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ABSTRACT Robotic rehabilitation systems have been developed to treat musculoskeletal conditions, but
limited availability prevents most patients from using them. The objective of this paper was to create a
home-use robotic rehabilitation system. Data were obtained in real time from a Microsoft KinectTM and
a wireless surface electromyograph system. Results from the KinectTM sensor were compared to a standard
motion capture system. A subject completed visual follow exercise tasks in a 3-D visual environment. Data
from two training exercises were used to generate a neural network, which was then used to simulate the
subject’s individual performance. The subjects completed both the exercise task output from the neural
network (custom), and the unmodified task (standard). In addition, a wearable arm robot prototype was built.
Basic system identification was completed, and a control algorithm for the robot based on pressure control
was designed and tested. The subjects had greater root-mean-square error for position and velocity variables
during the custom exercise tasks. These results suggest that the custom task was difficult to complete, possibly
because the neural network was unconstrained. Finally, the robot prototype was able to mimic changes in a
subject’s elbow angle in real time, demonstrating the feasibility of the robotic rehabilitation system.

INDEX TERMS Adaptive systems, artificial neural networks, electromyography, kinematics, pneumatic
actuators, pressure control, patient rehabilitation, rehabilitation robotics.

I. INTRODUCTION
Musculoskeletal conditions, or disorders of the muscles and
bones, are the most common causes of chronic disability in
the world. In the US alone, disease of the musculoskele-
tal system was the primary diagnosis during 83,228,000
office visits in 2009 (8.0% of total visits) [1]. A stroke
can also cause many of the same physical deficiencies seen
in musculoskeletal conditions. Approximately 2.6% of all
Americans over the age of 20 have had a stroke, and each
year 795,000 more people suffer a stroke (1 every 40 sec-
onds) [2]. The most common non-medication treatment for
musculoskeletal conditions and stroke is rehabilitation. For
patients, rehabilitation is a tedious chore that involves many
months of treatment, resulting in low compliance. Rehabilita-
tion regimens combine home-based exercises with therapist-
monitored sessions; during the latter, the therapist assesses
the patient’s capabilities and adjusts the exercise tasks
accordingly.

Previous research on upper body rehabilitation has shown
that positive functional outcomes are achieved from programs
that emphasize task-oriented, repetitive training exercises
combined with biofeedback [3], [4]. Thus, virtual reality
(VR) rehabilitation systems have been developed that can
repetitively simulate these task-oriented training exercises
[5], [6]. VR rehabilitation has been shown to be successful for
improving upper body function in stroke patients, most likely
because the interesting and engaging virtual tasks encourage
increased repetition [6]. Furthermore, biofeedback has been
shown to improve the learning rate during rehabilitation [3].
Some VR rehabilitation programs have also been designed to
be usedwithout the supervision of a physiotherapist [3]. How-
ever, VR rehabilitation must be able to adapt to the patients’
changing capabilities. A previous study demonstrated that
subjects trained with an adaptive VR rehabilitation system
had improved upper body functionality when compared to
subjects trained with conventional rehabilitation [7].
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Robotic rehabilitation systems, designed to address the
limitations of traditional physiotherapy, have been devel-
oped primarily for upper extremity rehabilitation of stroke
patients. These robots generally consist of an arm attachment
with multiple actuated degrees of freedom that is affixed to
the patient and guides them through different exercise tasks
through the use of an immersive visual environment [8].
Studies have shown that patients achieved significant motor
recovery and improved upper extremity functionality after
participating in robotic rehabilitation [8]. Some shortcomings
of the current rehabilitation robots are their limited availabil-
ity and portability, and their high cost ($50,000 USD) [8]; as
a result, few patients can benefit from robotic rehabilitation.

Pneumatic actuators have previously been used in upper
body robotic rehabilitation systems because they are
lightweight, strong, and mechanically compliant to human
anatomy [9]. In terms of control strategies, impedance control
and admittance control have been used to ensure the safety of
the subjects while they interact with the robot [9]. In these
control laws, the controller uses both the position of the
robot’s joints and the force produced by the actuators in
order to limit the amount of force applied to the subject.
In terms of efficacy, previous research has suggested that
pneumatically actuated rehabilitation robots can be used by
patients with movement disabilities or stroke to improve their
motor function [9]. The primary drawbacks of pneumatic
actuators are that they are difficult to control due to non-linear
behavior during actuation, and that they require an external
supply of compressed air [9].

