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Simple Summary: Natural products are one of the most important sources of drug discov-
ery, providing abundant structural templates and inspiration for new drug development.
They play a vital role in modern pharmaceutical research. Traditional Chinese medicine
(TCM), known for its unique therapeutic effects, has been used in China for centuries.
Increasing attention has been paid to the study and development of its main active con-
stituents. This review focuses on baicalin, a key bioactive compound derived from TCM,
and systematically summarizes recent advances in its pharmacological effects and underly-
ing mechanisms in the treatment of cancer, cardiovascular diseases, neuroprotection, and
metabolic disorders, aiming to provide valuable insights and references for future research.

Abstract: Baicalin, a kind of polyphenolic flavonoid, is a major bioactive flavone derived
from the root of Scutellaria baicalensis, which has been widely utilized in clinical practice
in China for thousands of years. In recent years, it has attracted increasing attention due
to its potential therapeutic properties observed in preclinical studies involving various
disease models. However, the precise mechanisms underlying its biological activities
have not been fully elucidated. This review summarizes recent research progress on the
molecular mechanisms through which baicalin exerts its effects, particularly in tumor
suppression, cardiovascular protection, neuronal preservation, and glucose and lipid
metabolism regulation in murine models. Additionally, we discuss the delivery methods of
baicalin and its transformation by intestinal microbiota.

Keywords: traditional herbal medicine; flavonoids; baicalin; anti-inflammation; antioxidation

1. Introduction
Traditional Chinese medicines (TCMs) are invaluable resources due to their proven

clinical effects and complex components, which confer a wide range of therapeutic functions.
However, this complexity also introduces uncertainty about the specific actions of these
herbs, and the imprecise target of herbal molecules complicates the explanation of their
clinical outcomes. Advances in modern medical science now allow us to isolate the main
bioactive components and elucidate the underlying mechanisms. More importantly, TCMs
have the potential to provide broad ground for modern drug development [1].
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Huangqin (Scutellaria baicalensis), with its bitter taste and mild nature, is one of the
most common traditional Chinese herbs. It has been historically employed for removing
damp heat, quenching fire, counteracting toxicity, arresting bleeding, and preventing
abortion according to traditional Chinese medicine theory. It has also been widely used in
Chinese herbal formulas together with other herbs (Table 1).

Table 1. Multi-herb formulations containing baicalin.

Name Active Components or Major Compounds Application Reference

Hange-Shashin-To Baicalin, glycyrrhizin, isoliquiritin, berberine,
coptisine, palmitine, and saponins Diarrhoeal [2]

Soshiho-tang Homogentisic acid, baicalin, glycyrrhizin,
saikosaponin A, 6-gingerol, and ginsenoside Rg3 Chronic liver disease [3]

Angong Niuhuang sticker Curcuma, berberine hydrochloride, baicalin,
geniposide, borneol, and musk Cerebral ischemia [4]

Huang-Lian-Jie-Du-Tang Berberine, palmatine, baicalin, baicalein,
and gardenoside Cerebrovascular disease [5]

Huaijiao pill Ophoricoside, baicalin, naringin, genistein, rutin,
quercetin, and 5-O-methylvisammioside

Hematochezia, edema,
and carbuncle [6]

Gegen Qinlian decoction Puerarin, liquiritin, berberine, and baicalin Diarrhea and
inflammation symptoms [7]

Shuanghuanglian preparation Chlorogenic acid, phillyrin, baicalin, and baicalein Respiratory tract infection [8]

Chaiqin chengqi decoction Emodin, baicalin, rhein, and chrysin Acute pancreatitis [9]

Qingda granules Baicalin Spontaneous hypertension [10]

Jinzhen granules Gallic acid, baicalin, glycyrrhizic acid,
hyodeoxycholic acid, and cholic acid Viral-induced diseases [11]

Liang-Ge-San Geniposide, liquiritin, forsythenside A, forsythin,
baicalin, baicalein, rhein, and emodin Virus-induced diseases [12]

Xiaoer Chaige Tuire
oral liquid

Puerarin, daidzein, benzoic acid, baicalin, baicalein,
wogonoside, wogonin, oroxylin A,
3′-methoxypuerarin, paeoniflorin, scopoletin,
and liquiritigenin

Anti-inflammation and
antivirus [13]

Lanqin oral solution Geniposide, berberine, palmatine, and baicalin Pharyngitis [14]

Qingkailing Hyodeoxycholic acid, geniposide, baicalin, and
cholic acid Ischemic stroke [15]

Bu-Shen-Ning-Xin decoction Berberine, paeoniflorin, morroniside, gallic acid,
loganin, and baicalin

Premature ovarian
insufficiency [16]

Wenqingyin Baicalin, coptisine, and paeoniflorin Sepsis-induced acute
lung injury [17]

Qing-Yi recipe Baicalin, wogonoside, geniposide, rhein, costunolide,
and paeoniflorin

Acute diseases of
the abdomen [18]

Sanfeng Tongqiao
dripping pills

L-Menthone, pulegone, hesperetin, baicalin,
wogonin, pulegone, and luteolin Allergic rhinitis [19]

Advances in modern pharmacology have raised expectations for the precise iden-
tification of active constituents in TCMs. To date, more than 200 chemical constituents
have been isolated and identified from Scutellaria baicalensis, the majority of which are
flavonoids and their glycosides [20]. Utilizing chromatographic fingerprint analysis and a
backpropagation–artificial neural network model, baicalein, baicalin (Figure 1), wogono-
side, and wogonin were determined as the quality control markers of Scutellariae radix
and its wine-processed and carbonized products [21]. While all four flavonoids have been
studied, this review focuses specifically on baicalin, which is the most abundant constituent,
accounting for approximately 25.80% of the methanolic extract of Scutellariae radix and
8.12% of the dry root mass [22]. Given the complexity of herbal extracts, it is often difficult
to ascribe specific biological effects to baicalin alone. Thus, in order to provide a more
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accurate evaluation of baicalin’s pharmacological properties, this review focuses on studies
in which baicalin has been isolated and its concentration clearly determined.

