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Abstract

Background: The Bactrocera dorsalis species complex currently harbors approximately 90 different members. The
species complex has undergone many revisions in the past decades, and there is still an ongoing debate about
the species limits. The availability of a variety of tools and approaches, such as molecular-genomic and cytogenetic
analyses, are expected to shed light on the rather complicated issues of species complexes and incipient
speciation. The clarification of genetic relationships among the different members of this complex is a prerequisite
for the rational application of sterile insect technique (SIT) approaches for population control.

Results: Colonies established in the Insect Pest Control Laboratory (IPCL) (Seibersdorf, Vienna), representing five of
the main economic important members of the Bactrocera dorsalis complex were cytologically characterized. The
taxa under study were B. dorsalis s.s., B. philippinensis, B. papayae, B. invadens and B. carambolae. Mitotic and
polytene chromosome analyses did not reveal any chromosomal characteristics that could be used to distinguish
between the investigated members of the B. dorsalis complex. Therefore, their polytene chromosomes can be
regarded as homosequential with the reference maps of B. dorsalis s.s.. In situ hybridization of six genes further
supported the proposed homosequentiallity of the chromosomes of these specific members of the complex.

Conclusions: The present analysis supports that the polytene chromosomes of the five taxa under study are
homosequential. Therefore, the use of the available polytene chromosome maps for B. dorsalis s.s. as reference
maps for all these five biological entities is proposed. Present data provide important insight in the genetic
relationships among the different members of the B. dorsalis complex, and, along with other studies in the field,
can facilitate SIT applications targeting this complex. Moreover, the availability of ‘universal’ reference polytene
chromosome maps for members of the complex, along with the documented application of in situ hybridization,
can facilitate ongoing and future genome projects in this complex.

Background
The Bactrocera dorsalis complex species is a group of true
fruit flies belonging to Tephritidae, with great economic
importance. Following the most recent taxonomic revi-
sions, this complex is currently harboring approximately
90 morphological similar taxa [1,2]. Among them, eight
are considered as economic important pests [2], including
among others B. dorsalis s.s., B. philippinensis, B. papayae
and B. carambolae. In 2003, an addition to the complex

was made: B. invadens was detected in Kenya, and initially
was considered a morphological variant of B. dorsalis s.s.
[3]. However, in the following years it was recognized as a
different species within the B. dorsalis complex [4]. Ever
since that revision in 2005, there were doubts regarding
whether all these members really represent well-differen-
tiated species, mainly due to the lack of robust diagnostic
characters [5].
In recent years, accumulating data cast doubt on the

‘actual’ number of different species in the complex.
Research performed by different laboratories points to a
possible overestimation in the number of discrete taxa in
the complex and the need of another taxonomic revision
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to incorporate the synonymic status of different species.
This research includes morphological/morphometric stu-
dies [6-10], behavioral/sexual compatibility analysis
[11,12], as well as chemoecological [13,13-15] and
molecular genetic approaches [7-9,13,16-20]. Recently,
Drew and Romig [1] have synonymized B. papayae
with B. philippinensis ; however there is also an
ongoing debate about the species status of other
important pests of the complex.
The delimitation of species within the B. dorsalis com-

plex is not just a scientific question regarding evolution
and speciation. It is also important for the agricultural
economies of countries that heavily rely on fruit exports.
The first aspect refers to quarantine measures. The cur-
rent taxonomy leads to the implementation of certain
quarantine policies; therefore it is critical to be as accurate
as possible, when assessing species limits of economic
important pest populations. As a characteristic example,
the description of B. invadens as a separate species within
the B. dorsalis complex prompted additional fruit export
restrictions in many African countries, leading to
increased economic losses [7,12]. The second aspect
involves the effectiveness of SIT applications. SIT is prob-
ably the most environmental friendly pest control method
since it is species specific and does not result in chemical
or biological pollution. The main principle of SIT is the
release of sterile flies in the field. Mating of sterile labora-
tory flies with the targeted population leads to infertile
crosses and subsequent population suppression. Successful
SIT is facilitated by a) the clarification of genetic relation-
ships among targeted populations and laboratory strains
and b) the availability of well characterized, stable and
competitive genetic sexing strains (GSSs) that allow the
release of only males into the field. The importance of
stable and competing GSSs in SIT is well documented in
the Tephritidae SIT model organism, Ceratitis capitata
[21-23]. In principle, male only releases are more effective
since they can lead to a) increased efficiency of sterile
males in the field and b) better fruit quality, avoiding
damage from released females. Today, there are only few
GSSs for the B. dorsalis complex, initially developed for
the control of B. dorsalis s.s. [24-26]. The creation of such
strains through classical genetic approaches is species-spe-
cific and not an easy task. Thus, exploring the possibility
of universal use of the same GSS for some of the economic
important members of the complex could facilitate their
control. The promising results of [27,28], showing the pos-
sibility of controlling B. carambolae with B. dorsalis s.s.
sterile flies point in such a direction.
Species limits can sometimes be obscure, and specia-