The overall objective of this research was to create an
adaptive home-use robotic rehabilitation system for the upper
body. The specific goals for the system were to collect data
from the subject in real-time using simple and portable sen-
sors, to create a customized exercise task for the subject by
adapting a standard exercise task, and to build a simple and
non-rigid wearable robot that will provide subject-specific
resistance training. This paper presents results from compar-
ison testing between the customized exercise tasks and the
standard exercise tasks, as well as preliminary testing of a
pneumatically actuated prototype for the wearable robot.

II. METHODS
A. DESCRIPTION OF THE REHABILITATION SYSTEM
1) SUBJECT DATA COLLECTION AND VISUAL ENVIRONMENT
A Microsoft KinectTM sensor and an electromyograph
(EMG) system were combined with custom software writ-
ten in C++ in order to collect data from the subject in
real time. Data was obtained from the Microsoft KinectTM

using officialMicrosoft software (KinectTM SDKversion 1.6,
Microsoft, Redmond, WA, USA). The 3D joint position data
(mediolateral, anteroposterior, and vertical axes) for 20 joints
per subject was acquired at the KinectTM native sampling
frequency of 30 Hz. The data was subsequently smoothed
using the KinectTM smoothing algorithm and adjusted
based on the height and angle of the KinectTM sensor.

Simultaneously, a wireless surface EMG system (Cometa,
Milan, Italy) was used to collect electrical signals at 1000 Hz
from two electrodes, one on the subject’s biceps muscle
and one on the lateral head of the subject’s triceps mus-
cle. The EMG signals’ linear envelopes were processed in
real-time using a previously described method (bandpass
filter = 10 Hz − 500 Hz; lowpass filter = 30 Hz) [10].
The EMG data were normalized to the subject’s maximum
voluntary contraction (% MVC).

FIGURE 1. Visual environment: A) virtual room, B) video and EMG data.

A 3D visual environment (VE) previously created using
custom software in C++ and OpenGL [11] was modified
to display the data from the sensors as well as the exercise
task (see next section). The VE consisted of a virtual room
(Fig. 1, part A) where the joint center data collected from the
subject by the KinectTM was displayed as a skeleton figure.
The subject navigated the VE by using leg gestures to indicate
directional arrows that rotated and translated the environment.
Separate from the VE, an additional window displayed the
color video data from the KinectTM as well as the real-
time EMG data (Fig. 1, part B). This window was used to
ensure that the subject remained positioned in front of the
KinectTM sensor and that the EMG sensors were functioning
properly.

2) CUSTOMIZED EXERCISE TASK
All of the exercise tasks in this system were visual follow
tasks. For these tasks, a moving sphere was displayed in the
VE (Fig. 1) and the subject used his right hand to follow
the sphere as closely as possible as it moved around the
VE in a repeating cyclical 2D pattern. The 2D pattern was
projected in the 3D visual environment as perpendicular to the
subject. From the subject’s view, the pattern was constrained
to an orthogonal plane directly in front of his viewpoint. The
distance to this plane was held constant. As the subject turned
and moved within the environment, the pattern turned at the
same rate and moved with the subject. In this way, the 2D
pattern always appeared in front and perpendicular to the
subject’s viewpoint.
Biofeedback was used to aid the subject’s accuracy;

the sphere changed color and the volume of music playing
in the background increased as the subject’s hand approached
the center of the sphere. For data, the 3D position of
the sphere, the 3D position of the subject’s hand, and the
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subject’s biceps and triceps EMG signals were recorded
simultaneously during the exercise tasks.

The protocol for creating the customized exercise tasks,
described previously by Barzilay and Wolf [11], consisted of
generating an inverse model of the subject, which was mod-
eled by a neural network. The subject first completed 10 full
cycles of a visual follow training exercise task, or approx-
imately 3 minutes of training. The subject’s performance
during this training exercise (in terms of the 3D position of the
hand, the 3D velocity of the hand, and the biceps and triceps
EMG signals) for all 10 cycles was averaged together and
smoothed to create one full cycle of the subject’s performance
for each of the 8 measured variables [11]. These averaged
cycles were then used as inputs to train the neural network.
The averaged 3D position and 3D velocity (6 variables) of the
sphere during the training exercise task were used as targets
to train the neural network [11]. After the neural network
was trained, it was used to simulate the subject’s individ-
ual performance during a standard exercise task. Averaged
EMG data from 10 healthy subjects performing the standard
exercise task were used as the additional inputs to the neural
network [11].

