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Diverse interneuron subtypes shape sensory processing in mature cortical circuits.
During development, sensory deprivation evokes powerful synaptic plasticity that alters
circuitry, but how different inhibitory subtypes modulate circuit dynamics in response
to this plasticity remains unclear. We investigate how deprivation-induced synaptic
changes affect excitatory and inhibitory firing rates in a microcircuit model of the
sensory cortex with multiple interneuron subtypes. We find that with a single interneu-
ron subtype (parvalbumin-expressing [PV]), excitatory and inhibitory firing rates can
only be comodulated—increased or decreased together. To explain the experimentally
observed independent modulation, whereby one firing rate increases and the other
decreases, requires strong feedback from a second interneuron subtype (somatostatin-
expressing [SST]). Our model applies to the visual and somatosensory cortex, suggesting
a general mechanism across sensory cortices. Therefore, we provide a mechanistic
explanation for the differential role of interneuron subtypes in regulating firing rates,
contributing to the already diverse roles they serve in the cortex.
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Diverse interneurons serve multiple cell-type-specific functions in the cortex (1, 2). The
connectivity among excitatory pyramidal neurons and different subtypes of interneurons
plays a key role in establishing these functions. In mature cortical circuits, interneurons
are involved in disinhibition during locomotion and learning (3, 4), response reversal
during top-down modulation (3, 5–7), surround suppression (8, 9), and affect excitatory
tuning (10, 11). Inhibitory synapses are plastic (12, 13) and drive plasticity in excitatory
circuits (14); however, we still do not understand how the plasticity of connections among
the different interneuron subtypes and excitatory neurons shapes circuit dynamics and
computations.

Cortical circuits are particularly sensitive to perturbations in development and young
adulthood during so-called critical periods, when manipulating sensory experience can
induce long-lasting changes in circuit connectivity (15–17). Depriving rodents of vision
in one eye (known as monocular deprivation, or MD) causes a biphasic response in the
monocular region of the primary visual cortex (V1m), driven exclusively by the contralat-
eral eye, that first reduces and then restores excitability (18–20). The plasticity of inhibitory
synapses contributes to these processes (21–25). However, it primarily pertains to fast-
spiking interneurons, which most likely correspond to parvalbumin-expressing (PV)
interneurons, the most abundant and best-studied interneuron subtype in the cortex (2).

Previous work has found that the plasticity of recurrent connectivity, and especially
the potentiation of intracortical inhibition, dominates over the depression of feedforward
connectivity to explain the initial decrease of excitatory and inhibitory activity after
MD (24). However, recent experiments show that the network behavior might be more
complex with fast-spiking, putative PV inhibitory neurons decreasing their firing rates
1 d after MD (MD1), while excitatory neurons are delayed by an additional day (19, 26).
What mechanism lies behind this independent modulation of excitatory and inhibitory
firing rates remains unclear.

We used a spiking recurrent network with balanced excitation and inhibition to study
this process in a microcircuit model of the sensory cortex. Theoretical work has shown that
the dynamics of these networks depend on the operating regime, which is determined by
the strength of recurrent coupling (27–31). Strong excitatory recurrent coupling needs
to be stabilized by sufficiently strong inhibition, giving rise to “inhibition-stabilized
networks” (ISNs) (8, 32). A signature of inhibition stabilization is the “paradoxical effect,”
which refers to the decrease of inhibitory firing rate following direct excitatory drive to
inhibitory interneurons (32). Recent experiments have confirmed the paradoxical effect
in cortical circuits, suggesting that they operate in the ISN regime (33, 34). This raises the
important question of whether ISNs can explain the independent modulation of excitatory
and inhibitory firing rates after brief MD.
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We found that ISNs cannot capture the independent modula-
tion of excitatory and inhibitory firing rates after brief MD. Even
in the presence of heterogeneous connectivity, recurrently driven
inhibitory neurons cannot independently modulate their firing
rates relative to excitatory neurons. Considering the diversity of
interneuron subtypes in the sensory cortex and their role in modu-
lating cortical dynamics, we also modeled somatostatin-expressing
(SST) interneurons, the second-most-abundant subtype of in-
terneurons in the cortex (2). Our results demonstrate that the
addition of SST interneurons inverts the firing-rate response of
PV interneurons relative to excitatory neurons in response to MD-
induced plasticity by reversing the paradoxical effect. In contrast
to previous work that focused on the paradoxical effect in response
to externally injected currents (6, 35, 36), we find that recurrent
interactions are the main drivers, specifically, the strength of
the feedback from SST interneurons to PV interneurons and
excitatory neurons. Importantly, we implement synaptic changes
observed experimentally both along the feedforward [from the
thalamus (24, 37)] and recurrent [within the cortex (21, 23, 38)]
pathways that significantly expand the possibilities for modulating
cortical firing rates beyond external drive to the inhibitory popu-
lation. Hence, our results explain the independent modulation of
excitatory and inhibitory firing rates, consistent with their sequen-
tial suppression during early MD with inhibitory preceding exci-
tatory firing rates (19, 20). We also applied our model to whisker
deprivation (WD) in the somatosensory cortex, which affects
interneuron intrinsic excitability rather than synaptic strength
onto interneurons (39). Our model predicts similar modulations
of the firing rates when changing the intrinsic excitability, suggest-
ing that similar principles might be at work in different sensory
cortices. Therefore, our work provides a mechanistic explanation
for the experimentally observed temporally offset modulation of
excitatory and inhibitory activity after sensory deprivation. It also
establishes a more general framework to study how the interaction
of three factors—cortical operating regime, interneuron diversity,
and plasticity in feedforward and recurrent pathways—shapes
circuit dynamics and computations.

Results

Changes in Network Firing Rates from MD-Induced Plasticity in
an ISN. To investigate excitatory and inhibitory activity changes
in response to synaptic plasticity after brief MD, we built a
network model of the primary visual cortex (V1) consisting of
excitatory and inhibitory spiking neurons (Fig. 1A and Materials

and Methods). Following previous theoretical work, we first only
modeled a single class of interneurons, which we equated with
parvalbumin-positive (PV), the largest class of interneurons in the
mammalian neocortex (2, 40). The networks have strong recurrent
coupling, denoted by the overall coupling scale J . The coupling
scale describes the operating state of the network (8, 33, 41) and
determines the networks’ dynamical and computational proper-
ties (27–31). This strong recurrent coupling needs to be stabilized
by sufficiently strong inhibition denoted by the parameter grc
(Fig. 1A) (8, 32). Such a network produces sparse, asynchronous,
and irregular spiking activity (27, 28).

We first modeled synaptic changes measured experimentally in
the cortical circuits during brief (1 to 2 d of ) MD, both along
the feedforward pathway from the lateral geniculate nucleus
(LGN) to the cortex and in the recurrent cortical circuit. In
particular, feedforward excitatory synaptic inputs from the LGN
to both excitatory and inhibitory neurons in the cortex depress
during MD (42, 43), while recurrent intracortical inhibition
potentiates (refs. 21–25; but see ref. 44). To investigate the relative
contribution of these two factors—decrease in feedforward
excitation vs. increase in recurrent inhibition—on the modulation
of firing rates, we introduced four model parameters to represent
the synaptic changes (Fig. 1A): 1) depression of feedforward
synapses onto excitatory neurons (δE < 1); 2) depression
of feedforward synapses onto PV interneurons (δP < 1);
3) potentiation of recurrent synapses from excitatory neurons
to PV interneurons (ζPE > 1); and 4) potentiation of recurrent
synapses from PV to excitatory neurons (ζEP > 1). These synaptic
changes have been measured experimentally in the visual cortex
after 2 d of MD (MD2), in contrast to other synaptic changes,
including those between excitatory neurons and between PV
interneurons (21), and are therefore the most likely to change
activity as measured during the first 2 d of MD (19). Specifically,
we asked if the independent modulation of excitatory and PV
rates can be captured by specific combinations of the four synaptic
changes.