tion can be driven by a variety of forces. Among them,
chromosomal rearrangements (mainly inversions), are
considered as key factors in Diptera speciation, espe-
cially in sympatric populations [29]. Early cytogenetic

studies in Drosophila, based on mitotic and polytene
chromosomes, were the first to detect interspecific
inversions’ differences [30,31]. Sturtevant and Dobz-
hansky [32] and Dobzhansky [33] first showed that
chromosome inversions can be used to study the evolu-
tionary history of a species group. Within this frame,
inversions were proposed to have an important role in
genetic variation and speciation leading thus to their
extensive use as interspecific phylogenetic markers. The
recent accumulation of comparative genomic data from
Drosophila species [34-38] and mosquitoes [39-41] sup-
ports the importance of inversions in the suppression of
gene flow in hybridizing taxa. Many models had been
proposed regarding how inversions can enforce or sup-
port speciation, focusing mainly in the fitness of hetero-
karyotes (for a review see [42]). More recent theories,
supported by genomic data, point to the suppression of
recombination within and near inversions as a mechan-
ism leading to reduced gene flow and maintenance of
genetic divergence [38,42,43]. A possible role of an
inversion can be the ‘protection’ of a combination of
locally co-adapted alleles from introgression [44], that
can lead to further accumulation of differences and
facilitate speciation.
Taking into account the above, it is evident that cyto-

genetic analyses can help in resolving species boundaries
within species complexes. This has been well documen-
ted in different Drosophila species [45], such as the
endemic Hawaiian picture-winged group [46] and the
American repleta species group [47]. In respect to this,
the availability of polytene chromosomes in different
Tephritidae genera, like Ceratitis [48], Bactrocera
[49-53], Dacus [54], Rhagoletis [55-57,57] and Anastre-
pha [58] is valuable when seeking characteristic and
diagnostic differences in closely related species.
Studies in B. dorsalis complex have also demonstrated

the importance of adequate and well characterized sam-
ples: when exploring species limits and characters that
may overlap, it is important to develop well organized
and comprehensive sampling schemes [8,16]. Since spe-
cies limits can be fuzzy and different classes of markers
can provide different levels of resolution, the use of all
available tools for species identification is highly
desirable.
In the present study, we tried to identify chromosomal

differences between five of the main agricultural pests of
the complex, namely B. dorsalis s.s., B. philippinensis,
B. papayae, B. invadens and B. carambolae, through the
analysis of their mitotic complements and the compari-
son of their polytene chromosomes with the published
reference maps for B. dorsalis s.s. [50]. As working
material, samples representing well characterized colo-
nies of these species, held at the Insect Pest Control
Laboratory (IPCL, Seibersdorf, Vienna), were used.
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These colonies have been used in a variety of FAO/
IAEA projects [8,11-13,16], and their status has been
verified repeatedly. Polytene chromosomes derived from
two F1 bidirectional hybrids (B. dorsalis s.s. × B. inva-
dens and B. dorsalis s.s. × B. carambolae) were also ana-
lyzed, aiming at the detection of fixed chromosomal
rearrangements among the parental colonies. We
focused on these hybrids since: a) B. invadens is the
only member of the complex originating from Africa,
and its current recognition as a distinct species within
the complex has severe quarantine consequences and b)
B. carambolae is considered to be more clearly differen-
tiated from the other four members of the complex
[10,11,16]. Finally, in situ hybridization was performed
using unique genes, attempting to: a) provide diagnostic
landmarks for the polytene chromosome arms, b) reveal
small chromosome rearrangements undetectable by
microscopic observation and c) test the utility of B. dor-
salis complex polytene chromosomes and polytene maps
for future mapping experiments.