3) WEARABLE ROBOT PROTOTYPE
The wearable robot prototype consisted of the test plat-
form, the pneumatics assembly (and associated electronic
components), and the control architecture.

FIGURE 2. Wearable robot prototype.

a: Test platform
A test platform was built to model the human arm and
elbow joint; in this way, the basic prototype and the control
algorithms for the wearable robot could be developed and
validated in a safe environment without a risk of injury.
The platform was designed to replicate the mass properties
(total mass = 1.6 kg), inertial properties (I = 0.1 kg*m2),
and dimensions of the human arm [12]. The test platform
consisted of two 7×7×30 cm aluminum cages (simulating the
upper arm and forearm segments) connected together by two
ball bearing assemblies to simulate an elbow joint (Fig. 2).

The upper arm cage was bolted to a wooden base while the
forearm cage was allowed to swing freely up to 45◦ in either
direction about the elbow joint. In future iterations, this entire
structure will be replaced by a human subject’s arm.

b: Pneumatics assembly
The pneumatics assembly actuated the wearable robot pro-
totype. The primary requirements for the assembly were that
the components be both non-rigid and highly compliant as the
robot will eventually be worn on the subject’s arm. As such,
McKibben-type pneumatic artificial muscles (PAMs) were
chosen as the actuation components; as an additional benefit,
these actuators closely replicate the behavior of natural mus-
cles. Two Festo DMSP-10-120 PAMs (Festo, Denkendorf,
Germany) were attached to the upper arm cage of the test
platform to replicate the biceps and triceps muscles (Fig. 2).
The PAMs were 10mm in diameter and 120mm long. The
muscles were rigidly anchored to the base of the upper arm
cage and then connected to the forearm cage at the elbow joint
with non-elastic metal wire (Fig. 2). In this way, actuation
of the upper arm cage was accomplished by transforming
the force from the antagonistic PAMs into torque about the
joint, as in the human arm. Each PAM was independently
controlled by using two 2/2 normally closed Festo MHJ-10
pneumatic valves (Festo, Denkendorf, Germany), one for
inlet and one for outlet. Each PAM had three modes of
operation: inflate, deflate, and sealed. Motorola MPX5700
pressure sensors (Motorola Solutions, Schaumburg, IL, USA)
measured pressure in the PAMs and output an analog signal
to the microcontroller.
Finally, an austriamicrosystems AS5145 magnetic encoder

(ams AG, Unterpremstatten, Austria) was used to determine
the position of the elbow joint, and an Arduino Uno board
(SparkFun, Boulder, CA, USA) was used as the microcon-
troller for the entire prototype.

c: Control architecture: system identification
In order to identify the robot’s passive dynamic properties,
an impulse torque disturbance was applied to the joint and
the angular position was recorded with respect to time. The
system was modeled as a standard 2nd order linear system,
with the following equation for the angular position:

θ (s) =
Min(s)

Is2 + 2cRs+ 2kR
=

Min(s)
/
I

s2 +
(
2cR/

I
)
s+ 2kR/

I
(1)

where c and k are the damping and spring coefficients of the
moveable parts of the robot prototype and R is the distance
from the center of the joint to the attachments of the non-
elastic metal wire (Fig. 2). The response in time to an impulse
in the form of

Min (t) = T δ(t) (2)
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therefore leads to the following equation (in the time domain
via the inverse Laplace transform):

θ (t) = L−1

 T/
I

s2 +
(
2cR/

I
)
s+ 2kR/

I

. (3)

ωd , ωn, and ζ were defined as follows:

ω2
n =

2kR/
I, 2ζω2

n =
2cR/

I, and

ωd = ωn

√
1− ζ 2. (4)

As such, the resultant response was

θ (t) =
T
Iωd

sin(ωd t)e−ωnζ t. (5)

The damping coefficient ζ was assumed to be relatively small
(ζ ≤ 0.1) and therefore the difference betweenωd andωn was
neglected. The final approximated function was

θ (t) = A · sin(ωnt)e−ωnζ t . (6)

d: Control architecture: pressure control
The control architecture for the robot was based on pressure
control of the PAMs. The PAMs were controlled through
pulse-width modulation (PWM) of the pressure valves.
A simplified dynamic equation for the robot was used for
analysis due to the complexity of modeling the highly non-
linear behavior of the PAMs. The dynamic equation used for
the control architecture was

I θ̈ = τdist + τcont , (7)

where τdist is the disturbance torque due to dampening, fric-
tion, gravity, spring constant, and so on, and τcont is the
control torque applied by the PAMs and controlled using the
sensors, microprocessor, and valves.