Figure 1. Chemical structures of baicalin (A) and baicalein (B).

Baicalin is a free-B-ring flavonoid purified from Scutellariae radix through uridine
diphosphate glucuronidation. Purified baicalin (baicalein 7-O-glucuronide) is a light yellow-
to-yellow powder with a molecular weight of 446.3640. It is barely dissolvable in aqueous
buffers, so its oral bioavailability is low. As a study reported, the absolute bioavailability
of oral baicalin is 30% [23], and numerous studies have been conducted with the aim of
improving its intestinal absorption [24,25].

Baicalin is an important class of flavonoid glycosides, and baicalein is the aglycone of
baicalin. Baicalin is metabolized to baicalein via β-glucuronidase produced from intestinal
microbiota, indicating that the digestive microbiota plays an important role in the biological
activity of baicalin [26]. In fact, bacterial hydrolysis might be the only way and the rate-
limiting step for its absorption [27]. Glucuronidation is the main metabolic pathway for
baicalin. The absorbed baicalein is widely metabolized in the liver by two phase II metabolic
enzymes, UDP glucuronosyltransferase (UGT) and sulfotransferase (SULT). UGT catalyzes
the transfer of glucuronic acid to lipophilic substrates [28], and SULT catalyzes the transfer
of the sulfate groups. Then, the glucuronides (including baicalin) [29] or sulfates [30] of
baicalein enter the enterohepatic circulation (Figure 2). Following this process, baicalin is
distributed to different tissues such as the brain, lung, heart, and so on. Oral administration
of baicalin exclusively presents in the plasma as baicalein glucuronides/sulfates, which
means that the conjugated metabolites of baicalein are in fact responsible for its in vivo
effects [31]. In vitro studies on baicalin only partially explain its in vivo effects. Eventually,
baicalin is primarily excreted into the bile in the form of glucuronides. Of note, the
enterohepatic circulation contributes to the overall systemic disposition of baicalin and its
conjugated metabolites [23].

Baicalin has been reported to possess multifaceted functions, including anti-inflammatory,
anti-bacterial, antiviral, and antiallergic effects. Over the past decade, the antioxidant and
anti-inflammatory activity of baicalin has been given considerable attention. Considering
the increased attention paid to herbal medicines and the promising effects of baicalin, we
discuss the diseases in which baicalin may have beneficial effects. We also addressed the
pathways by which baicalin participates in exhibiting its effects (Table 2).
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Figure 2. Metabolism of baicalin in the colon and liver.

Table 2. The effects and mechanisms of baicalin.

Disease Biological Effects Mechanisms of Action Reference

Cancer

Lymphoma Induces apoptosis ↓ PI3K/Akt pathway [32]

Hepatocellular carcinoma Repolarization of TAM toward the M1 phenotype ↑ RelB/p52 pathway [33]

Colon cancer Induces senescence ↑ DEPP and Ras/Raf/MEK/ ERK signaling [34]

Leukemia Enhances apoptosis and reduces viability ↓ Akt pathway [35]

Bladder cancer Induces ferroptosis ↓ FTH1 [36]

Non-small cell lung cancer Promotes macrophage polarization to the
M1 phenotype ↑ JAK2-STAT1 pathway in macrophages [37]

Breast cancer Triggers apoptosis and reduces inflammation
and angiogenesis

↓ NF-κB, Bcl-2, VEGF ↑ p53, Bax, and
caspase-3 [38]

Colorectal cancer Induces apoptosis ↓ CDK/RB [39]

Hepatocellular carcinoma Inhibits proliferation, migration, and invasion
and induces cell cycle arrest and apoptosis ↓ ROCK1 signaling [40]

Osteosarcomas Suppresses cell proliferation and induces
apoptosis and ferroptosis ↓ Nrf2/ xCT/GPX4 regulatory axis [41]

Gastric cancer Promotes ferroptosis ↑ ROS [42]

Cardiovascular diseases

Atherosclerosis (vascular
inflammatory disorders)

Promotes the efflux of cholesterol from
macrophages and delays the formation of
foam cells

↑ PPARγ-ABCA1/ABCG1 pathway [43]

Angiogenesis - ↑ ERRα pathway. [44]

Cardiac hypertrophy and
heart failure - ↑ SIRT3/LKB1/AMPK signaling pathway [45]

PAH - ↑ A (2A) R activity ↓ PI3K/AKT signaling [46]

Hypertension Reduces constriction and enhances vasodilation
of abdominal aortic rings ↓ MLCK/p-MLC pathway [47]
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Table 2. Cont.