Methods
B. dorsalis complex strains
Colonies representing the five economic important
members of the complex currently established at the
IPCL were used. Specifically, two colonies of B. dorsalis
s.s. (Saraburi - Thailand and Nakhon Si Thammarat -
Thailand), one of B. philippinensis (Philippines), one of
B. papayae (Serdang-Malaysia), one of B. invadens
(Kenya) and one of B. carambolae (Paramaribo, Suri-
name) were analyzed. In addition, the two following F1
bidirectional hybrids were analyzed: a) B. dorsalis s.s.
(Saraburi strain) × B. carambolae and b) B. dorsalis s.s.
(Saraburi strain) × B. invadens.

Mitotic chromosome preparations
Chromosome preparations were made, as described in
[48]. Brain tissue from third instar larvae was dissected in
0.7 % NaCl, transferred to 1 % sodium citrate on a well
slide for at least 15 min and fixed in fresh fixation solution
(methanol/acetic acid 3:1) for 3min (fixation solution was
changed twice in this step). Fixation solution was removed
and a drop of acetic acid (60 %) was added. Tissue was dis-
persed using a micropipette and the cell suspension was
dried by laying it on a clean slide placed on a hotplate (40-
45 oC). Chromosomes were stained with Giemsa (5 %
Giemsa in 10 mM phosphate buffer, pH 6.8). Chromo-
some slides were analyzed at 100 × magnification, using a
phase contrast microscope (Leica DMR), and photographs
were taken using a CCD camera (ProgRes CFcool; Jenop-
tik Jena Optical Systems, Jena, Germany). At least 15 good
quality preparations (each one representing one larva) per
sample and at least 10 well spread nuclei per preparation
were analysed.

Polytene chromosome preparations
Polytene chromosome preparations were made from 3rd

instar larvae, as described in [48]. Larvae were dissected
in acetic acid (45 %), and salivary glands were trans-
ferred to HCl (3 N) for 1 min, fixed in 3:2:1 fixation
solution (3 parts acetic acid: 2 parts water: 1 part lactic
acid) for ~5 min (until transparent) and stained in lac-
toacetic orcein for 5-7 min. Glands were washed with
3:2:1 solution to remove excess stain and squashed.
Chromosome slides were analyzed at 100 × magnifica-
tion using a phase contrast microscope (Leica DMR)
and photographs were taken using the ProgRes CFcool
CCD camera. At least 25 good quality preparations (each
one representing one larva) per sample and at least 10
well spread nuclei per preparation were analysed.

In situ hybridization
Polytene chromosome preparations for in situ hybridiza-
tion were made from salivary glands of 1-4 day-old
pupae, as described in [59]. Six heterologous gene
sequences originating from other tephritid species were
used as probes (Table 1). Labeling and detection was
performed using the DIG DNA Labeling and Detection
kit (ROCHE Diagnostics, Mannheim, Germany), accord-
ing to [60]. Hybridization was performed at 60 °C. Two
to three preparations per strain were hybridized with
each probe, and at least ten well spread nuclei per pre-
paration were analyzed.

Results
Mitotic karyotype analysis
All the members of the complex analyzed here (B. dor-
salis s.s., B. philippinensis, B. papayae, B. invadens and
B. carambolae) show five pairs of autosomes and one
pair of heteromorphic sex chromosomes (XX/XY). The
autosomes have been numbered II to VI according to
descending size order [50]. The two longest (II and III)
and the two shortest (V and VI) autosomes can be
described as submetacentric, although with different
arm ratios, and one autosome (IV) can be described as
metacentric. The sex chromosomes are the smallest of
the set, with the × being elongated, metacentric, with
one of the arms being darker stained than the other and
the Y being dot-like (Figure 1). The observed karyotype
is referred as form A [61]. No differences in the karyo-
types were observed.

Polytene chromosome analysis
No evidence of polytenization of the sex chromosomes
was observed. This in accordance with the polytene
complement published for B. dorsalis s.s. [50].
A comparison of the polytene elements of all analyzed

strains with the reference map of B. dorsalis s.s. [50]
revealed perfect correspondence of the banding patterns.
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No fixed chromosome rearrangements were detected.
Consequently, all the strains can be regarded as homose-
quential and the available polytene chromosome maps of
B. dorsalis s.s. can be used for all of them. Furthermore,
the heterochromatic mass of the centromeric regions was
identical in quality and quantity in all analyzed members
of the complex, providing a useful landmark for the identi-
fication of each polytene chromosome. The characteristic
polymorphic asynapsis on the right arm of chromosome 5
(sections 73-74), previously found in B. dorsalis s.s. [50],
was also observed at varying frequencies (10-50 %) in
all samples (Figure 2a-c). A few additional minor

polymorphic asynapses were distributed over the polytene
arms (Figure 2d-e).
Polymorphic inversions were found on chromosome

arm 2R of the two B. dorsalis s.s. samples (Figure 3). This
is in accordance with the data of [50]. No other members
of the complex showed any polymorphic inversions.