We investigated the effect of these feedforward and recurrent
synaptic changes on excitatory and inhibitory activity separately
to quantify the extent of comodulation. For both feedforward
(δE, δP) and recurrent (ζEP, ζPE) synaptic changes, we generated a
plane of firing-rate changes in the excitatory and PV populations
relative to their respective baseline firing rates before plasticity
(Fig. 1 B and C ). We used synaptic change ranges (Materials
and Methods), which are consistent with experimental results (23,
24). We found that depression of feedforward synaptic strengths,

A

PV

E
Feedforward

1.0

0.5

0.5

1.0

1

0

12

PV

E
Recurrent

1.0

1.5

1.51.0

0

1

2
B C D

1

0

8

PV

E
Feedforward & Recurrent

1.0

1.5

1.51.0

Fi
rin

g 
ra

te
 

fo
ld

 c
ha

ng
e

Fi
rin

g 
ra

te
 

fo
ld

 c
ha

ng
e

Fi
rin

g 
ra

te
 

fo
ld

 c
ha

ng
e

0.5

1.0

1.0

1.5
LGN

E

PV

1.0

1.5

Fig. 1. Spiking network response to synaptic changes induced by brief MD. (A) Network schematic of synaptic connections among neurons with J denoting the
overall coupling scale, grc as the dominance of recurrent inhibition, and gfw as the dominance of feedforward inhibition. The parameters to model MD-induced
synaptic plasticity are: depression of feedforward drive to excitatory neurons (δE < 1) and to PV interneurons (δP < 1) and potentiation of recurrent excitation
to PV interneurons (ζPE > 1) and of recurrent inhibition from PV to excitatory neurons (ζEP > 1) (see Materials and Methods). (B) Network firing rate in the
(δE, δP) plane as fold change of baseline firing rate (top right corner, δE = δP = 1) for excitatory neurons (Upper) and PV interneurons (Lower). (C) Network
firing rate in the (ζEP, ζPE) plane as fold change of baseline firing rate (bottom left corner, ζEP = ζPE = 1). (D) Combined feedforward (through the E/I ratio of
feedforward synaptic changes, ρEI = δE/δP) and recurrent plasticity (through the potentiation of recurrent excitation to PV interneurons, ζPE). Network firing
rate in the (ζPE, ρEI) plane as fold change of baseline firing rate (bottom left corner, ζPE = ρEI = 1).

2 of 12 https://doi.org/10.1073/pnas.2116895119 pnas.org

https://doi.org/10.1073/pnas.2116895119


which reduces the feedforward drive to the network, can have
either facilitating or suppressive effects on the activity of excitatory
neurons and PV interneurons (Fig. 1B). A linear relationship be-
tween δE and δP separates the facilitation and suppression areas of
excitatory and PV firing rates. The slope of this line is determined
by the relatively stronger feedforward drive onto PV interneu-
rons compared to excitatory neurons (gfw; Fig. 1A and Materials
and Methods), determined experimentally (40, 45). To capture
the relationship between the relative excitatory and inhibitory
feedforward drive, we introduced the excitation/inhibition (E/I)
ratio of feedforward synaptic changes, ρEI = δE/δP. This ratio
has been measured to be bigger than unity after brief MD from
the thalamus to layer 4 (L4) (24) and also from L4 to layer
2/3 (L2/3), in the visual cortex (46). Therefore, we found that
synaptic changes exclusively in the feedforward pathway from the
thalamus to cortex, which increase the E/I ratio, increase both
excitatory and inhibitory firing rates (Fig. 1B). In contrast, purely
recurrent synaptic changes measured in L4 of V1 after 2 d of
MD (21, 24), which potentiate synaptic strengths from excitatory
neurons to PV interneurons (ζPE > 1) and from PV interneu-
rons to excitatory neurons (ζEP > 1), have a purely suppressive
effect on the excitatory and inhibitory firing rates (Fig. 1C ).
Combining feedforward and recurrent plasticity can either in-
crease or decrease excitatory and inhibitory firing rates, depending
on whether feedforward or recurrent synaptic changes dominate
(Fig. 1D).

Intriguingly, modeling feedforward and recurrent plasticity
separately reveals that firing-rate changes of excitatory and PV
neurons tightly follow each other in the entire parameter space
of feedforward and recurrent synaptic changes (Fig. 1 B–D).

This implies that if inhibitory firing rates decrease at MD1, so
should excitatory firing rates (when, in fact, experimentally, they
stay at baseline), and if excitatory firing rates decrease at MD2,
so should inhibitory firing rates (when, in fact, experimentally,
they recover back to baseline). Hence, this result is inconsistent
with the independent modulation of excitatory and PV firing rates
following brief MD observed in vivo (19), suggesting that other
factors might be at play.

The Network Response to MD-Induced Synaptic Changes
Depends on Coupling Scale. We next sought to identify a
plausible mechanism behind the lack of independent modulation
of firing-rate changes in the excitatory and PV populations. Of the
two parameters that determine recurrent synaptic strengths in the
model network, the overall coupling scale, J , is more important
than the relative scale of the inhibitory synaptic strength, grc,
in determining the network response to MD-induced plasticity
(Fig. 1A). The parameter J has been extensively studied as a
determinant of the operating regime of the network (27–31). A
network with a strong coupling scale J operates in a regime where
the excitatory dynamics are stabilized by recurrent inhibition
(ISN). In contrast, a network with weak J operates in a regime
where the excitatory dynamics are stable without recurrent
inhibition (non-ISN) (32). We found two very different behaviors
in the network at the opposite ends of the coupling scale J .
While at high coupling, excitatory and PV responses show a tight
alignment (Fig. 1 with J = 0.1 nS), for weak to intermediate
coupling, when the network is in the non-ISN regime, excitatory
and PV firing rates can be independently modulated for all
feedforward and recurrent synaptic changes (SI Appendix, Fig. S1
with J = 0.01 nS). Hence, the transition from independent to
tight modulation of excitatory and inhibitory firing rates matches
the transition from non-ISN to ISN with increasing coupling
scale J .

facilitation
suppression
same sign
opposite sign

E

PV

binarize

calculate 
overlap

A

E

PV

E

PV

10-3 10-2 10-1

Recurrent Feedforward & recurrentC D

(nS)

N
or

m
. a

re
a 1.0

0.5

0.0

E

PV

FeedforwardB

10-3 10-2 10-1

(nS)
10-3 10-2 10-1

(nS)

Paradoxical 
response of 

PV to

additional 
stimulation

non-ISN ISN20%

0%

-20%

-40%

N
or

m
al

iz
ed

 ra
te

 c
ha

ng
e 

10-3 10-2 10-1
(nS)

E

Fig. 2. Firing-rate changes in response to MD depend on the network
coupling scale J. (A) Schematic to determine the overlap of facilitating and
suppressive response areas of excitatory and PV neurons. The thresholded
plane of responses (Fig. 1) for both neuron types is used to compute the total
facilitating area and quantify how closely excitatory and PV firing rates follow
each other through the overlap of facilitation and suppression. (B) Network
with feedforward depression only (Fig. 1B). Fractional area of facilitation for
excitatory neurons (FE; gray), PV interneurons (FP; blue), and the overlap
between excitatory and PV response areas (OEP; orange) as a function of the
overall coupling scale J. The green diamond shows the value of J used in Fig. 1
(ISN), and the black triangle shows the value of J used in SI Appendix, Fig. S1
(non-ISN). (C) Same as B for recurrent potentiation only (Fig. 1C). (D) Same as
B for combined feedforward and recurrent plasticity (Fig. 1D). (E) Normalized
rate change of PV interneurons in response to additional input to them as a
function of coupling scale J. Additional input is given as increase in δP (from 1
to 1.1). Norm., normalized.

To quantify how closely the firing rates of excitatory and
inhibitory neurons follow each other in the entire parameter space
of feedforward and recurrent synaptic changes, we computed the
fractional response area of facilitation for excitatory neurons (FE)
and for PV interneurons (FP) and the overlap between excitatory
and PV response areas as a function of J (OEP; Fig. 2A). We
first computed these measures for feedforward (δE, δP) synaptic
changes (Fig. 2B). We found that the facilitation area for PV
interneurons, and consequently the overlap between excitatory
and PV response areas, abruptly changes at a critical value of
coupling (J ≈ 0.017 nS). In particular, PV facilitation emerges
at J ≈ 0.017 nS (FP; Fig. 2B), the same value of J where the
overlap switches from decreasing to increasing (OEP; Fig. 2B).
These measures do not depend on the range of synaptic changes
(SI Appendix, Fig. S2A).