Disease Biological Effects Mechanisms of Action Reference

Neurological diseases

Parkinson’s disease Protects dopaminergic neurons ↓ Iron accumulation [48]

Alzheimer’s disease - ↓ COX1-2/5-LOX [49]

Demyelinating diseases Promotes myelin production and regeneration ↑ PPARγ signaling pathway [50]

Spinal cord injury - ↑ PI3K/Akt [51]

Metabolic diseases

Obesity Modulates the expression of genes in the
adipogenesis pathway

↑ Antiadipogenic regulators, including KLF2,
C/EBPγ, and CHOP ↓ The proadipogenic
regulator KLF15

[52]

Hepatic steatosis Decreases serum cholesterol, free fatty acid, and
insulinconcentrations↓ Systemic inflammation ↑ AMPK [53]

Diet-induced obesity and
hepatic steatosis Antisteatosis ↑ CPT1 [54]

Non-alcoholic
steatohepatitis Decreases lipid accumulation

↓ SREBP-1c and fatty acid synthase ↑ Fatty
acid oxidation enzymes, includingPPARα
and CPT1a

[55]

NAFLD Decreases lipid accumulation ↑ AMPK and Nrf2 ↓ SREBP1 and NF-κB [56]

MAFLD Oxidative stress and inflammation ↑ p62-Keap1-Nrf2 signaling cascade [57]

Diabetic nephropathy Anti-inflammatory effects ↓ IκB and JAK2 phosphorylation [58]

Diabetic kidney disease Ameliorates renal fibrosis ↑ CPT1α [59]

Inflammatory diseases

Acute pancreatitis
(emodinand baicalin) Anti-inflammatory effects ↓ Serum TNF-a and IL-6 ↓ TLR4 [60]

Ulcerative colitis -

Anti-asthmatic effects - ↓ Th17 cells [61]

Colitis Reduces inflammatory mediators ↓ Th17 ↑ Treg cells [62]

Asthma Reduces inflammatory cell infiltration ↓ Phosphodiesterase 4 (PDE4) [63]

Allergic rhinitis Improves allergic rhinitis symptoms and ↓ JAK2-STAT5 and NF-κB signaling [64]

Chronic ulcerative colitis Reduces MPO, NO, and inflammatory
cytokine levels ↓ IL-33 expression ↓ NF-κB [65]

OA Alleviates inflammatory injury, increases cell
viability, and decreases cell apoptosis ↓ miR-126↓NF-κB [66]

Chronic gastritis Reduces IL-8, IL-1β, TNF-α, PGE2, NO, and
ET-1 levels ↓ Akt/NF-κB [67]

Lupus Reduces urine protein levels and ameliorates
lupus nephritis

↓ mTOR activation ↓ differentiation of Tfh
cells ↑ Expansion of Tfr cells [68]

Psoriasis Decreases the level of inflammatory factors and
inhibits Th1/Th17 cell differentiation

↑ PPARγ ↓ Wnt signaling pathway and
Th17/IL-17 axis [69]

Oral mucositis Reduces inflammatory storm ↓ oxidative stress and NLRP3 [70]

Note: ↑ activate/upregulate; ↓ inhibit/downregulate. PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase;
TAM, tumor-associated macrophage; RelB, avian reticuloendotheliosis viral (v-rel) oncogene-related B; DEPP,
decidual protein induced by progesterone; Raf, rapidly accelerated fibrosarcoma; MEK, mitogen-activated protein
kinase Kinase; ERK, extracellular signal-regulated protein kinases; FTH1, ferritin heavy chain 1; JAK, Janus kinase;
STAT, signal transducers and activators of transcription; NF-κB, nuclear factor kappa B; Bcl-2, B-cell lymphoma
2; VEGF, vascular endothelial growth factor; Bax, Bcl-2-associated X protein; caspase-3, cysteine-dependent
aspartate-specific protease-3; CDK, cyclin-dependent kinase; RB, retinoblastoma protein; ROCK1, Rho-associated
coiled-coil containing protein kinase 1; Nrf2, nuclear factor erythroid 2-related factor 2; xCT, Xc-system/SLC7A11;
GPX4, glutathione peroxidase 4; ROS, reactive oxygen species; PARP, poly ADP-ribose polymerase; ABCA1, ATP-
binding cassette transporter A1; ABCG1, ATP-binding cassette subfamily G member 1; ERRα, estrogen receptor
related-α; SIRT, sirtuins; LKB1, liver kinase B1; AMPK, adenosine 5′-monophosphate-activated protein kinase;
A(2A)R, α2A-adrenoceptor; PAH, Pulmonary arterial hypertension; MLCK, myosin light chain kinase; p-MLC,
phosphorylated myosin light chain; COX, cyclooxygenase; LOX, lipoxygenase; KLF, Krüppel-like factor; C/EBP,
CCAAT enhancer binding protein; CHOP, CCAAT enhancer-binding protein homologous protein; CPT1, carnitine
palmitoyl-transferase1; SREBP-1c, sterol regulatory element binding protein 1c; PPAR, peroxisome proliferator-
activated receptor; Keap1, Kelch-like ECH-associated protein 1; IκB, nuclear factor of kappa light polypeptide
gene enhancer in B-cells inhibitor; TNF, tumor necrosis factor; IL-6, interleukin-6; TLR, Toll-like receptors; Th17, T
helper cell 17; Treg, regulatory T cells; PDE4, phosphodiesterase 4; MPO, myeloperoxidase; NO, nitric oxide; OA,
osteoarthritis; miR-126, microRNA-126; PGE2, prostaglandin E2; ET-1, endothelin-1; mTOR, mammalian target
of rapamycin; Tfh, follicular helper T cell; Tfr, T follicular regulatory Cells; Wnt, wingless/integrated; NLRP3,
nod-like receptor, pyrin domain containing 3.
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2. Antitumor Effects
In recent years, there has been an increase in the development of natural anti-cancer