The control torque applied by the PAMs was modeled as

τcontrol =
(
Fleft − Fright

)
· R (8)

and a simple proportional loop was implemented (Fig. 3).

FIGURE 3. Control loop for robot prototype.

The PWM parameters that determined the duty cycle for
the valves were chosen so as not to exceed the limits of
the valves, which had a minimum switching time of 1 msec
(1000Hz). A 16msec (60Hz) PWMperiod (divided into 10%
duty cycles) and a 600 Hz switching frequency were selected,

which resulted in a minimum switching time of 1.6 msec for
each 10% duty cycle.
In terms of the control rule for the PAMs, when the pressure

error was positive (reference >measured), the inlet valve duty
cycle was determined as:

Duty Cycle = Kpressure ·1Pressure (9)

and the outlet duty cycle remained closed (0%). When the
pressure error was negative, the situation was reversed.

B. ASSESSMENT OF THE REHABILITATION SYSTEM
1) SUBJECT DATA COLLECTION AND VISUAL ENVIRONMENT
Two different experiments were performed for the assessment
of the subject data collection and visual environment. The first
experiment focused on the accuracy of the KinectTM sensor,
while the second experiment focused on a comparison of the
customized exercise task.

a: Accuracy of Kinect sensor
10 young, healthy subjects (age: 27.1 years ± 2.9, height:
128.6 cm ± 7.9, male = 6) with no history of upper body
impairment volunteered to participate in this study. The sub-
jects wore minimal clothing on their upper bodies to allow
for placement of 25 reflective markers on their torsos and
arms. Each subject completed three trials of two different
upper body exercises: 1) a range-of-motion (ROM) exercise
where the subject slowly raised both of his arms, elbow
joints extended, from the sides of his torso to 45◦ above the
transverse plane and back down, three repetitions per trial,
and 2) a visual follow task, where the subject used his right
hand to follow a moving sphere flying in a 3D Fig. 8 pattern
in the VE for a total of 45 seconds [9].
Data was collected during these exercise tasks using

both the robotic rehabilitation system and a 10 camera
opto-electronic Vicon MX Motion Capture System (Vicon,
Oxford, UK) as a gold-standard for validation. For the robotic
rehabilitation system, 3D joint center data was recorded for
the wrist, elbow, and shoulder joints of the right arm using the
KinectTM SDK version 1.5 and custom C++ software. Addi-
tionally, a synchronization signal was sent from the robotic
rehabilitation system to indicate to the Vicon system when
data were being collected. For the Vicon system, the reflective
markers were placed on the subjects according to the Vicon
Upper Body Model marker set. Vicon Nexus software (ver-
sion 1.8.2) was used to record the position of the markers
during the exercise tasks as well as the synchronization signal.
The data was post-processing in Vicon Nexus to obtain the
joint center locations of the right wrist, elbow, and gleno-
humeral (shoulder) joint.
Analysis of the data was completed in MATLAB R2012a

(Mathworks, Natick, MA, USA). A homogenous transforma-
tion was used to align the coordinate systems of the KinectTM

and Vicon measurement systems. To find the best parameters
for the homogenous transformation, a minimum cost maxi-
mal matching optimization was used (cost function: average
distance between a small, randomized set of paired points
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from each system). The data was then resampled to a common
frame rate of 120 Hz, and the synchronized subset of the data
extracted. The Pearson’s correlation (R) coefficient and the
root-mean-square error (RMSE) were calculated between the
resampled and synchronized Vicon and KinectTM data for
each trial.