Using a reduced linear population-rate model (SI Appendix,
Figs. S3 and S4 and Materials and Methods) (32, 47), we found
that a key network property related to the transition from non-
ISN to ISN is the emergence of facilitation in PV interneurons at
the critical coupling J following feedforward plasticity (Materials
and Methods and Fig. 2B; note that in the linear model, the
parameter representing the coupling scale is w ). This transition
is related to the emergence of the paradoxical effect at the crit-
ical J (w ), where in response to external excitatory drive, the
inhibitory population paradoxically decreases its rate together
with the excitatory population (Fig. 2E and Eq. 28) (32). Beyond
applying an external excitatory drive to the inhibitory population,
we applied synaptic changes, which affect the external drive to
both the excitatory and inhibitory populations simultaneously,
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allowing us to extend the paradoxical effect to multiple dimen-
sions (Fig. 2B).

Existing work on the paradoxical effect does not tell us how
changes in recurrent drive might affect firing rates (6, 35, 36).
Consequently, we computed the fractional response area of fa-
cilitation for excitatory neurons and for PV interneurons and
the overlap between excitatory and PV response areas also in the
parameter space for recurrent synaptic changes (ζEP, ζPE) (Fig. 2C
and SI Appendix, Fig. S2B). Here, we found that at the same
critical value of coupling (J ≈ 0.017 nS), the facilitation area
for PV interneurons decreases to zero (FP; Fig. 2C ), suggesting
a dominance of recurrent inhibition in ISNs triggered by the
potentiation of recurrent inhibition after MD (21, 24). Combin-
ing feedforward and recurrent plasticity demonstrated a similar
transition of the PV facilitation area at the critical value of J
(Fig. 2D and SI Appendix, Fig. S2C ).

These results argue that only the non-ISN supports the ex-
perimentally observed independent modulation of excitatory and
inhibitory firing rates in response to synaptic changes after brief
MD (SI Appendix, Fig. S1). However, cortical circuits seem to
operate in the ISN regime (8, 33, 41), which cannot explain the
independent modulation of excitatory and inhibitory firing rates
due to concurrent feedforward and recurrent synaptic changes
after brief MD. Moreover, in the non-ISN, the magnitude of
this modulation to this plasticity is much weaker, suggesting that
experimentally measurable changes in firing rates might require
synaptic changes larger than what seems biologically plausible.

To quantify the difference of susceptibility of the firing rates
to synaptic changes in the two regimes (ISN in Fig. 1 and
non-ISN in SI Appendix, Fig. S1), we computed the gradient of
excitatory and PV responses in the different parameter spaces
(Materials and Methods and SI Appendix, Fig. S5 B–D). For feed-
forward and combined plasticity, the small gradient lengths in the
non-ISN suggest weak susceptibility (SI Appendix, Fig. S5 B–D,
black triangle). The lengths steeply increase with J , leading to
strong susceptibility in the ISN (SI Appendix, Fig. S5 B–D, green
diamond). The small angle between the gradients for large J
confirmed the coordinated firing-rate changes of excitatory and
PV interneurons in the ISN regime in contrast to the non-ISN
(SI Appendix, Fig. S5 E–G).

A Network Model with Two Subtypes of Interneurons. Given
the role of interneuron diversity in a range of cortical func-
tions, including disinhibition, response reversal, and surround
suppression, we next added the second-largest class of cortical
interneurons, SST interneurons, to the ISN (2, 48). We modeled
SST interneurons, which project to excitatory neurons and PV
interneurons via the coupling parameter K , but which do not
receive inhibition from PV interneurons or inhibit each other
(Fig. 3A), following previous work (40, 49). SST interneurons
receive almost no thalamic feedforward input (45), but receive
feedback from higher-order cortical centers and integrate inputs
over large areas in the visual cortex (2, 9, 50, 51). We modeled
these inputs from outside the local patch of cortex represented by
the network as a background that provides input to both SST and
excitatory neurons (Fig. 3A). Upon introducing SST interneu-
rons, the ISN remained in an asynchronous and irregular firing
state, independent of the SST feedback K (Fig. 3B). We found
that the effect of K on the mean rate is suppressive (Fig. 3C ),
although SST feedback is symmetric, providing direct inhibition
to excitatory neurons and indirect disinhibition to excitatory
neurons via PV interneurons. We next studied whether the ISN
with two subtypes of inhibitory interneurons can explain the
independent modulation of excitatory and inhibitory firing rates.
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SST Interneuron Feedback Can Invert PV Interneuron Res-
ponses. Implementing feedforward synaptic changes in this
ISN with two inhibitory subtypes, we found that the excitatory
response is qualitatively similar as in the network without SST
feedback (Fig. 4A vs. Fig. 1B). Strikingly, the presence of strong
SST feedback K inverts the response of PV interneurons in the
entire (δE, δP) plane of feedforward synaptic changes (Fig. 4A
vs. Fig. 1B). To explain the mechanism behind the inversion
of PV responses in the ISN with two inhibitory subtypes, we
considered a generalization of the paradoxical effect studied
in previous work (35). In this generalized paradoxical effect,
when multiple interneurons are present, it is the total inhibitory
current received by excitatory neurons, rather than the inhibitory
firing rate, that responds paradoxically to external drive to an
inhibitory population (35). This enables the firing rates of the
different inhibitory populations to respond either paradoxically
or nonparadoxically. Therefore, indeed, in the presence of strong
SST feedback, the PV population can respond nonparadoxically
in response to changes in feedforward drive. This generalized
notion also holds when multiple subtypes of excitatory neurons
are present, in addition to multiple subtypes of inhibitory
interneurons (36).

Since strong SST feedback was needed to invert PV firing rates,
we studied their inversion in the linear population model as a
function of the strength of output synapses of the SST population,
described by the parameter κ (Eq. 11). Increasing the strength of
this SST feedback reverses the paradoxical effect in PV interneu-
rons (Eq. 30 and Fig. 5A). For any value of κ, the PV population
activity initially transiently increases, leading to a decrease of
excitatory population activity (Fig. 5B). For small κ, the decrease
of excitatory activity suppresses the steady-state PV activity below
baseline, leading to the classical paradoxical effect (Fig. 5 B, Left).
As κ increases, the steady-state PV activity is not only dictated by
the dwindling of recurrent excitation, as in the case of the paradox-
ical effect. Rather, PV activity becomes dominated by the release
from inhibition mediated through SST. Hence, the paradoxical
decrease of PV activity is only transient, followed by a recovery of
PV activity back to baseline at an intermediate value of κ (Fig. 5 B,
Center). For large κ, the steady-state PV activity increases above
baseline (Fig. 5 B, Right). Assuming an intrinsic timescale in our
linear rate model of 20 ms generates PV transients that last 10 to
20 ms, and a steady state is reached after ∼50 ms. This has been
observed following optogenetic activation of PV interneurons to
induce the paradoxical effect in adult animals (33).
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Fig. 4. SST feedback selectively inverts PV responses. (A) Network firing rate in the (δE, δP) plane as fold change of baseline firing rate (baseline in top right
corner) for excitatory (Top), PV (Middle), and SST (Bottom) neurons in the network with strong SST feedback (K = 1.6 nS). (B) Network firing rate in the (ζEP, ζPE)
plane as fold change of baseline firing rate (baseline in bottom left corner). (C) Network firing rate in the (ζPE, ρEI) plane as fold change of baseline firing rate
(baseline in bottom left corner). (D) Network with feedforward depression only. Fractional area of facilitation for excitatory neurons (FE; gray), PV interneurons
(FP; blue), and the overlap between excitatory and PV response areas (OEP; orange). (E) Same as D for recurrent potentiation only. (F) Same as D for combined
feedforward and recurrent plasticity. The green diamond in D–F shows the value of K used in A–C. Norm., normalized.