compounds due to their therapeutic efficacy, fewer side effects, and lower cost [71]. Early
studies focused on formulations containing baicalin. Dating back to the 1990s, Japanese
scientists conducted a considerable amount of research on sho-saiko-to, which was the most
popular herbal medicine and contained huangqin as the main component, and confirmed
its effect on suppressing hepatocellular carcinoma and cholangiocarcinoma in vitro [72,73].
Another study pointed out that sho-saiko-to displayed antitumor and anti-metastatic
effects on melanoma in vivo and in vitro [74]. However, formulations make it difficult
to attribute the effects directly to baicalin, and studies on purified baicalin have been
increasingly focused. The direct anticancer activities of baicalin have been confirmed in
prostate cancer, lung cancer, lymphoma, and hepatocellular carcinoma (HCC) [32,33,75–77].
And multiple signaling pathways are involved, including apoptosis, the cell cycle, invasion,
migration, angiogenesis, autophagy, and immune evasion [78,79]. Sometimes it seems to be
controversial across different studies. For example, research conducted by Su’s group tested
concentration-dependent cell growth inhibition in response to baicalin (50–200 µmol/L)
in breast cancer cells MCF-7 and MDA-MB-231, and the effect was enhanced when in
combination with baicalein [80]. While another study found that baicalin (100 µg/mL,
224 µmol/L) enhanced the growth of MCF-7 human breast cancer cells, but baicalein and
wogonin significantly inhibited MCF-7 cell growth [81]. These inconsistent findings could
be due to the differences in cell line sensitivities, cell states, experimental conditions, or
the concentration of baicalin. Such discrepancies emphasize the need to test different
drug concentration gradients and multiple cell lines. In most studies, this direct antitumor
effect is mainly accomplished through apoptosis, cell cycle arrest, and ferroptosis [41].
Dou et al. illustrated that baicalin treatment dramatically inhibited tumor growth not by
inducing apoptosis but through the induction of tumor cellular senescence; moreover, they
established decidual protein induced by progesterone as a key node regulating senescence
induction, which could be a novel target for cancer treatment [34]. And in a recent study,
researchers found that autophagy is also a strategy by which baicalin inhibits tumor
growth [82]. Except for the inhibition of cell growth and proliferation, baicalin exerts its
antitumor effects by inhibiting migration and invasion [83,84], which plays a vital role
in the progression of cancer and is usually associated with poor prognosis. Furthermore,
this study also demonstrated that baicalin suppressed HCC cell growth and metastasis
by inhibiting ROCK1 signaling, which regulates cell polarity and migration by boosting
actomyosin contraction and focal adhesions, and ROCK1 might be a stable and direct
target of baicalin [40]. This indicates that baicalin not only acts through broad cytotoxic
mechanisms but also targets specific regulatory molecules of metastasis, suggesting good
therapeutic selectivity.

Tumor progression is also modulated by the tumor microenvironment (TME), which
is the home of cancer cells and serves as a bridge connecting cancer with the entire or-
ganism [85]. The TME is populated by many immune cells, of which macrophages are
among the most abundant [86]. Generally, macrophages are classified into M1 and M2.
M1 is often considered antitumoral, and M2 is typically regarded as pro-tumoral. There
are several studies demonstrating that baicalin mediates tumor-associated macrophage
(TAM) repolarization and suppression of tumor progression. Feng’s group measured
M1/M2-like macrophages in the liver of baicalin-treated mice, and they found that baicalin
treatment led to an increase in the M1-like macrophage population while there was a
significant reduction in the M2-like population in the liver tissue of the mice. This was
further evidenced by the fact that baicalin skewed M2-like macrophages toward the M1-like
phenotype, without causing any significant changes in M1-like macrophages in vitro [33].
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Also, in non-small cell lung cancer, baicalin effectively inhibited tumor growth in Lewis
lung carcinoma tumor-bearing mice and increased the infiltration of M1-type macrophages
in the TME [87]. When combined with a nano-complex, the baicalin taken up by TAMs was
released to the tumor sites, and it not only killed tumor cells directly but also remodeled the
tumor microenvironment, as mentioned above [88]. Except for macrophages, baicalin also
induces responses in T and B cells [89]. Nonetheless, studies on its immunomodulatory
functions beyond macrophages are inadequate, and more research is needed to clarify
whether baicalin can support long-term antitumor immunity.

Despite the considerable advances that have been made in cancer treatment,
chemotherapy remains widely used. However, drug resistance is an obstacle to clinical
effectiveness. Studies have shown how baicalin works in chemotherapeutic resistance. In
breast cancer cell lines, baicalin was able to enhance doxorubicin cytotoxicity via the reactive
oxygen species (ROS)/[Ca2+]-mediated intrinsic apoptosis pathway [90]. Consistent with
this, baicalin successfully enhanced sensitivity to 5-Fluorouracil and reduced Ehrlich tumor
growth (a spontaneous murine mammary adenocarcinoma) via cooperative inhibition of
inflammation, angiogenesis, and triggering apoptotic cell death [38]. Also, an efficient
in vitro and in vivo study in colorectal cancer showed that baicalin enhanced the effect of
5-fluorouracil-based chemotherapy via inhibition of the CDK-RB pathway [39]. Studies
in gastric cancer cell lines have provided evidence that baicalin enhances 5-Fluorouracil
by promoting ROS-related ferroptosis in gastric cancer and inhibits drug resistance [42].
These findings support the potential of baicalin as a chemosensitizer, but the safety and
pharmacokinetics of baicalin in combination therapy need to be evaluated systematically.

Taken together, baicalin effectively inhibits the growth of various cancer cells and leads
to tumor shrinkage. On the one hand, it kills cancer cells and inhibits proliferation; on the
other hand, it plays a role in immune cells and remodels the tumor microenvironment. More
importantly, when in combination with other chemotherapeutic drugs, 5-fluorouracil, for
instance, it alleviates chemotherapy resistance while retaining its own antitumor function
at the same time.