Polytene chromosome analysis of F1 hybrids
In order to verify the identical banding pattern of the ana-
lyzed species, cytological analysis of F1 B. dorsalis s.s. × B.
invadens (bidirectional) and F1 B. dorsalis s.s. × B. caram-
bolae hybrids (bidirectional) was performed. The analysis

Table 1 The hybridization probes used in the present study and their localization sites on the polytene chromosomes
of the five taxa studied from the B. dorsalis species complex.

Gene name Description Species of origin DNA type Reference Localization site

hsp70 the heat-shock 70 gene Ceratitis capitata genomic [74] 26-3L

gld the glutamate dehydrogenase gene Ceratitis capitata genomic unpublished 6-2L

scarlet the orthologue of the scarlet gene of D. melanogaster Bactrocera tryoni genomic [75] 82-6L

ovo orthologue of the ovo gene of D. melanogaster Bactrocera oleae cDNA unpublished 63-5L

sxl orthologue of the sex lethal gene of D. melanogaster Bactrocera oleae cDNA [76] 78-5R

tra orthologue of the transformer gene of D. melanogaster Bactrocera oleae cDNA [77] 86-6L

The localization site was determined according to the B. dorsalis s.s. polytene maps [50]

Figure 1 Mitotic karyotypes of members of the B. dorsalis species complex. a and d) B. dorsalis s.s. (Saraburi), b) B. papayae, c) B. invadens, e)
B. carambolae, f) B. philippinensis. a-c) females, d-f) males. Scale bar represents 5 μm.
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of chromosome preparations of the hybrids did not reveal
signs of fixed chromosome differences between the paren-
tal strains, evident from the perfect synapses among the
parental homologous chromosomes (Figure 4). The com-
parison with the reference polytene chromosome maps of
B. dorsalis s.s. verified that hybrids and their parental
strains are homosequential with B. dorsalis s.s. (Figure 5).
In both hybrids, similar to the parental strains, the asynap-
sis at region 73-74, together with some other minor poly-
morphic asynapses were observed (Figure 2b-e). The
number of minor asynaptic sites was higher in the B. dor-
salis s.s. × B. carambolae F1 hybrids than the B. dorsalis
s.s. × B. invadens F1 hybrids.

In situ localization of genes
In situ localization of six unique genes, namely gld,
hsp70, ovo, sxl, scarlet and tra (Table 1) was performed
on the polytene chromosomes of the five taxa, as well as
on the two hybrids. Each probe yielded a unique signal
at the same chromosomal position in all entities. More
specifically, gld localized in region 6 of 2L, hsp70 in
region 26 of 3L, ovo in region 63 of 5L, Sxl in region 78
of 5R and scarlet and tra in regions 82 and 83 of arm
6L (Table 1, Figure 6).

Discussion
The main findings of the present study can be summar-
ized as follows: a) mitotic karyotypes of the five mem-
bers of the complex presented form A, the typical one
for B. dorsalis s.s. which, according to [61] represents

the most ancestral form of the complex, b) polytene
chromosome analysis of both parental strains and
selected F1 hybrids did not reveal any fixed differences
among the five members of the complex, and c) in situ
hybridization of selected genes confirmed that there are
no differences among the five members of the complex
based at least on the limited number of probes tested.
The in situ results also provided characteristic land-
marks for the recognition of the polytene arms and
demonstrated the utility of polytene chromosomes and
reference maps of the complex for in situ mapping
projects.

Implications for SIT applications
The B. dorsalis species complex includes at least eight
economic important pests [2] that infest a variety of
hosts worldwide and are putative targets for SIT. The
development of GSSs, a prerequisite for efficient and
cost-effective SIT programs, has been already achieved
for B. dorsalis s.s. [24-26]. However, the availability of
such strains does not mean that they are a priori suita-
ble for mass rearing and release purposes. These strains
have to exhibit a number of traits, such as genetic stabi-
lity and good productivity in the laboratory or in mass
rearing conditions over a number of generations as well
as male mating competitiveness in the field. In respect
to this, cytogenetic knowledge of the chromosomal
events generating GSSs, along with standard Quality
Control (QC) measures are of major importance for the
assessment of the abovementioned traits [62].