Similar to the network with a single interneuron type, we
simultaneously varied feedforward synaptic changes to the exci-
tatory and PV populations (Fig. 4 A and D). To quantify the
joint modulation of excitatory and PV firing rates, we computed
the fractional response area of facilitation for excitatory neurons
(FE), for PV interneurons (FP), and for the overlap between
excitatory and PV response areas (OEP), now as a function of
K (Fig. 4D). The weak dependence of these measures on the
range of studied plasticity did not affect the conclusions about the
joint modulation of excitatory and PV firing rates to MD-induced
plasticity (SI Appendix, Fig. S6A). As predicted by the linear rate
model, at a critical value of the SST feedback (K ≈ 0.6 nS),
we found that the facilitation area of PV responses achieves a
minimum (FP; Fig. 4D). Using the rate model, we proved that
the area of PV facilitation vanishes and reemerges at the value of
SST feedback that also inverts the PV responses (Materials and
Methods and SI Appendix, Fig. S7).

Recurrent plasticity continues to have a strong suppressive
effect on the excitatory firing rates, accompanied by a similar
response in the SST interneurons (Fig. 4B vs. Fig. 1C ). As the
SST feedback K increases, PV interneurons invert their response,
exhibiting pure facilitation for large values of K (Fig. 4B vs.
Fig. 1C ). Hence, the overlap between the excitatory and PV
responses decays to zero (OEP; Fig. 4E and SI Appendix, Fig. S6B).
Combining feedforward and recurrent synaptic changes further
corroborates the inversion of PV responses with increasing SST
feedback K (Fig. 4 C and F and SI Appendix, Fig. S6C ). The in-
version for recurrent and combined synaptic changes is smoother

in the spiking network than in the linear model, possibly due to
changes of the effective gain through changes of recurrent synapses
(Fig. 4 E and F vs. SI Appendix, Fig. S7 E and F and Materials
and Methods).

In contrast to the non-ISN, the lengths of the gradients
for excitatory and PV populations as a function of K revealed
that the ISN retains high susceptibility of the firing rates to all
types of synaptic change throughout values of K (SI Appendix,
Fig. S8 A–C ). The angle between the gradients further under-
scores the inversion of PV responses in the presence of strong SST
feedback (SI Appendix, Fig. S8 D–F ).

We conclude that, in ISNs typical of the sensory cortex, suf-
ficiently strong feedback from SST interneurons can invert the
responses of PV interneurons. While some of this inversion can
be explained by the generalized paradoxical effect, our analysis
achieves this for simultaneous feedforward and recurrent synaptic
changes to both the excitatory and PV populations. We propose
that the inversion of PV responses in an ISN with strong SST
feedback provides a natural substrate for the independent modu-
lation of excitatory and inhibitory firing rates as observed in vivo
during MD (19), while ensuring high firing-rate susceptibility to
synaptic changes.

PV Responses in Networks with Heterogeneous Connectivity.
Besides the diversity of interneuron subtypes in cortical circuits,
neurons within a subtype are also highly variable (52). We investi-
gated the response to MD-induced plasticity with heterogeneous
connectivity to excitatory and inhibitory neurons (53, 54), which
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is observed in cortical circuits (55, 56) (SI Appendix, SI Text). We
found that heterogeneity does not impact the average responses of
the entire neuronal populations in a non-ISN, an ISN with a single
subtype of interneurons (PV) or an ISN with two (PV and SST)
subtypes of interneurons (SI Appendix, Figs. S9–S11). Next, we
dissected the responses of PV by the level of recurrent inputs they
receive. We found that in heterogeneous networks with a single
subtype of interneurons, PV interneurons dominated by feed-
forward input can be modulated independently from excitatory
neurons, but PV interneurons densely innervated by recurrent
input closely follow excitatory neurons (SI Appendix, Fig. S12).
In contrast, in heterogeneous networks with SST feedback,
also highly recurrent PV interneurons can be modulated
independently from excitatory neurons (SI Appendix, Fig. S13).
Recurrently dominated PV interneurons are prevalent in the
cortex and play important functional roles (57). Our results
imply that PV interneurons with such dense recurrent innervation
cannot be independently modulated in a model network with
heterogeneous connectivity, unless strong feedback from SST is
included. Hence, feedback from SST interneurons appears to
be an important factor to explain the MD-induced firing-rate
changes also for recurrently dominated PV interneurons.

Sensory Perturbation Induces Similar Activity Changes in
Somatosensory Cortex via Different Plasticity Mechanisms.
Similar to MD, WD is a sensory deprivation, where plucking a
subset of the whiskers on one cheek of the animal affects the
barrel cortex of the rodent primary somatosensory cortex (S1).
However, it is not clear that these two paradigms should yield
similar modifications of the circuitry in the respective sensory
cortices. Indeed, experimentally measured plasticity in S1 induced
by brief WD seems to be different from the plasticity in V1 after
brief MD (39, 58, 59). Rather than the depression of feedforward
synapses to PV interneurons in V1 found after brief MD (24), a
reduction of feedforward inhibition emerges from a decrease in
the intrinsic excitability of PV interneurons through an increase of
their firing threshold (39). Our modeling approach allowed us to
investigate whether these different types of plasticity in V1 and S1
during sensory deprivation change the modulation of excitatory
and inhibitory firing rates in a corresponding microcircuit model
of S1 (Fig. 6A).

As before, we first considered a network with a single interneu-
ron type by setting the SST feedback, K , to zero. We modeled
the decrease of the intrinsic excitability of PV interneurons by
increasing their firing threshold by ξθ (Fig. 6 A, Inset). In an
ISN model of S1 with only PV interneurons, increasing the firing
threshold of PV interneurons facilitates their firing rates, just like
the depression of the feedforward synaptic strength from the LGN
onto excitatory and inhibitory neurons in the model V1 network.
This decrease of intrinsic excitability of PV interneurons in S1 was
proposed as a homeostatic mechanism that counteracts the lack
of stimulation after deprivation and enhances firing rates (see also
refs. 58 and 59).

We further implemented potentiation of recurrent inhibition as
in V1 by ζEP. Experimentally, brief (1 d of ) WD in S1 has shown
a tendency, but no statistical significance, for the potentiation of
recurrent inhibitory synapses from PV to excitatory neurons (39).
In contrast, prolonged (6 to 12 d of ) WD has shown a pronounced
increase in this connection strength (58). Hence, the potentiation
of recurrent inhibition by ζEP seems to counteract the facilitation
of activity by ξθ, giving rise to the same antagonistic regulation we
found for early MD-induced plasticity in V1 (Fig. 6B; compare
to Fig. 1D). Similar to MD-induced plasticity, excitatory and PV
activity changes in this network with WD-induced plasticity were
tightly coordinated in the ISN. Importantly, after introducing
strong feedback from SST interneurons, the response of PV
interneurons again inverts relative to the excitatory responses due
to the reversal of the paradoxical effect (Fig. 6C ).

Therefore, our modeling demonstrates that the dissimilar cir-
cuit changes induced by sensory deprivation (WD or MD) in two
different sensory cortices, which decrease intrinsic excitability of
PV interneurons or depress feedforward drive to PV interneurons,
respectively, lead to similar regulation of overall activity as they
interact with potentiation of recurrent inhibition. This could
point to a shared principle of firing-rate regulation invoked by
sensory perturbation that is implemented by different means in
these two sensory cortices.

Discussion

We investigated how synaptic changes induced by sensory depriva-
tion affect the firing rates of excitatory and inhibitory neurons in a
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through ζEP, shift in feedforward E/I ratio through increasing firing threshold of PV interneurons (ξθ ). (A, Inset) The f–I curve of a single LIF neuron for baseline
firing threshold (dark blue) and with increased firing threshold (light blue). The excitability of PV interneurons is decreased via the parameter ξθ . (B) Network
firing rate as fold change of baseline firing rate (baseline in bottom left corner) in the (ζEP, ξθ ) plane in the network with only one type of interneurons (PV).
(C) Network firing rate as fold change of baseline firing rate in (ζEP, ξθ ) plane in the network with two subtypes of interneurons (PV and SST), with strong SST
feedback K = 1.6 nS.
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microcircuit model of the sensory cortex. Specifically, we modeled
two pathways: 1) the reduction of feedforward excitability man-
ifested as a depression of feedforward, thalamocortical synapses
onto excitatory and inhibitory neurons observed following MD in
visual cortex (or as a decrease of intrinsic excitability in inhibitory
neurons following WD in somatosensory cortex); and 2) the
potentiation of recurrent synapses between excitatory and in-
hibitory neurons. Crucially, we found that strong feedback from a
second interneuron subtype, SST, in addition to PV interneurons,
is needed to explain the independent modulation of excitatory
and inhibitory activity observed experimentally in V1 during the
critical period of plasticity.

