allocation of identified tracts. We suggest that high levels of automaticity in mathematics are reflected in the 
connectivity profile of the left PrCG to temporal brain areas via the left AF/SLF. Concurrently, low levels of auto-
maticity are associated with higher structural integrity of cortico-thalamic connection. In this way, we shed light 
on the structural connectivity dependent on behavioral characteristics denoting the individual level of expertise.

Beyond our streamline density analysis, several studies have been conducted in terms of expertise or training 
investigating gray matter volume9–12,99, cortical thickness14,15,21,25, or white matter changes11,16,17,100. Collectively, 
these insights highlight the importance of comprehensive measures to gain a better understanding of the neural 
basis underlying experts’ talents. Mastering a cognitive ability to the level of experts modulates the brains’ white 
matter architecture. Here we have demonstrated this for the higher cognitive function of mathematics. Future 
research is needed to show whether this holds for other cognitive domains as well, potentially reflecting a more 
general principle of brain re-organization supporting expertise.

Methods
Participants.  Participants were identical to those from a previous study3. Twenty-two participants with high 
levels of expertise in mathematics were recruited based on their occupation (i.e. mathematicians or mathemat-
ics teachers), while low-expertise participants (n = 22) were not involved in professional mathematics in their 
daily lives. The different levels of mathematical expertise of both groups were assessed via a standardized math-
ematics test (Mathematik-Test: Grundkenntnisse für Ausbildung und Beruf101). General intelligence (the Berlin 
Intelligence Structure Test102) and verbal working memory span (the German version of the Wechsler subtest103) 
were assessed across all the participants. Details, and demographic and cognitive profiles of the participants are 
provided in Table 2 which indicates that cognitive profile of the two groups differed only in mathematics. All the 
participants gave written, informed consent to participate in the study. The Research Ethics Committee of the 
University of Leipzig approved the study in accordance with the Declaration of Helsinki.

Assessment of mathematical automaticity.  The degree of automaticity in mathematics was measured 
by the coefficient of variation in reaction time (CVRT) obtained from the participants’ performance at solving 
a series of 150 algebraic expressions in the previous fMRI study3. CVRT is defined as the standard deviation of 
reaction time (SDRT) divided by the mean reaction time (MeanRT). CVRT has been used to distinguish between 
speed-up (improvement without increased automaticity) and restructuring (improvement with increased auto-
maticity), providing an index of processing efficiency associated with automaticity104. Restructuring appears in 
the process of automatization, which qualitatively changes the underlying processes such as reorganization, rou-
tinization, or bypassing of serial execution of sub-processes in the course of performance development105. In 
speed-up, CVRT is reduced with an upper limit proportional to the change in RT itself. On the contrary, in restruc-
turing, CVRT is reduced more than proportional to the RT due to variables involved in controlled processes being 

Experts Non-experts Statistics

Age 29.78 (7.53) 29.83 (6.76) p = 0.139

Gender: M/F 16/6 14/8 p = 0.373

Handedness: LQ 90.26 (9.55) 93.35 (12.45) p = 0.351

Years of education 18.8 (3.2) 17.45 (2.85) p = 0.139

Mathematics test 70.39 (7.05) 42.96 (9.58) p < 0.001

Intelligence test 116.39 (13.81) 126.87 (16.72) p = 0.084

WM (forward) 9.78 (2.15) 9.43 (2.1) p = 0.582

WM (backward) 8.98 (2.4) 8 (2.04) p = 0.106

Table 2.  Demographic and cognitive profile of mathematicians and non-mathematicians. Values depict mean 
(SD); statistics were obtained from independent t-tests except for gender (Pearson’s chi-square test). LQ, 
laterality quotient116; WM, working memory.
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discarded (i.e., self-monitoring, error correction, or resolving signal-to-noise processing problems). Therefore, 
CVRT decreases in the case of automatization while remaining unchanged in the case of speed-up104–106. For sta-
tistical analysis, we conducted Wilcoxon ranked-sum test because we detected non-normality of the data after 
running Shapiro-Wilk normality test.