Figure 2 Polymorphic asynapses in different polytene chromosome regions. Variations in the appearance of the asynaptic region 73-74 of
chromosome arm 5R: a) in B. carambolae and (b, c) in the B. dorsalis s.s. × B. carambolae hybrid. Minor asynapses in the B. dorsalis s.s. × B.
carambolae hybrid within: d) regions 43 of chromosome arm 4L and e) regions 78-79 of chromosome arm 5R. Asterisks indicate the asynaptic
regions. Scale bar represents 10 μm.

Augustinos et al. BMC Genetics 2014, 15(Suppl 2):S16
http://www.biomedcentral.com/1471-2156/15/S2/S16

Page 5 of 10



The resolution of biological relationships among the
different entities of species complexes is of high impor-
tance, since SIT application without this knowledge
could jeopardize the effectiveness of such programs,
especially in areas where different members of the com-
plex overlap. This information is very useful in respect
to the selection of appropriate laboratory strains for
release purposes. The findings of the present study
along with other studies that support a single species
scenario [7-9,11,13,16,17] at least for the four of the five
economic important members of the complex studied
(B. dorsalis s.s., B. papayae, B. philippinensis and
B. invadens), favour the ‘universal’ application of the
B. dorsalis s.s. GSSs against all the above members of
the complex. This is very important, considering the effort
required in generating GSSs through classical genetic
methods. In respect to this, the recent study of [27] pre-
sented in the same special issue points to the possibility of
using the B. dorsalis s.s. GSS against B. carambolae, after
several generations of crosses aiming to integrate this
strain to B. carambolae genomic background.

Mitotic karyotypes - no evidence of differentiation
Our analysis of mitotic chromosomes shows that all mem-
bers of the complex studied here exhibit the same karyo-
type, described previously as form A [61]. This form is
assumed to be the ancestral form in the complex and typi-
cal of B. dorsalis s.s.[50,61,63-65]. However, Baimai et al.
[63] had previously described a different mitotic karyotype
for B. carambolae. In that study, samples derived directly
from infested fruits and characterized as B. carambolae
based on morphological, geographic and host criteria,
were reported to possess × chromosomes larger than the
autosomes (form E karyotype). Our analysis does not con-
firm this report. A recent cytogenetic study on a B. caram-
bolae colony derived from Malaysia also presented a
typical form A karyotype for this species [66].
Given that a) geographic origin and plant host alone

cannot be regarded as absolute taxonomic criteria
[9,10,19] and b) it is difficult to establish robust morpholo-
gical diagnostic characters for the different members of
the complex [7,9,13,16,17,19], it is apparent that one must
be quite skeptical regarding accurate species identification
based only on these parameters. To avoid such problems,
in the present study we used only material from IPCL.
This is colonized material and therefore available at any
time for different types of analysis.
Previous studies on mitotic karyotypes of the B. dorsa-

lis complex have shown that there is considerable varia-
bility in size and ratio of the X chromosome arms

Figure 3 The polymorphic inversion on the 2R polytene
chromosome arm. a) A polymorphic inversion found in the distal
part of chromosome arm 2R in the Saraburi colony of B. dorsalis s.s.,
b) the same inversion in the B. dorsalis s.s. × B. invadens hybrid.
Arrows indicate the breakpoints. Scale bar represents 10 μm.

Figure 4 Polytene nucleus of the F1 hybrid of B. dorsalis s.s. ×
B. carambolae. Note the perfect synapsis along the parental
homologous chromosomes. Arrow indicates the polymorphic
inversion found in the distal part of 2R chromosome arm in the
Saraburi colony of B. dorsalis s.s. The chromosome tips are indicated;
h indicates pericentric heterochromatin. Scale bar represents 10 μm.
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[61,63-65]. X and Y size polymorphism has also been
observed in other tephritid species complexes, including the
A. fraterculus complex [67]. Τhe highly heterochromatic
nature of the sex chromosomes in all tephritids analyzed so
far (evident also from the lack of polytenization due to their
under-replication) [48-51,53-58,68,69] points to a possible
increased ‘tolerance’ in gain and loss of material in these
chromosomes, which could explain its size plasticity.