Previous studies have investigated MD-induced plasticity in
V1, but with a focus on ocular dominance plasticity in binocular
cortex governed by winner-take-all competition, where the open
eye outcompetes the closed eye (46, 60–63). Since most brain
regions do not exhibit such strong competition, we focused on
plasticity in the V1m, where synaptic and activity changes during
MD have recently been measured (19, 20, 24). Some models have
begun to incorporate these experiments by implementing a careful
orchestration of biologically inspired synaptic and homeostatic
plasticity rules to explain the recovery of diverse aspects of network
dynamics after MD (26, 64, 65). As our approach is agnostic
about the plasticity rules underlying deprivation-induced synaptic
changes, it offers the advantage to turn individual synaptic changes
“on” or “off” in different network regimes. This gives us full
control to study the effect of the timing of individual plasticity
mechanisms in the network.

Although anatomical and functional experimental studies have
highlighted the role that diverse interneuron subtypes play for
multiple functions in the cortex (1, 2), theoretical network models
of the cortex have only recently started to incorporate these
diverse subtypes and model their influence on network dynamics
(6, 14, 34, 35, 66). In rodent cortex, three major interneuron
subtypes, PV, SST, and vasointestinal peptide-expressing (VIP)
interneurons, comprise 80 to 90% of all inhibitory interneurons
(2, 48). In our model, we included only the two largest interneu-
ron populations, PV and SST, in L4 of V1. This minimized the
computational complexity of the model by reducing the number
of free parameters. We do not expect that our results will change
if we also add VIP interneurons, given recent modeling work
showing that mutual inhibition between SST and VIP can switch
SST feedback on or off (67). Hence, VIP can be considered to
provide modulatory input to SST (66).

We found that the operating regime of the network, deter-
mined by the overall coupling scale, has a major impact on how
deprivation-induced plasticity shapes firing-rate changes. ISNs
with a single inhibitory subtype and strong coupling, commonly
used to describe the cortex (33), cannot capture the indepen-
dent modulation of excitatory and inhibitory firing rates after
brief MD, even when including heterogeneous connectivity. We
showed that this can be partially explained by the presence of the
paradoxical effect, but generalized it to changes in the drive to
both excitatory and inhibitory neurons and along both the feed-
forward and recurrent pathways. We proposed that feedback from
SST interneurons can achieve the independent modulation of
excitatory and inhibitory firing rates in response to MD-induced
synaptic changes by reversing the response of PV interneurons for
many combinations of synaptic changes. This is consistent with
previous theoretical results for a network with multiple subtypes
of interneurons, where a specific inhibitory population can behave
nonparadoxically in response to an external input, even if the
whole network operates as an ISN (6, 35). Rather than relying on
an external current, we found that strength of the feedback from

SST interneurons to PV interneurons and excitatory neurons is
the key driver behind the inverted PV responses. The reversed
responses persist for many combinations of synaptic changes,
including experimentally measured ones, suggesting that the in-
dependent modulation of excitatory and inhibitory firing rates is
not sensitive to the exact timing and strength of plastic changes.

Our model suggests that a nonparadoxical response of PV
interneurons upon stimulation is behind the independent mod-
ulation of excitatory and PV firing rates, yet recent experiments
find that PV interneurons in L2/3, upper L4, and deep layers
of V1 show a paradoxical response following optogenetic stim-
ulation (33). The type of response (paradoxical or not) could
depend on the anatomical region or the cortical layer (10, 34,
68–70). More intriguingly, however, it is possible that the non-
paradoxical response of PV interneurons is a transient property of
the developing cortex during the critical period that disappears
with maturation. PV can respond nonparadoxically either in a
non-ISN or in an ISN with strong SST feedback. Thus, there
are two possible developmental processes that could resolve the
tension between the independent firing-rate modulations during
the critical period and the paradoxical effect in the adult. First,
the cortical circuit during the critical period could operate as a
non-ISN with weak recurrent excitation, which strengthens as the
animal matures together with recurrent inhibition, turning into an
ISN. Second, the circuit could operate as an ISN both during the
critical period and in the adult with a reversal of the paradoxical
effect in PV through strong SST feedback as a transient property.
This could emerge, for example, through a developmental decrease
of initially strong coupling from SST onto PV interneurons
(71). Although we favor an ISN with strong SST feedback to
explain the independent modulation of excitatory and inhibitory
firing rates during MD, direct evidence of the operating regime
of cortical circuits during the critical period is lacking. Several
pieces of evidence indirectly suggest that inhibition is needed
to stabilize network dynamics already before eye opening and
before the onset of the critical period. First, perturbing GABAergic
signaling at these early ages when the sensory cortex experiences
spontaneous activity seems to elicit very high levels of activity
(72, 73). Additionally, the reversal potential of GABA decreases,
leading to the hyperpolarizing action of GABA during the same
developmental period (72, 74, 75). However, this requirement for
inhibition to stabilize network dynamics is not a definite proof
that the cortex operate as an ISN before the critical period because
inhibition reduces overall network activity also in a non-ISN. To
determine the cortical operating regime at these early ages would
require similar perturbations as recently performed in the adult
(33, 34).

An alternative to changing the operating regime by changing
the overall coupling scale is to change the response gain of single
neurons in the network, as is the case in the stabilized supralinear
network (SSN). The SSN has recently gained attention as a circuit
model of V1 with powerful computational capabilities, including
contrast-gain control and nonlinear response amplification (76).
Our systematic analysis over a wide range of coupling scales could
be interpreted as the local linear approximation of the SSN in
response to MD-induced synaptic changes. Hence, we expect all
results to hold also in the SSN.

Our results make concrete predictions that can be tested with
further experiments that characterize population activity by af-
fecting individual circuit elements at different stages during de-
velopment and in different layers. First, we predict that SST
interneurons in L4 during the critical period should decrease their
activity in response to additional stimulation of PV interneurons
(e.g., through optogenetic activation). This decrease would be
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the result of a withdrawal of recurrent excitation, rather than
direct inhibition from PV to SST interneurons, and could specif-
ically be investigated by experimentally measuring the respective
conductances in individual SST interneurons. A second, related
prediction is that the firing rates of SST interneurons during the
first 2 d of MD should be tightly coordinated with excitatory firing
rates.

A further unknown is the plasticity of recurrent connections
involving SST interneurons in L4 during MD (48). Although the
plasticity of synapses involving electrophysiologically identified
regular spiking nonpyramidal units has been measured (77), these
cells were not genetically labeled as SST, and the measurements
were performed before the onset of the critical period, where plas-
ticity acts differently than in the critical period (38). We modeled
the potentiation of intracortical inhibition during brief MD as
a change in the excitatory drive from excitatory neurons to PV
interneurons to be consistent with known plasticity mechanisms
(21, 24). However, it is possible that the additional sources of
inhibition from SST interneurons contribute to this increase in in-
hibition. For instance, potentiation of synaptic strength from SST
onto excitatory neurons and/or depression of synaptic strength
from SST onto PV interneurons could also underlie the increase
in intracortical inhibition. We found that implementing these
changes in our recurrent network generates comparable results
to the firing-rate modulation of excitatory and PV interneurons
(SI Appendix, Fig. S14). Therefore, a third prediction is the exis-
tence of a parallel, possibly redundant, pathway to generate the
same firing-rate changes.

In summary, our mechanistic modeling suggests the following
sequence as the most parsimonious explanation for the indepen-
dent modulation of excitatory and inhibitory firing rates after
sensory deprivation observed experimentally (Fig. 7). First, during
the first day of deprivation, depression of the feedforward synaptic
weights from LGN to excitatory neurons and PV interneurons
in the visual cortex (or reduction of PV excitability in the so-
matosensory cortex) can give rise to strong suppression of PV
firing rates, while excitatory rates remain at baseline, only in the
ISN with strong SST feedback (Fig. 7, Left). Instead, in the ISN
without SST feedback, the firing rates of both excitatory and PV
populations facilitate or suppress together. Second, during the
second day of deprivation, potentiation of recurrent inhibition in
the cortex can strongly suppress excitatory firing rates and recover
PV firing rates to baseline through potentiation of activity from
the earlier suppressed state (Fig. 7, Right). Again, this is only
possible in the ISN with strong SST feedback. More generally,

our work provides a critical link between changes on the single-
synapse level and activity modulation on the circuit level during
perturbation of normal development as a function of cortical
operating regime and interneuron diversity.