Diffusion MRI data acquisition.  Diffusion-weighted MRI data were acquired on a whole-body 3 Tesla 
Tim Trio MRI scanner (Siemens Healthcare, Erlangen, Germany) equipped with an 32-channel phased-array 
head coil using a twice-refocused spin echo echo-planar-imaging sequence (TR = 12900 ms; TE = 100 ms; 
128 × 128 image matrix, FOV = 220 × 220 mm; 88 axial slices; resolution: 1.72 × 1.72 × 1.7 mm³; 60 uniformly 
distributed diffusion-encoding gradient directions with a b-value of 1000 s/mm²; GRAPPA 2)107,108. Additionally, 
seven datasets with no diffusion weighting (b0) were acquired initially and interleaved after each block of 10 
diffusion-weighted images. An anatomical high-resolution T1-weighted scan was acquired on the same scanner, 
using a 3D magnetization prepared rapid gradient echo (MPRAGE) sequence109 with selective water excitation 
and linear phase encoding (TR = 2300 ms; TE = 2.96 ms; 256 × 240 image matrix; FOV = 256 × 240 mm; 176 axial 
slices; resolution: 1 × 1 × 1 mm³).

Diffusion MRI preprocessing.  Diffusion MRI data were screened for motion induced signal dropouts with 
a semi-automatic method110. Additionally, the data were visually inspected for artifacts111,112. Following this pro-
cedure, we had to exclude two mathematicians and four non-mathematicians from the final analysis due to exces-
sive head motion or unavailability of suitable diffusion-weighted scans. Thus, dMRI data from 38 participants was 
used for the final analysis. Preprocessing of dMRI data was performed using FSL v5.0113. For each participant, 
diffusion data was divided into volumes with and without diffusion weighting. Separate averages for each subset 
were computed. These averages were rigidly aligned to the T1-weighted image previously aligned to Montreal 
Neurological Institute (MNI) standard space and interpolated to 1 mm voxel size. For motion correction, volumes 
with and without diffusion weighting were rigidly aligned to their respective average in MNI space. To preserve 
high data quality, all transformations necessary for motion correction and registration to the individual T1 anat-
omy in MNI space were combined and applied in a single step of interpolation. The fiber orientation distribution 
for each voxel was determined using bedpostX90. Additionally, transformation matrices for affine registration of 
each participant’s T1 data to the standard MNI152_T1_1 mm_brain.nii.gz image as provided in FSL were com-
puted using FSL’s flirt for later registration of individual tractograms to a common standard space.

Structural connectivity analysis.  In order to obtain white matter pathways associated with behavioral 
variation, we selected areas from a previous study3 where both groups (mathematicians and non-mathematicians) 
showed common activations in the processing of complex arithmetic formulas (Fig. 1a compared to Fig. 1b): left 
insula, left PrCG, left SPL and bilateral mPMC encompassing ACC. These ROIs were extracted in volume space 
using the MarsBaR toolbox in SPM114. Subsequently, each seed was resampled to 1mm resolution and affinely 
aligned with the individual participant’s T1 data in MNI space using FSL’s flirt. The necessary transformation 
matrix for this registration was the inverse of a previously computed transformation from the individual partici-
pant’s T1 MNI space to the standard space of the seeds.

Tractography was performed using probtrackx290. For each seed, 5000 streamlines were initiated from each 
voxel on the grey matter-white matter interface within the seed region; using a curvature threshold of 0.2 and step 
length of 0.5 mm. Tracking was restricted to the white matter only. The corresponding white matter mask was 
generated by fitting the diffusion tensor (FSL dtifit) and thresholding the resulting fractional anisotropy (FA) map 
at 0.2. The resulting streamline density maps were first logarithmized and normalized by dividing each voxel by 
the logarithm of the maximal possible number of streamlines produced. Subsequently, each preprocessed tracto-
gram was affinely aligned to the MNI152_T1_1mm_brain.nii.gz image as provided in FSL, based on the transfor-
mations from T1 data to this image previously computed. Further, all MNI-aligned tractograms were averaged, 
that is, they were summed up and divided by the total number of available tractograms (i.e. 38). Finally, these 
averages were thresholded at a value of 0.2 to obtain masks for statistical analysis (see Fig. 2). Statistical analyses 
were performed by running non-parametric regressions (FSL randomize115) with 10000 Monte Carlo simulations. 
To test for respective linear associations, we set up general linear models with CVRT as a single regressor. Thus, 
we examined which regions of the logarithmized and normalized individual streamline density maps in MNI152 
space correlated with CVRT scores within the regions defined by the average tract mask in a voxel-wise fashion. 
Reported clusters for individual tracts were significant at the voxel and cluster levels of p < 0.001 and p < 0.05 
respectively, Bonferroni corrected for the number of seed regions.

Data policy.  Data in an anonymized form (in accordance to the ethics agreement) and scripts used in data 
analysis are available on request.
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