3. Cardiovascular Protection Effects
Cardiovascular diseases (CVDs) are the leading cause of death globally. An esti-

mated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths.
Baicalin has been reported to improve hyperglycemia-induced dysplasia of the cardio-
vascular system during early embryo development. In early chick embryos, it rescued
hyperglycemia-induced cell proliferative reduction and apoptosis increase, redressed the
unbalanced secondary effect of autophagy on heart tube formation, and stabilized the
oxidative stresses’ secondary effect on angiogenesis, thus reversing the hyperglycemia-
inhibited development of early chick embryos [91]. Herein, we review the protective effects
and underlying pharmacological mechanisms of baicalin against CVDs. The available
studies suggest that baicalin has great potential for the treatment of CVDs and is worthy of
more research.

3.1. Protection of the Heart

Myocardial ischemia is a main factor that leads to the loss of cardiomyocytes. In
hypoxia/reoxygenation (H/R)-treated neonatal rat cardiomyocytes, baicalin pretreatment
reduced cell death, attenuated oxidative stress, and improved morphological changes; what
is more, it suppressed inflammatory cytokine IL-6, increased anti-inflammatory cytokine
IL-10 levels, and inhibited the nuclear translocation of NF-κB induced by H/R. These
results indicate that baicalin has a positive effect on cardiomyocytes suffering from H/R
insults through antioxidation and anti-inflammation mechanisms [92]. Furthermore, the
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protective effect was verified in vivo. Baicalin improved cardiac function, decreased the
area of myocardial infarction, and inhibited the apoptosis of myocardial cells in myocardial
ischemia–reperfusion (IR) rats, and the protective mechanism was related to the promotion
of NO production and the inhibition of necroptosis in cardiac microvascular endothelial
cells through activation of the PI3K-AKT signaling pathway [93]. Zeng et al. conducted a
meta-analysis of animal studies on the positive pharmacological effects of baicalin on IR
injury, illustrating a chain of preclinical evidence and providing rigorous and systematic
support for further clinical research [94].

Another cardiomyocyte disorder is myocardial hypertrophy, which is a compen-
satory response to a persistent increase in load. In both angiotensin II (Ang II)-induced
cardiomyocyte hypertrophy in vitro models and abdominal aortic constriction-induced
mouse cardiac hypertrophy in vivo models, baicalin exerted an anti-cardiac hypertrophy
effect. Molecular docking experiments indicate that baicalin might directly interact with
PSMB5, inhibiting the activation of the proteasome and the degradation of SIRT3, whose
downstream signaling pathway has an impact on cardiac hypertrophy [45].

3.2. Regulation of Blood Vessels

The effect of baicalin in regulating blood vessels is reflected in multiple aspects, includ-
ing anti-atherosclerosis, angiogenesis, and vasodilation. Atherosclerosis is a chronic inflam-
matory disease of the arterial wall, with an imbalanced lipid metabolism and a maladaptive
immune response involved [95]. The excessive proliferation and migration of vascular
smooth muscle cells (VSMCs) are important events in the development of atherosclerotic
lesions. Baicalin induced growth arrest in platelet-derived growth factor (PDGF)-BB stim-
ulated VSMCs via blockade of the PDGF receptor β-ERK1/2 signaling cascade. In rat
carotid arterial balloon-injury models, it also prevented neointimal hyperplasia [96]. Also,
Jin’s group reported that baicalin exerted anti-atherosclerosis effects through regulation
of the lipid profile. In THP-1 cells, decreased ox-LDL-induced foam cell formation and
intracellular lipid accumulation were observed at nontoxic concentrations [43]. Similarly,
an in vivo study demonstrated that baicalin decreased lipid accumulation by upregulating
the lipolysis-related proteins peroxisome proliferator-activated receptor α(PPARα) and
carnitine palmitoyl-transferase1 (CPT1) and suppressing adipogenesis-related proteins
sterol-CoA response element binding protein-1c (SREBP-1c) and ACS; in addition, lower ex-
pression of LDL-C and TG and higher concentrations of TCH were detected in the baicalin
model group compared with the AS group. Except for the anti-adipogenic effect, antioxi-
dant and anti-inflammatory effects also participate in anti-atherosclerotic action [97]. In one
study, it was shown that baicalin exhibited potent biological activity to restore the function
of endothelial cells and inhibited VSMC proliferation and migration and the release of
inflammation markers from activated macrophages [98]. These studies collectively suggest
that baicalin exerts multi-target anti-atherogenic potential, likely through a combination of
endothelial restoration, lipid regulation, and inflammation suppression.

Angiogenesis plays a critical role in injury caused by ischemia, like stroke and my-
ocardial infarction. Vascular endothelial growth factor (VEGF) is one of the most specific
factors that stimulate angiogenesis. Through the activation of the ERRα, baicalin induced
VEGF expression and angiogenesis [44]. This underscores baicalin’s therapeutic promise in
ischemic cardiovascular conditions by promoting vascular regeneration.