Materials and Methods

Spiking Network Model. We studied recurrent networks of leaky integrate-
and-fire (LIF) neurons, consisting of NE excitatory neurons, NP PV interneurons,
and NS SST interneurons (Table 1). The membrane potential V(t) of a single
neuron follows the dynamics:

Cm
dV(t)

dt
= gL ·

(
EL − V(t)

)
+ I(t), [1]

where Cm is the membrane capacitance, gL is the conductance of the leak-current,
EL is the leak-reversal potential, and I(t) is the total input current. When the
membrane potential reaches a firing threshold Vθ , a spike is emitted, and the
potential is reset to Vr. The neurons are randomly and sparsely connected with
connection probability p with fixed in-degree by conductance-based synapses,
or weights. Thus, all values for synaptic weights are positive, and the excitatory
or inhibitory action of a presynaptic neuron is determined by the respective
reversal potential (Table 1). All excitatory synapses have weight J, regardless

Table 1. Neuron and network model parameters

Symbol Value Description
Cm 200 pF Membrane capacitance
gL 10 nS Leak conductance
EL −70 mV Leak-reversal potential
Vθ −50 mV Threshold potential
Vr −58 mV Postspike reset potential
EE 0 mV Excitatory reversal potential
EP, ES −85 mV Inhibitory reversal potential from PV

and SST
τsyn 5 ms Synaptic conductance time constant
NE 4,000 Number of excitatory neurons
NP 1,000 Number of PV interneurons
NS 500 Number of SST interneurons
p 0.1 Connection probability between

any two neurons
J 0.1 nS EPSG amplitude E→E, E→PV and

E→SST
grc J 0.8 nS IPSG amplitude PV→E and PV→PV
K 1.6 nS IPSG amplitude SST→E and

SST→PV
Js 0.5 nS EPSG amplitude LGN→E, and scale of

EPSG amplitude LGN→PV
gfw 2 Multiplicative factor for EPSG

amplitude LGN→PV
Jb 0.5 nS EPSG ampltiude BKG→E

and BKG→SST
Rstim 1,000 Hz Rate of input spike trains LGN→E,

LGN→PV, BKG→E, and BKG→SST
δE [0.5,1.0] Depression of feedforward synapses

LGN→E
δP [0.5,1.0] Depression of feedforward synapses

LGN→PV
ζPE [1.0,1.5] Potentiation of recurrent synapses

E→PV
ζEP [1.0,1.5] Potentiation of recurrent synapses

PV→E
ρEI [1.0,1.5] E/I ratio of feedforward synaptic

changes (for V1 model)
ξθ [0,3] mV Firing threshold of PV interneurons

(for S1 model)

EPSG, excitatory postsynaptic conductance; IPSG, inhibitory postsynaptic conductance.
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of the postsynaptic target (28); this parameter describes the coupling scale
and determines the operating regime of the network (32). Synapses from PV
interneurons are scaled by the factor grc (28). Synapses from SST interneurons
have weight K. Hence, the population connectivity matrix is given by:

W =

⎛
⎝WEE WEP WES

WPE WPP WPS

WSE WSP WSS

⎞
⎠=

⎛
⎝J grcJ K

J grcJ K
J 0 0

⎞
⎠, [2]

where WAB denotes the connection from population B to population A, for excita-
tory neurons (E), PV interneurons (P), and SST interneurons (S). The case with only
two populations, excitatory and PV, corresponds to K = 0.

External inputs to the model network come from two different sources: feed-
forward input from the LGN and background (BKG) inputs from the surrounding
cortical tissue or higher-order cortical centers (9, 50). Each excitatory neuron
receives two individual spike trains with Poisson statistics from the two different
sources that are uncorrelated to each other, as well as to all spike trains received
by other neurons. We denote the weight of the inputs from LGN to the excitatory
neurons by Js and from BKG by Jb; PV interneurons only receive feedforward input
from LGN that is considerably stronger than the input to excitatory neurons by the
factor gfw; this is consistent with experimentally measured inputs from the LGN to
L4 (45), as well as from L4 to L2/3 (40). SST interneurons only receive inputs from
BKG with weight Jb. The input spike trains from the LGN to the excitatory and PV
neurons are modulated by the plasticity of the feedforward synaptic connections,
while the input spike trains from the BKG to the excitatory and SST neurons are
not modulated since the corresponding synapses do not experience plasticity.
To minimize the number of parameters, we made the weights of LGN and BKG
inputs the same (Table 1). We can write the feedforward population connectivity
vector as:

Wffw =

⎛
⎝WEL + WEG

WPL + WPG

WSL + WSG

⎞
⎠=

⎛
⎝ Js + Jb

gfwJs + 0
0 + Jb

⎞
⎠=

⎛
⎝ 2Js

gfwJs

Js

⎞
⎠, [3]

where L denotes LGN and G denotes BKG.
The total input current to neuron i from population A = {E, P, S}, IA(t), is

the sum of synaptic input current from neurons in all populations B coupled to A,
IAB
i,syn(t), and the external input current, Ii,ext(t):

IA
i (t) =

∑
B

IAB
i,syn(t) + Ii,ext(t). [4]

Denoting the spike train of neuron j in population B by Y B
j (t) and the feedforward

input spike train to neuron i by Xi(t), we write:

IAB
i,syn(t) =

∑
j

WAB
ij (ε ∗ Y B

j )(t)
[

EB − Vi(t)
]

Ii,ext(t) = Wi,ffw(ε ∗ Xi)(t)
[

EE − Vi(t)
]

, [5]

where ε(t) is an exponentially decaying synaptic kernel with a synaptic time
constant τsyn, and ∗ denotes a convolution. Note that here, EE is the excitatory
reversal potential, while EB could be either the excitatory, EE, or the inhibitory
reversal potential, EP, ES. To extract firing rates, we simulated the network with
NEST (78) for 30 s and calculated the time-averaged population rate.

Implementation of Deprivation-Induced Circuit Changes. We introduced
the parameters δE < 1 and δP < 1 to model the depression of feedforward
synapses and ζEP > 1 and ζPE > 1 to model the potentiation of recurrent
synapses (Table 1). MD-induced synaptic changes were applied multiplicatively,
with a new population-connectivity matrix (Table 1):

WMD =

⎛
⎝ J ζEPgrcJ K
ζPEJ grcJ K

J 0 0

⎞
⎠. [6]

This is consistent with experimental measurements where the synaptic strength
from excitatory to excitatory neurons and from fast-spiking to fast-spiking in-
terneurons is unaffected, but other synapses potentiate (21, 24). There is no

experimental evidence of plasticity in synapses of SST interneurons during MD.
The new feedforward population-connectivity vector after MD is:

WMD
ffw =

⎛
⎝(δE + 1)Js

δPgfwJs

Js

⎞
⎠. [7]

Note that we did not change the rate of the feedforward input, consistent with
experimental findings (79).

To map firing-rate changes in response to brief MD, we separately simulated
networks with feedforward and recurrent plasticity. For each type of synaptic
change, the networks were simulated with parameters on a 21 × 21 grid in the
respective two-dimensional planes (Figs. 1 B and C and 4 A and B). To study the
interaction of feedforward and recurrent plasticity, we combined δE and δP into
the E/I ratio of feedforward synaptic changes ρEI = δE/δP. To simulate networks
with varying E/I ratio, we fixed δE = 1 and varied δP (Figs. 1D and 4C).

Feedforward plasticity in S1 was driven by a decrease of intrinsic excitability
of PV interneurons through an increase of their firing threshold (39). In the sim-
ulations, we thus changed the firing threshold of PV interneurons by adding ξθ ,
without changing any feedforward inputs. For recurrent plasticity, we modeled
the potentiation from PV to excitatory neurons (ζEP) (39). We simulated the S1
network with combined feedforward and recurrent plasticity as described above
to extract the plane of firing-rate changes (Fig. 6 B and C).