b: Comparison of the customized exercise task
Twelve young, healthy subjects (age: 29.8 years± 4.2, height:
169.0 cm ± 9.3, male = 5) with no history of upper body
impairment volunteered to participate in this study. The sub-
jects wore close-fitting short sleeve shirts to allow for the
placement of the two EMG electrodes on their biceps and
triceps. Each subject was first asked to complete 10 full cycles
of one of two different training exercise tasks, either a vertical
double figure 8 pattern (Fig. 4, part A) [11] or a vertical half
figure 8 pattern (Fig. 4, part B). After the neural network
was trained, a related exercise task, consisting of either a full
horizontal figure 8 pattern (Fig. 4, part A) [11] or half of a
horizontal double figure 8 pattern (Fig. 4, part B), was given
to the neural network as input data (combinedwith the healthy
EMG data for that particular task), and a customized exercise
task was output from the neural network. The subject then
completed 10 full cycles of this customized output exercise
task (custom), as well as 10 full cycles of the unmodified
original task used as input to the neural network (standard)
(Fig. 4). A full exercise set consisted of the three linked
exercise tasks (training, custom, standard), and each subject
completed 4 full sets (two of each type of set), for a total of
12 exercise tasks per subject.

FIGURE 4. Exercise patterns by set for training and related exercise tasks.

Analysis of the data was completed in MATLAB R2012a
(Mathworks, Natick, MA, USA). For the custom and stan-
dard exercise tasks, the root-mean-square error (RMSE) was
calculated between the subject’s hand and the sphere for both
position and velocity. For the EMG signals, the peak value and
the area under the linear envelope were calculated. Finally,
the data from the subjects were merged, and paired t-tests
(two-tailed, α =0.05) were conducted between the standard
exercise data and the corresponding custom exercise data in
the set for the aforementioned variables.

2) WEARABLE ROBOT PROTOTYPE TESTING
For the system identification, the final approximated func-
tion (6) was tested experimentally by applying an external
impulse torque disturbance to the robot and then recording
the measurements from the encoder in the elbow joint; this
test measured the passive properties of the robot because the
valves were sealed after the initial impulse. The experiment
was conducted five separate times, and the approximations
for ζ , ωn, and Awere determined using the ‘‘nlinfit’’ function
in MATLAB.
To test the pressure control algorithm, continuous sine

wave pressure reference input signals were sent to the robot
prototype at 60 Hz. Sine wave frequencies of 0.25 Hz, 0.5 Hz,
0.75 Hz, and 1 Hz were tested (gain = 0.10 for all tests).
During the tests, measurements were recorded from the pres-
sure sensors and the encoder. After the trials, the RMSE and
Pearson’s correlation coefficient (R) were calculated between
the reference pressure and the measured pressure.
As a comparison to the passive system identification test-

ing, an external impulse torque disturbance was applied to the
robot when the control algorithmwas active, and themeasure-
ments from the encoder in the elbow joint were subsequently
recorded. This test measured the closed-loop properties of
the robot because control algorithm was active and the valves
were open after the initial impulse. The experiment was con-
ducted 15 separate times, and the approximations for ζ , ωn,
and A were again determined using the ‘‘nlinfit’’ function in
MATLAB.

3) COMBINED SYSTEM
Preliminary evaluation tests were conducted on the entire
combined system. In the visual environment, a subject moved
his right arm from full extension to full flexion at different
speeds. The angle of the subject’s right elbow was continu-
ously updated in real-time based on the 3D position of the
subject’s shoulder, elbow, and wrist joints. This angle was
then converted into a voltage signal (between 0 and 5 volts)
that corresponded to the relative angle of the elbow (between
a minimum of 35◦ when the hand touched the shoulder, to
a maximum of 175◦ when the elbow was fully extended).
Any angle measured beyond these limits was considered
either 0 or 5 volts, depending on which limit was exceeded.
A National Instruments USB-6218 (BNC) data acquisition
device (National Instruments Corporation, Austin, TX, USA)
was connected to the rehabilitation system, and the elbow
angle voltage was sent as an output analog signal from this
device. This signal was then connected to the analog input
of the Arduino Uno to provide a real-time position refer-
ence signal for the robot prototype based on the subject’s
elbow angle. This position signal was then converted into
two corresponding pressure reference input signals for the
PAMs, where 0 volts corresponded to the minimum (−45◦)
and 5 volts corresponded to the maximum (+45◦) allowable
angle of the robot from the neutral position (0◦). In this way,
the subject could actuate the robot by changing the angle of
his elbow.
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Five 30-second duration tests were conducted. During the
tests, the real-time angle of the subject’s elbow (measured
by the KinectTM) and the real-time angle of the robotic
elbow joint (measured by the encoder) were simultaneously
recorded. After the tests, the angle data were resampled and
independently normalized on a scale of 0 to 1. Finally, the
RMSE and Pearson’s correlation coefficient (R) were calcu-
lated between the normalized angle of the subject’s elbow and
the normalized angle of the robotic elbow joint.