Hypertension, characterized by elevated systemic arterial pressure, represents a major
risk factor for cardiovascular diseases and remains the leading cause of premature death
worldwide [99]. Vascular constriction/relaxation function directly affects blood pressure.
Influx of extracellular Ca2+ regulates the contraction of smooth muscle; the major pathway
for this increase is through voltage-dependent Ca2+ channels (VDCCs). Large-conductance
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Ca2+-activated channels, acting as a negative feedback mechanism, play a central role in
the regulation of vascular tone [100]. Baicalin showed VDCC inhibition and BK activation
properties by stimulating the cGMP/PKG and cAMP/PKA pathways [101]. Also, baicalin
effectively decreased vascular tension in spontaneously hypertensive rats’ (SHR) aortas
and lowered their blood pressure. The activated ATP-sensitive potassium channel is, in
part, explained by the vasorelaxant effect of baicalin [102]. RNA sequence analysis was con-
ducted to explore the underlying mechanisms of baicalin on hypertension, and the calcium
signaling pathway and vascular smooth muscle contraction signaling pathways were found.
Through a series of experiments, Peng’s group not only verified that baicalin reversed the
elevation of BP, vascular pathological injury, and VSMC proliferation induced by Ang II, but
also demonstrated that the mechanism was due to the activation of the MLCK/p-MLC sig-
naling pathway and decreased intracellular calcium release in VSMCs [47]. These findings
collectively indicate that baicalin improves hypertension mainly through the synergistic
regulation of vascular tone and calcium-dependent contractile machinery.

4. Neurological Disorders
Brain disorders such as cerebral ischemia and neurodegenerative diseases have become

the biggest threats to people [103]. Emerging data indicate the potential neuroprotective
function of baicalin in the treatment of these diseases. In vitro, baicalin showed protective
effects on PC12 cells suffering from colistin sulfate-induced apoptosis [104]. For brain
diseases, effective blood–brain barrier (BBB) penetration is a formidable challenge [105].
Evidence from multiple studies supports the potential of baicalin passing through the
BBB [106], which is the basis for its effect on the central nervous system. Recently, many
studies have focused on borneol–baicalin liposome [107,108]. Borneol is widely used for
“waking up” the brain according to TCM theory. As expected, the addition of borneol
prolonged the efficacy time of baicalin, improved blood–brain barrier integrity, and better
exerted the therapeutic effect on cerebral I/R injury in vivo and in vitro. Improving the
bioavailability of baicalin can also be achieved by transforming the method of drug admin-
istration. Nose-to-brain drug delivery administration is an alternative way for baicalin to
be used to treat brain diseases [109]. Baicalin-loaded ligand-modified nanoparticles were
prepared for nose-to-brain delivery, and the effect was significant because baicalin was
delivered to the entire brain with little delivery to the peripheral circulation [110].

4.1. Neuroprotection in Ischemic Stroke

Stroke is a leading cause of mortality and disability worldwide. Ischemic stroke
caused by arterial occlusion is responsible for the majority of strokes. Increasing knowledge
about the exact pathophysiology of stroke is necessary to design suitable drugs. The
ischemic cascade responses in cells include reduced availability of glucose and oxygen,
increased extracellular levels of glutamate, neuronal calcium influx (mediated via the
N-methyl-D-aspartate (NMDA) ion receptor (NMDAR)) and subsequent production of
nitric oxide by neuronal nitric oxide synthase (NOS), blood–brain barrier dysfunction, and
pro-inflammatory cytokine release from microglia, leading to an inflammatory response;
the result of all of these cumulative effects is neuron death. Interruption of these processes
may provide a way to prevent, or at least reduce, the ischemic damage. Management of
ischemic stroke focuses on rapid restoration of blood flow with intravenous thrombolysis
and endovascular thrombectomy, and this is critical to reduce disability [111]. Tissue
plasminogen activator is the only FDA-approved drug for the treatment of cerebral ischemia.
Together with this, neuroprotective therapy represents another major strategy for ischemic
stroke [112]. Advances in the natural flavonoid baicalin are highlighted in improving
neuroprotection following brain ischemia injury.
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The authors of a previous study assessed the efficacy of baicalin in rat models of
cerebral artery occlusion, and neurological deficits, cerebral infarct volume, and patho-
morphological change in ischemic brain tissue were assessed. These three indicators were
all improved in the baicalin group compared with the ischemia group; also, cerebral in-
farct volume was similar in the valproic acid (positive control) and baicalin groups [113].
These findings suggest that baicalin appears to be a potential therapeutic agent for the
treatment of ischemic stroke. Considerable effort has been made to identify the targets of
baicalin and the pathways it regulates. In nuclear magnetic resonance titration experiments,
baicalin displayed high PDZ2 binding affinity, which is associated with NMDAR [114].
Gene expression profiling was conducted to identify the differential gene expression and
the pharmacological mechanism of baicalin in cerebral ischemia rats. By comparing the
differences in infarction areas before and after baicalin treatment, cell signal transduction
and protein phosphorylation were significant [115]. After improving the research method,
Wang et al. used transcriptome analysis to explore the pure therapeutic mechanisms of
baicalin contributing to phenotype variation and the reversal of pathological processes in
ischemic stroke mice. According to the analysis, seven specific targeted molecules were
found; they are ATF3, BCL2L1, ARF1, FGF12, GRIN1, MAP2K6, and PRKAR1E. Forty-one
differentially expressed genes were identified. Based on these genes, a statistically signifi-
cant network was constructed, and the functions of the target network include cell death,
genetic disorder, and immunological disease. Fifty-one canonical pathways and seventy
biological functions were identified. This pure mechanistic analysis might provide a clearer
outline of the target profiles of baicalin therapies [116].