Quantification of the Activity Changes Induced by Deprivation. For each
pair (x, y) of synaptic changes in the two-dimensional parameter space, (δE, δP)
for feedforward plasticity, (ζEP, ζPE) for recurrent plasticity, and (ζPE, ρEI) for
combined plasticity, we obtained a matrix of rate fold changes of population
A = {E, P, S} at MD, RA

MD(x, y), relative to baseline, RA
BL:

ΨA(x, y) =
RA

MD(x, y)
RA

BL
. [8]

To quantify the responses, we first studied the fractional area of facilitation. Ele-
ments of ΨA(x, y) were thresholded at one, which denotes the border between
suppression (ΨA(x, y)< 1) and facilitation (ΨA(x, y)> 1). All matrix elements
corresponding to facilitation were then set to 1, while those for suppression
to −1. Summing up all the positive entries in this thresholded matrix and
dividing by the total number of matrix elements produced the fractional area of
facilitation (FE, FP in Figs. 2 and 4). We calculated the overlap of the response
areas in excitatory neurons and PV interneurons by multiplying the thresholded
matrices of excitatory and PV responses element-wise. After this multiplication,
matrix elements corresponding to pairs of synaptic changes that resulted in the
simultaneous suppression or facilitation of excitatory and PV responses were
+1, while elements corresponding to opposite responses of excitatory and PV
neurons were −1. We summed all positive values and divided this sum by the
total number of matrix elements to calculate the fractional area of overlap for
facilitation and suppression in the two populations (OEP in Figs. 2 and 4).

We calculated these measures within biologically realistic ranges of synaptic
changes (±50% of the baseline weight; Figs. 2 and 4) based on experiments
(23, 24). This range includes suppression of feedforward synapses with parame-
ters δE, δP ∈ [0.5, 1], potentiation of recurrent synapses ζEP, ζPE ∈ [1, 1.5], and
increase of the feedforward E/I ratio ρEI ∈ [1, 1.5]. To ensure that the simulated
range does not alter our results, we simulated our networks with a decreased
(±25%) and increased range (±100%) (SI Appendix, Figs. S2 and S6).

To quantify response strengths, we calculated the gradient numerically from
the matrix of fold changesΨA. The two components of the gradient at each point
(x, y) in the parameter space are:

(
∇ΨA

)
(x, y) =

(
ΨA(x+1,y)−ΨA(x,y)

Δ
ΨA(x,y+1)−ΨA(x,y)

Δ

)
, [9]

where Δ is the grid spacing of the matrix of fold changes ΨA. From
this, we computed the lengths of and the angle between gradients for
excitatory and PV neurons at all points in the respective parameter spaces
(feedforward, recurrent, and combined). We then averaged these lengths
for the entire population A to obtain the average gradient lengths (LE, LP

in SI Appendix, Figs. S5 B–D and S8 A–C) and the average angle between the
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gradients (ΦEP in SI Appendix, Figs. S5 E–G and S8 D–F). An angle close to 0◦ in
the ISN without SST feedback confirms the tight coordination in excitatory and
PV neurons (SI Appendix, Fig. S5). In the non-ISN and the ISN with strong SST
feedback, the angles are ∼90◦ or 180◦, uncovering independent or opposite
modulation of firing rates, respectively (SI Appendix, Figs. S5 and S8).

Capturing the Sequence of Firing-Rate Suppression and Recovery. We
extracted the experimental data for firing-rate fold changes of excitatory and fast-
spiking interneurons during the first 2 d of MD from figure 3D in ref. 19 using
open-source software (80). We hypothesized that MD should affect feedforward
connections immediately. Therefore, to capture excitatory and PV firing rates
on the first day of MD, we assumed that only feedforward synapses change
(Fig. 7, Left). We simulated ISNs with strong SST feedback for 70 randomly drawn
(δE, δP)-pairs chosen from a range in which excitatory neurons have normalized
firing rates close to baseline (1.05 ± 0.15 in Fig. 4A). This set of parameters
produces suppressed PV firing rates. To capture excitatory and PV firing rates on
the second day of MD, we assumed that recurrent connections change in addition
to feedforward connections (Fig. 7, Right). For each (δE, δP)-pair, we found a
(ζEP, ζPE)-pair that can recover the firing rates of PV interneurons close to baseline
(0.98 ± 0.15 in Fig. 4B). We also simulated the ISN without SST feedback with
the same synaptic changes to test how the firing-rate changes in this network
compare with the experimentally measured.

Linear Population-Rate Model. To analytically study firing-rate changes dur-
ing MD, we used a linear population model with population dynamics (32, 47):

dr(t)
dt

=−r(t) + f
(

Wr(t) + s(t)
)

, [10]

where r is the vector of rates, s is the vector of external inputs, and W is the
population-connectivity matrix of the rate-based model:

W =

⎛
⎝w −γw −κ

w −γw −κ
w 0 0

⎞
⎠, [11]

where w denotes the coupling scale, γ is the scaling factor of PV feedback, and
κ is the weight of SST output synapses, which we refer to as the SST feedback.
As in the simulated network, input to the network comes from two sources, LGN
and BKG. As before, we set the input rates from both sources to be the same, rx,
in which we also absorb the input weights:

s =

⎛
⎝rLGN + rBKG

gfwrLGN

rBKG

⎞
⎠=

⎛
⎝ 2rx

gfwrx

rx

⎞
⎠. [12]

We used a rectified-linear population input–output function:

f(x) = Γ
[

x
]
+
=

{
0 for x < 0,
Γx for x ≥ 0,

[13]

whereΓ is the input–output gain, chosen to be the same for all populations. With
steady inputs and assuming that the network operates in the linear regime away
from rectification, the steady state of the rates is:

rss =
(
I− ΓW

)−1 · Γs. [14]

From this steady state, we can calculate the fold change of the network rate
after MD relative to baseline for each combination of synaptic changes. Synaptic
changes induced by MD were applied multiplicatively as before, with (δE, δP)
and (ζEP, ζPE) affecting W and s, similarly to Eqs. 6 and 7:

WMD =

⎛
⎝ w −ζEPγw −κ
ζPEw −γw −κ

w 0 0

⎞
⎠, [15]

and

sMD =

⎛
⎝(δE + 1)rx

δPgfwrx

rx

⎞
⎠. [16]

We solve the steady state in Eq. 14 for MD by inverting I− ΓWMD. Without
loss of generality, we absorbed the response gain factor Γ into the interaction
parameters (w and κ, respectively), as well as into the feedforward input (rx), by
rescaling them with a common factor and find:

(
I− WMD

)−1
=

1
ηMD ·⎛

⎝ 1 + γw −ζEPγw γwκ(ζEP − 1)− κ
w(ζPE − κ) 1 − w + wκ wκ(1 − ζPE)− κ

w(1 + γw) −ζEPγw2 1 − w + γw + γw2(ζPEζEP − 1)

⎞
⎠,

[17]

with

ηMD = det(I− WMD)

= 1 − w + γw + κw −
(
ζEP − 1

)
κγw2 +

(
ζEPζPE − 1

)
γw2. [18]

To generate the planes of firing-rate change in response to MD-induced plasticity,
we solved the rate model in Eq. 10 numerically, taking into account rectifica-
tion. We found that the rate model could capture firing-rates changes in the
spiking networks both for the network with a single subtype of interneuron
(compare SI Appendix, Fig. S3 A–C vs. Fig. 1 B–D and SI Appendix, Fig. S3 D–F vs.
Fig. 2 B–D) and for the network with two subtypes of interneurons (compare
SI Appendix, Fig. S7 vs. Fig. 4). We observed a largely linear input–output function
of the spiking network when firing is well above threshold, which corroborates
this overall match of the linear model with the spiking network. However, the
linear model showed sharp transitions for recurrent and combined (feedforward
and recurrent) plasticity when we increased κ (SI Appendix, Fig. S7 E and F), in
contrast to the spiking network, where the effects of SST feedback changed more
gradually when we increased K (Fig. 4 E and F). This discrepancy could be due
to a changing gain in the spiking network when recurrent synapses change, in
contrast to the fixed gain in the linear model.