Polytene chromosome analysis - no evidence of
speciation mediated by chromosomal rearrangements
The proposed chromosomal homosequentiality of the
five members of the B. dorsalis species complex is based

on the following observations: i) absence of fixed chro-
mosomal rearrangements in comparison to the reference
map of B. dorsalis s.s.; ii) absence of differences among
the parental homologous chromosomes in the two
hybrids studied; iii) identical heterochromatic mass of
the centromeric regions of each chromosome element in
all taxa; iv) common characteristic asynapsis of the
chromosomal region 73-74 and v) in situ localization of
each of six genes on the same chromosomal region in
all taxa analyzed.
In tephritid flies, genomic data are still scarce, and poly-

tene chromosome maps are restricted to a few species.
However, comparative polytene chromosome analysis and

Figure 5 Comparison of the 2R chromosome arm between B. dorsalis s.s. and its hybrids with B. carambolae and B. invadens. a)
chromosome arm 2R of the F1 hybrid of B. dorsalis s.s. × B. carambolae, b) reference map of chromosome arm 2R of B. dorsalis s.s. and c)
chromosome arm 2R of the F1 hybrid of B. dorsalis s.s. × B. invadens. Note the banding pattern similarity. Scale bar represents 10 μm.

Figure 6 Hybridization sites of six different probes on salivary gland polytene chromosomes of the B. dorsalis complex species. a) gld
in the B. dorsalis s.s. × B. invadens hybrid, b) hsp 70 in B. dorsalis s.s. × B. carambolae hybrid, c) ovo in B. dorsalis s.s. × B. carambolae hybrid, d) sxl
in B. dorsalis s.s. × B. carambolae hybrid, e) scarlet in B. dorsalis s.s. and f) tra in B. dorsalis s.s. × B. carambolae hybrid. Arrows point to the
hybridization signals. Note that signals in the hybrids show no differences between the two parental homologous chromosomes. Scale bar
represents 10 μm.
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in situ mapping of unique genes show that chromosomal
rearrangements characterize different species [50,51,
53,58,69], suggesting their possible involvement in specia-
tion. A comparative analysis of polytene chromosome
maps of B. dorsalis s.s. and B. tryoni, a species outside, but
closely related to the B. dorsalis complex, clearly shows at
least one fixed inversion in polytene arm 2R that differ-
entiates the two species (Figure 7).
Even though fixed rearrangements were not found in the

polytene chromosome of the species studied, polymorphic
inversions were observed in the two B. dorsalis s.s. popula-
tions, as well as in the two hybrids (derived from the
B. dorsalis s.s. genome). A similar observation has been
reported for another Thailand B. dorsalis s.s. population
[50]. Although not reported in other tephritids, poly-
morphic inversions are common in Diptera and their pre-
sence and frequencies usually differ between geographical
populations within the species [31]. The cytogenetic analy-
sis of more species of the B. dorsalis complex could pro-
vide important insight in the involvement of chromosomal
rearrangements in speciation within this species group.
The minor polymorphic asynapses observed in all sam-

ples most probably represent differential gene expression
of the two parental homologous chromosomes. However,
the presence of small, undetectable (with microscopic
observation) rearrangements, such as inversions, deletions
or insertions of repetitive or heterochromatic material,
cannot be excluded. Indeed, even small inversions can
alter the control of regulatory elements and lead to differ-
ential gene expression (puffing activity) [43]. Thus, the
higher number and frequency of small polymorphic asy-
napses observed in the B. dorsalis s.s. × B. carambolae
hybrid, in respect to the B. dorsalis s.s. × B. invadens
hybrid, may indicate that the B. carambolae genome has
small differences compared to the other members of the
complex. Current literature tends to support B. carambo-
lae as a discrete entity within the complex, but closely
related to the others [10,13,16,19]. The ability of B. caram-
bolae to a) mate, although with reduced compatibility, b)
produce viable and fertile progeny in the lab and c) pro-
duce hybrids carrying intermediate characteristics with

other members of the complex [11,28,70,71] points to the
presence of mainly prezygotic isolation between B. caram-
bolae and the other members of the complex. Therefore,
this is a case most likely representing incipient rather than
complete speciation, a phenomenon also observed in the
A. fraterculus complex [67,69].

Conclusions
The present study sheds important light in the delimita-
tion of species boundaries within the B. dorsalis species
complex. Our data are in accordance with other recent
studies questioning the currently accepted number of dis-
crete species within this complex, since no fixed chromo-
somal differences were found. This outcome is of major
importance for SIT applications targeting the different
members of the complex. Currently, there are efforts
towards genome/transcriptome sequencing of the B. dor-
salis complex [72,73] that are generating a great amount
of sequences with, however, limited information regard-
ing their overall organization. The comparative cytoge-
netic analysis presented here, accompanied with the in
situ hybridization of genes on the polytene chromosomes,
highlight the importance of cytogenetics in gaining more
insight regarding organization of newly generated contig
sequences and chromosomal localization of genes of spe-
cific interest.
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