III. RESULTS
A. SUBJECT DATA COLLECTION AND VISUAL
ENVIRONMENT
1) ACCURACY OF KINECT SENSOR
The results from the validation testing between the KinectTM

data and the Vicon data are presented for all trials of
the 10 subjects for the right arm joints (wrist, elbow, and
shoulder) by exercise task in Table 1. For the ROM task,
the largest RMSE was observed for the shoulder joint. For
the visual follow task, the largest RMSE was observed for the
elbow joint, then the wrist joint, and last the shoulder joint.
Furthermore, the RMSE for the elbow and shoulder joints was
greater during the visual follow task when compared to the
ROM task, while the RMSE for the shoulder joint was greater
during the ROM task.

TABLE 1. Vicon-Kinect comparisons by joint and task.

2) COMPARISON OF THE CUSTOMIZED EXERCISE TASK
A comparison of the standard and custom exercise tasks by
exercise set is presented in Table 2. There were no significant
differences in the EMG variables for either exercise set. The
subjects had greater RMSE for the position and the velocity
variables during the custom tasks (as compared to the stan-
dard tasks) for both sets.

B. WEARABLE ROBOT PROTOTYPE TESTING
The results from the external impulse response tests of the
robot prototype are presented in Table 3 for ζ , ωn, and A,
derived from the final approximated function (6). The joint
angle measured by the encoder was then compared to the pre-
dicted joint angle, which was calculated by using function (6)
and the experimentally-determined function parameters.

The average values for the five passive properties tests
were ζ = 0.064 and ωn = 15.01 rad/sec. Compared to the

TABLE 2. Kinematic and EMG variables by set.

TABLE 3. Impulse response.

predicted joint angle, the average RMSE was 0.23◦ with a
high correlation (R= 0.99). The average values for the fifteen
active properties tests were ζ = 0.13 and ωn = 14.84 rad/sec.
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Compared to the predicted joint angle, the average RMSEwas
0.90◦ with a high correlation (R = 0.97).
The results from the pressure control algorithm tests are

presented in Table 4, Figs. 5 and 6.
The continuous joint angles during the pressure control

algorithm tests are shown in Fig. 6.
For the 0.25 Hz and 0.5 Hz continuous sine wave pressure

reference input signals, the measured pressure accurately

TABLE 4. Ref-Meas comparisons by frequency and PAM.

FIGURE 5. Reference vs. measured pressure in the PAMs by frequency for
sine wave input signals.

FIGURE 6. Robot prototype joint angle by reference signal frequency.

FIGURE 7. Human and robot elbow angles for one test of combination
system.

followed the reference pressure for both PAMs (R = 0.99,
average RMSE = 0.093 Bar). However, for the 0.75 Hz and
1 Hz input signals, the measured pressure did not follow the
reference pressure during pressurization when the reference
pressure was greater than 2.5 Bars, indicating saturation of
the PAMs. The range for the joint angles was 38.8◦ at 0.25 Hz,
39.0◦ at 0.5 Hz, 51.9◦ at 0.75 Hz, and 53.6◦ at 1 Hz.

C. COMBINED SYSTEM
The wearable robot prototype was able to accurately mimic
the angle of the subject’s elbow in real-time. The RMSE
between the normalized position of the subject’s elbow and
the normalized position of the robot elbow ranged from 0.073
to 0.103 (average 0.088), and the correlation ranged from 0.94
to 0.97 (average 0.96, p<0.001). The results from one full
test are presented in Fig. 7, and demonstrate the correlation
between the two angle positions.

IV. DISCUSSION
The overall objective of this researchwas to create an adaptive
home-use robotic rehabilitation system for the upper body.
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This paper presented results from comparison testing between
different exercise tasks and from preliminary testing of a
pneumatically actuated prototype for the wearable robot, all
of which demonstrate that this robotic rehabilitation system
achieved the stated objective.