Analysis of the Reversal of PV Responses. In the linear model, setting the
coupling scale w = 1 marks the transition between the non-ISN (w < 1) and the
ISN (w > 1) regimes (32). A hallmark of the ISN regime is the paradoxical effect,
whereby an excitatory input to the inhibitory population decreases its firing rate.

We first considered the network with a single subtype of interneuron, by
setting κ= 0. In this case, the firing-rate change in response to additional drive
ξ > 0 to the PV population becomes:(

ΔrE
ss

ΔrP
ss

)
=

1
1 − w + γw

(
1 + γw −γw

w 1 − w

)(
0
ξ

)
, [19]

where the scalar term 1 − w + γw is always positive when the network is stable.
Each population responds to this additional drive to the PV population as:

ΔrE
ss =− γwξ

1 − w + γw

ΔrP
ss =

(1 − w)ξ
1 − w + γw

. [20]

Hence, the response of the excitatory neurons is always in the opposite direction
to ξ for any network parameters (γ > 0 and w > 0). However, the response of
the PV population depends on the value of w. When w < 1 and the network is
in the non-ISN regime, PV population activity changes in the same direction as ξ.
When w > 1 and the network is in the ISN regime, PV population activity changes
in the opposite direction toξ, as the excitatory population. Since the depression of
synapses to PV interneurons in early MD is equivalent to providing an inhibitory
input to the PV population in the linear model—i.e.,ξ < 0—the operating regime
of the network and the presence of the paradoxical effect in the ISN regime
can be related to the observed firing-rate changes in response to MD. Therefore,
in the non-ISN, the excitatory and PV populations respond to MD by changing
their firing rates in the opposite direction, while in the ISN regime, the excitatory
and PV firing-rate changes closely follow each other (SI Appendix, Fig. S3). We
confirmed through simulation that the value of J where the same change in PV
responses to MD-induced plasticity occurs in the spiking network is indeed the
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point where the spiking network goes from non-ISN to ISN and is related to the
paradoxical effect (Fig. 2).

We extended this result in the network with two types of interneurons. The
firing-rate change in response to additional drive ξ > 0 to the PV population is:⎛
⎝ΔrE

ss

ΔrP
ss

ΔrS
ss

⎞
⎠=

1
η

⎛
⎝ 1 + γw −γw −κ

w(1 − κ) 1 − w + wκ −κ
w(1 + γw) −γw2 1 − w + γw

⎞
⎠
⎛
⎝0
ξ
0

⎞
⎠, [21]

whereη = det(I− W), which is always positive when the network is stable. The
responses of the excitatory and the PV population to this additional drive to the
PV population are:

ΔrE
ss =−γwξ

η

ΔrP
ss =

(1 − w + wκ)ξ
η

. [22]

As for the network with a single type of interneurons, the response of the excita-
tory neurons is always in the opposite direction to ξ for any network parameters,
independent of the strength of SST feedbackκ. The response of the PV population
is proportional to (1 − w + wκ)ξ. Thus, the direction of rate changes in the
PV population no longer depends only on w, but also on the strength of SST
feedback κ. In the non-ISN, the PV population responds with a change of activity
in the same direction as ξ since w < 1 and wκ > 0, independent of κ. In the
ISN, where w > 1, the PV population responds with a change of activity in the
opposite direction to ξ when the following condition is satisfied:

κ <
w − 1

w
. [23]

This implies that for any w > 1, there exists a sufficiently large κ that leads to a
reversal of the paradoxical effect and thus a nonparadoxical response of the PV
population, even in a network operating as ISN (Fig. 5).

Relating Facilitation of PV Firing Rate to the Paradoxical Effect. Next,
we related the above conditions (Eq. 23 and w > 1) for the presence of the
paradoxical effect in networks with one or two types of interneurons to the pres-
ence of facilitatory responses for PV interneurons in the parameter spaces of MD-
induced plasticity. In particular, in the network with a single type of interneuron,
PV interneurons start showing a facilitatory response in response to feedforward
plasticity at a specific value of coupling (SI Appendix, Fig. S3D). In the network
with two subtypes of interneurons operating in the ISN regime, the facilitatory
response of PV interneurons vanishes for a specific strength of SST feedback κ
and reemerges at a higher value of κ (SI Appendix, Fig. S7D).

From Eq. 17, the PV population rate after induction of MD plasticity is:

rP
MD =

rx

ηMD ·
(
(δE + 1)w(ζPE − κ) + δPgfw(1 − w + wκ)

+ wκ(1 − ζPE)− κ

)
. [24]

We focus on feedforward plasticity only, since recurrent plasticity affects ηMD

(Eq. 18). In the case of feedforward plasticity, the rate for the PV population after
induction of MD-plasticity reduces to:

rP
MD =

rx

η
·
(
(δE + 1)w(1 − κ) + δPgfw(1 − w + wκ)− κ

)
. [25]

Setting all MD-related parameters to one, the baseline rate is:

rP
BL =

rx

η
·
(

2w(1 − κ) + gfw(1 − w + wκ)− κ

)
. [26]

Therefore, the condition for the emergence a facilitatory area of PV responses after
MD is:

δE · w(1 − κ)> (1 − δP)gfw(1 − w + wκ) + w(1 − κ). [27]

We first considered the network with a single type of interneuron by setting
κ= 0. Then, the condition for the emergence a facilitatory area of PV responses
after MD becomes:

δE > (1 − δP)

(
gfw

1 − w
w

)
+ 1. [28]

Because feedforward plasticity in response to MD depresses synaptic inputs to
excitatory and PV neurons,δE, δP < 1, this condition can never be satisfied in the
non-ISN regime, where w < 1. Thus, PV responses to feedforward depression in
the non-ISN never increase above baseline (SI Appendix, Fig. S3D).

In the ISN regime, w > 1, the condition can be fulfilled, giving a specific linear
relationship between δE and δP that is the boundary between suppression and
facilitation (SI Appendix, Fig. S3A and Fig. 1B). Thus, the position of the boundary
between facilitation and suppression depends on w and gfw. Well in the ISN
regime, for w � 1, (w − 1)/w ≈ 1; thus, the slope and offset of this linear
relationship depend mainly on gfw.

In the ISN with SST interneurons, where w > 1, we studied the condition for
the emergence of a facilitatory area of PV responses for increasing κ. Assuming
that 0 < κ < 1, the condition yields again a linear relation between δE and δP

that separates facilitatory and suppressive areas of the parameter space:

δE > (1 − δP)

(
gfw

1 − w + wκ
w(1 − κ)

)
+ 1. [29]

As long as

κ <
w − 1

w
, [30]

the condition Eq. 29 can be satisfied with depression of feedforward synapses.
Note that this is exactly the condition Eq. 23 for which the PV population switches
to nonparadoxical behavior due to SST feedback. As κ increases, the condition
Eq. 29 becomes harder to satisfy because 1−w+wκ

w(1−κ)
< 0 grows monotonically.

Thus, the facilitation area of the PV population in the parameter space of feed-
forward plasticity decreases (SI Appendix, Fig. S7D). Asκ increases, the condition
Eq. 29 can no longer be satisfied, and PV responses no longer show facilitation
(SI Appendix, Fig. S7D; at κ= 0.8 for the chosen parameters; see also switch of
paradoxical response in Fig. 5).

As κ approaches one, the condition in Eq. 29 would go through a singularity.
Because (1 − κ) goes to zero and becomes negative for κ > 1. Here, division
by w(1 − κ) in Eq. 27 switches the inequality. Therefore, the condition for the
emergence of facilitation of PV responses after MD in Eq. 29 switches sign:

δE < (1 − δP)

(
gfw

1 − w + wκ
w(1 − κ)

)
+ 1. [31]

PV interneurons can again show facilitation during MD-induced plasticity for
κ > 1, but on the opposite side of the linear boundary (SI Appendix, Fig. S7A).
This switch of the inequality is the inversion of the PV response to MD-induced
plasticity.

For networks well in the ISN regime, where w � 1, the conditions for the
disappearance of the facilitatory area and the reemergence on the opposite side
of the linear boundary become the same because (w − 1)/w → 1. Here, the
condition for reversal of the paradoxical effect in PV interneurons through SST
feedback and for the opposite firing-rate changes of excitatory neurons and PV
interneurons through SST feedback become the same.

Data Availability. All data can be generated with our code available on GitHub
(81).
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