Glutamate is considered the triggering spark in the cascade of responses of ischemic
neuronal damage. Its level was increased with excessive neurological stimulation, causing
glutamate-induced neuronal toxicity and excitotoxicity [117]. In the process of glutamate
clearance, Na+-dependent high-affinity glutamate transporters (excitatory amino acid trans-
porters, EAATs) remove glutamate from the extracellular space to maintain its extracellular
concentration below excitotoxic levels. Of all five EAATs, EAAT2 (GLT-1), the glial-type
glutamate transporter, provided the majority of total glutamate uptake. Moreover, glu-
tamine synthetase (GS) in astrocytes was required for the glutamate–glutamine cycle and
helped glutamate be repackaged into synaptic vesicles [118]. Baicalin might help with the
clearance of glutamate via different mechanisms. It was confirmed to upregulate GLT-1
expression in peri-infarct cortices in hypoxic–ischemic encephalopathy models 24 h after
injury and exhibited protective effects [119]. Also, baicalin was found to maintain GS
protein stability from 20S-mediated proteasomal degradation in astrocytes [120]. These
results provide evidence to support baicalin’s ability to combat glutamate excitotoxicity to
prevent ischemic neuronal injury.

The inflammatory response to cerebral ischemia is another important process in
stroke pathobiology and neuronal death. 5-lipoxygenase is a key enzyme in the catalytic
conversion of arachidonic acid to inflammatory mediator leukotrienes. Studies in oxygen–
glucose deprivation-induced neuronal damage indicate that baicalin inhibits 5-lipoxygenase
activation mediated by NMDAR and oxidative stress [121,122]. Moreover, Chen’s results
demonstrated the neuroprotective effect of baicalin on permanent middle cerebral artery
occlusion (pMCAO) rat models, and this protection might be associated with its potent anti-
inflammatory and antiapoptotic properties. In further detail, mRNA expression of iNOS
and COX-2 in the ischemic brain after pMCAO decreased after baicalin treatment [123]. In
another study, the effects of baicalin on the TLR2/4 signaling pathway were investigated.
Both in the oxygen glucose deprivation model in vitro and the I/R model in vivo, TLR2/4
responded to the damage, and the expression of its downstream factor, tumor necrosis
factor α (TNFα), increased. As for NF-κB, baicalin not only decreased its expression but also
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inhibited its translocation from the cytoplasm to the nucleus in vitro [124]. These studies
show that the protective role of baicalin in ischemic neuronal injury is closely related to its
anti-inflammatory properties.

The disruption of the BBB is also a factor that aggravates the brain damage observed in
cerebral IR injury. Baicalin has been found to be capable of restoring the barrier function of
the BBB in various conditions [125,126]. Therefore, baicalin can preserve brain tissue viabil-
ity before reperfusion through anti-excitotoxicity and anti-inflammatory effects, protection
of the BBB’s integrity properties, etc. (Figure 3).

 

Figure 3. Neuroprotective effects of baicalin in ischemic stroke. Yellow balls indicate baicalin.

4.2. Neuroprotection in Neurodegenerative Diseases

A wide spectrum of neurodegenerative disorders, such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD), affect the central nervous system (CNS). Characterized
by the progressive degradation of synapses and axons, they eventually lead to neuronal
death [127]. Baicalin can act as an iron chelator to protect dopaminergic neurons and
delay PD neural degeneration in Parkinson’s disease rats [48]. In C6 glioma cells, baicalin
decreased divalent metal transporter1 expression, increased ferroportin1 expression, sub-
sequently lowered the iron concentration, and protected nerve cells [128]. As for AD, the
improvement of cognitive function and brain damage and decreased eicosanoid production
were observed in mice models of flavocoxid (a mixture of purified baicalin and catechin),
and these protective effects could be attributed to its anti-inflammatory and anti-apoptotic
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properties [49]. Analogous to the BBB, the blood–spinal cord barrier (BSCB) is a specialized
protective barrier that plays a crucial role in maintaining the homeostasis and internal
environmental stability of the CNS [129]. Disruption of the BSCB is common in neurodegen-
erative diseases and CNS traumatic injury. In an established spinal cord injury rat model,
baicalin evidently restored BSCB integrity. And in SH-SY5Y cell models of excitotoxicity,
baicalin showed similar results and significantly promoted PI3K and Akt phosphorylation,
rescuing tight junction protein loss and reducing neuronal apoptosis.

4.3. Antidepression

Depression is a major mental health-related disease. Different from other diseases,
its onset is mainly in mid-to-late adolescence. It prevents people from reaching their full
potential; thus, it is prospectively associated with serious issues, including suicide [130].
Currently, depression is conceptualized as a disorder of neural networks, incorporating
changes in widely distributed brain areas. Improving synaptic plasticity and modulators
of monoamines (e.g., serotonin, noradrenaline, and dopamine) are effective antidepres-
sants [131]. Immune dysfunction is proposed to be relevant in depression. Numerous
studies have confirmed the potential role of baicalin in the reversion of depressive-like
behaviors. On the one hand, baicalin protects neurons, promoting neuronal survival, pro-
liferation, maturation, and synaptic plasticity [132–135]. On the other hand, it alleviates
neuroinflammation. Associative evidence is strong, with decreased inflammatory cytokine
levels, including interleukin IL-β, IL-6, and TNFα, after baicalin administration [136,137].
In addition, several studies have analyzed the potential protective effects of baicalin in
improving spatial learning and memory deficits and controlling primary symptoms of
attention-deficit hyperactivity disorder (ADHD), which may be influenced by neuroinflam-
mation, but the mechanism needs further investigation [138].

In addition, demyelinating lesions are common pathologic characteristics of various
CNS diseases, and baicalin has been reported to promote myelin production and regenera-
tion by activating the peroxisome PPARγ signaling pathway [50]. New progress in the use
of baicalin for epilepsy treatment has also been revealed [139].