A. SUBJECT DATA COLLECTION AND VISUAL
ENVIRONMENT
1) ACCURACY OF KINECT SENSOR
The first specific goal for this research was to collect data
from a subject in real-time using simple and portable sensors.
During the subject testing, the KinectTM sensor measured
the 3D position and 3D velocity of the subject’s hand at
30Hz. Experimental testing was conducted to determine the
accuracy of the joint center measurements from the KinectTM

as compared to the Vicon gold-standard measurements dur-
ing two upper-body exercise tasks (Table 1). The results
presented in Table 1 show that the largest RMSE for any
joint during either task was 35.8 mm, while the smallest
was 25.5 mm. These results are similar to a previous study
comparing the KinectTMmeasurements to Vicon measure-
ments for upper body exercise tasks. Clark et al. showed that
between the two systems, there was approximately 42.9 mm
difference during a lateral reaching task and 13.1 mm dif-
ference during a forward reaching task for hand measure-
ments [13].

These results suggest that the KinectTM measurements are
sufficiently accurate for clinical significance, and therefore
the robotic rehabilitation system is sufficiently accurate for
measurements of rehabilitation exercises. Since traditional
physiotherapy regimens for the upper body are managed
by physiotherapists, easily identified visual landmarks are
used to quantify the success of the exercises. One study,
focused on rehabilitation after a thrower’s elbow injury, used
visual quantification landmarks such as ‘‘extend elbow to
full extension’’, ‘‘raise arm to shoulder level’’ and ‘‘stand
with shoulder abducted 90◦ ’’ to describe the exercises [14].
The current standard is to evaluate the exercises based on
visual observation (which can result in substantial errors
when compared to a quantitative system like Vicon). As such,
RMSE of 35mm to 40mm in joint centermeasurements can be
considered insignificant for clinical purposes because visual
observation error in a clinical setting has been shown to
be approximately 10% and this RMSE is less than 10% of
the movement range [15]. Therefore, the joint center mea-
surements from the KinectTM sensor are accurate enough to
quantify rehabilitation exercises of the upper body, and are an
improvement to the current standard of visual observation by
a physiotherapist.

2) COMPARISON OF THE CUSTOMIZED EXERCISE TASK
The second specific goal of the system was to create a cus-
tomized exercise task for each subject. A neural network was
created using the subject’s training exercise data and was
then used to modify a standard exercise task into a custom

exercise task. For both sets of exercises, the subjects had
greater RMSE for the position and the velocity variables dur-
ing the custom tasks; in other words, during the custom task,
their kinematic performance was worse in terms of accuracy
to the instructed task.
These results show that the subjects were less able to

replicate the custom task, suggesting that the custom task
was more difficult to complete. This may be a result of the
unconstrained nature of the neural network used to create
the custom task. No output constraints were placed on the
neural network, and the researchers did not manually alter
the output. As a result, the path of the custom task was
somewhat squiggly and loopy. In contrast, the standard task
was always a simple and consistent path. Consequently, the
subjects were continually reacting to the unpredictable tra-
jectory of the moving sphere during the custom task but were
able to anticipate the trajectory of the standard task, thereby
making the standard task easier to complete.
Adding constraints to the neural network could reduce

the variability of the custom exercise. Previous successful
adaptive rehabilitation systems [7], [16] used trained phys-
iotherapists to adapt the rehabilitation tasks to the subjects
based on the quantitative data. Therefore, the therapist acted
as a constraint on the output of the systems, and could modify
the output exercise task to achieve the desired goal. Future
iterations of the system will include constraints on the neural
network and/or a trained physiotherapist who can modify
the output task in order to ensure that the custom task is an
anticipatory task, not a reactionary task.
Both the KinectTM sensor and the EMG system are easily

transportable and simple to use after minimal training. Thus,
it is feasible to use the entire rehabilitation system in a home
setting, as the only additional requirements are a computer
and a display device like a television.

B. WEARABLE ROBOT PROTOTYPE
The third specific goal for the system was to build a
simple and non-rigid wearable robot that will provide
subject-specific resistance training. The results for the wear-
able robot prototype demonstrate the feasibility of using
PAMs for actuation. Table 3 shows that the exoskeleton can be
modeled as a second order linear system described by equa-
tion (6). The measured damping coefficient ζ = 0.064 was
low, suggesting that it might be difficult to control the robot.
However, it is likely that a human elbow will have a higher
damping coefficient than the test platform and therefore will
be more controllable. Furthermore, the measured damping
coefficient was higher during the closed-loop comparison
testing of the robot (ζ = 0.13), showing that the simple pres-
sure control algorithm increased the damping of the robot.
Overall, these results indicate that a robust controller can be
built that will control the robot.
The first controller developed for the robot was based on

pressure control of the PAMs. The results from the pressure
control algorithm tests indicate that there was saturation of
the PAMs at 0.75 Hz and 1 Hz during pressurization; the
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valves did not pressurize the PAMs fast enough to follow the
reference signal. This saturation most likely occurred because
the reference pressure input signals were both high amplitude
and high frequency, and as such required a high change rate
(7 Bar/second) of the pressure inside the PAMs (correspond-
ing to an angle change of 100◦/second). As the pressure rose
inside the valves, the pressure differential between the valves
and the pressure source decreased, thereby decreasing the
flow rate to the valves. Eventually, the decreased flow rate
was insufficient to achieve the high change rate required by
the reference pressure input signals, and saturation occurred.
This trend was not observed during depressurization because
it would only occur near 0 Bar, and the pressure reference
input signals did not reach this level.

While the motion bandwidths of normal human arm move-
ments are centered at approximately 2 Hz [17], most of
these movements are relatively low amplitude and would not
require high pressure change rates of the PAMs. Nevertheless,
future versions of the wearable robot will use a higher pres-
sure source to increase the pressure differential (and therefore
the flow rate) of the PAMs so that the robot can follow
reference pressure input signals of at least 5 Hz. Additionally,
force sensors will be added to the robot so that advanced
control algorithms can be implemented, such as impedance
or admittance control [9], in order to more accurately control
the pneumatically actuated robot.

The control performance of the wearable robot did not
account for additional loading from the subject. In a wearable
robot, the subject would also be exerting force on the robot
(both assistive and resistive force). This force would need to
be measured and compensated by the controller in order to
accurately control the position of the robot. Future prototypes
of the robot arm should include sensors to measure the force
exerted on the robot by the subject.

C. COMBINED SYSTEM
The results from the tests of the combined system indicate
that the pressure loop can successfully follow low amplitude
pressure reference input signals at frequencies greater than
1 Hz. During these tests, saturation was not observed when
the subject actuated the robot with a low amplitude reference
input signal greater than 1 Hz. Varying the rate of change of
the elbow angle also did not affect the accuracy of the robot,
as it was able to follow the subject’s slow and fast movements.
However, due to a slightly noisy input signal (caused by small
inaccuracies in the measured elbow angle from the KinectTM)
and insufficient damping in the control algorithm, the robot
sometimes oscillated about the desired angle.

Furthermore, this test demonstrates the feasibility of the
entire robotic rehabilitation system because the subject was
able to actuate the wearable robot using only the movement
of his elbow. Future iterations of the entire system will
implement real-time smoothing of the elbow angle reference
signal in order to compensate for the small inaccuracies in
the KinectTM measurements, and the damping terms in the
control algorithm will be increased.

V. CONCLUSION
This study described a promising home-use robotic rehabil-
itation system comprised of low-cost components. Further
research is necessary to create a commercial version of this
system, specifically on the prototype of the wearable robot.
However, the data collection component of the system could
be used in the near future for large scale research studies.
The immediate next steps are to create a GUI for the system
to increase usability and to optimize the model generation
code for speed and accuracy. Afterwards, this part of the
rehabilitation system could be used by a variety of end-users
for large scale research studies on rehabilitation exercises.
Given the low cost and easy portability of the Microsoft
KinectTM sensor, these studies should include home-based
exercise components. Concurrently, the next prototype of the
wearable robot should be developed with the goal of having
a fully functioning wearable prototype within two years.
A limitation of this study is that the current system does not

provide force feedback to the subjects. The wearable robot
was designed to provide force feedback during the exercise
tasks, but the current prototype was not tested on human
subjects. Future iterations of the robot prototype should be
designed for wearability and human safety so that it can be
worn by the subjects in order to provide force feedback. The
addition of force feedback to the system should significantly
enhance the results as the subject will have additional biofeed-
back information to help them complete the rehabilitation
exercises.
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