As discussed above, baicalin may exhibit neuroprotective effects on multiple CNS dis-
orders via mechanisms involving antioxidant stress [140], anti-apoptotic, anti-inflammatory,
and anti-excitotoxic effects, ameliorating BBB disruption and promoting neurogenesis, and
cell differentiation. As mentioned above, all of this evidence is from preclinical studies, and
clinical application needs further concerted effort.

5. Regulation of Metabolic Disorders
With changes in lifestyle, metabolic diseases have become a significant burden world-

wide. Metabolic diseases include hypertension, type 2 diabetes mellitus (T2DM), hyper-
lipidemia, obesity, and, more recently, non-alcoholic fatty liver disease (NAFLD). Many of
these diseases occur in tandem and share common risk factors [141]. For example, dyslipi-
demia is a common cause of obesity, hyperlipidemia, and NAFLD. The pathophysiology of
T2DM and NAFLD can be largely attributable to insulin resistance. Mounting evidence
demonstrates that baicalin is linked to metabolic regulation, which may provide useful
hints for the treatment of metabolic diseases [142–145] (Figure 4). To better understand its
pharmacological roles, the metabolic effects are separated in the context of lipid metabolism,
glucose homeostasis, and cross-talk pathways involving oxidative stress and inflammation.
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Figure 4. The mechanism of baicalin for the management of metabolic disorders. Yellow balls
indicate baicalin.

5.1. Obesity and NAFLD

Obesity, or being overweight, is a condition of excessive fat deposits that presents
a risk to health. NAFLD is considered one of the complications of hyperlipidemia and
obesity, characterized by the accumulation of toxic lipid species in the liver, which induces
hepatocellular stress, injury, and death [146]. Thus, lipid metabolism is closely linked to
the etiologies of obesity and NAFLD. Using a system of 3T3-L1 preadipocytes, baicalin was
shown to inhibit the differentiation of preadipocytes into adipocytes. Microarray analyses
showed that baicalin modulated adipogenesis and cholesterol biosynthesis pathways, and
this was confirmed in 3T3-L1 preadipocytes [52]. This result demonstrated the modulation
of adipogenesis in adipocytes by baicalin. Its ability in hepatocytes has also been extensively
studied. First, we expect to elucidate the pathways leading to lipo-toxicity. Excessive fatty
acids serve as substrates for the generation of lipotoxic species. Lipolysis of triglycerides in
adipose tissue is the main source of fatty acids in the liver [147]. The second major source
of fatty acids is their synthesis from glucose and fructose through de novo lipogenesis,
in which acetyl-CoA carboxylase and SREBP-1c play a positive role. In addition, PPARγ
ligands enhance the diversion of fatty acids away from the liver [146].

To regulate the processes discussed above, baicalin has shown promise in modulating
key transcriptional factors and enzymes through AMP-activated protein kinase (AMPK)
activation, which is the central regulator of lipid metabolism. Cellular energy sensor AMPK
activation may improve NAFLD by inhibiting lipid and sterol synthesis and stimulating
alterations. In this case, baicalin reduced hepatic lipid levels in high-fat diet (HFD)-fed rats,
and this protective effect was mainly associated with significant enhancement of hepatic
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AMPK activation. Furthermore, effects on circulating lipid levels were also confirmed [148].
In a similar study, Li et al. discovered that baicalin ameliorated HFD-caused lipid ac-
cumulation in mouse liver models and found that it upregulated the phosphorylation
of AMPK at the Thr172 site, and the protective roles of baicalin against NAFLD were
exerted through AMPK-mediated modulation of the SREBP1/Nrf2/NF-κB pathways [56].
Fatty acids in the liver were metabolized either via mitochondrial β-oxidation or through
esterification to form triglycerides. CPT1 is the rate-limiting enzyme for the fatty acid
oxidation process; thus, increasing its level would be a logical strategy for therapy. Wang’s
group performed quantitative chemo-proteomic profiling and identify CPT1A as the di-
rect target of baicalin. Decreasing CPT1A activity impaired the anti-steatosis activity of
baicalin in vitro. Furthermore, in the DIO animal model, baicalin ameliorated diet-induced
obesity and hepatic steatosis. Further disruption of the predicted binding site of baicalin
on CPT1A completely abolished the beneficial effect of baicalin [54]. In addition, CPT1
activity seems to be modulated by AMPK activity. Therefore, CPT1A binding and AMPK
activation may underlie baicalin’s therapeutic mechanism. There also exists a study about
the herb–drug interaction between baicalin and rosuvastatin, which was used for the clini-
cal treatment of dyslipidemia. To a certain extent, baicalin induced hepatic rosuvastatin
uptake and decreased rosuvastatin plasma concentrations [149]. Furthermore, baicalin has
significant effectiveness in the treatment of NAFLD-related fibrosis and shows potential in
hepatoprotective properties [150].

5.2. Diabetes

Diabetes is defined as a chronic, metabolic disease characterized by elevated levels of
blood glucose, which leads, over time, to serious damage to macrovascular systems, the
eyes, kidneys, and nerves. It occurs either when the pancreas does not produce enough
insulin or when the body becomes resistant to it. Numerous experiments involving baicalin
have shown that it can improve diabetes in preclinical animal models. The anti-diabetic
effects of baicalin cover the main insulin-sensitive tissues, such as skeletal muscle, adipose
tissue, and the liver.

Controlling hyperglycemia is of great importance for diabetes treatment, which can be
achieved through an increase in glucose consumption and the inhibition of gluconeoge-
nesis. In this regard, Wang et al. reported that baicalin decreased plasma glucose levels
in a dose-dependent manner in a model of streptozotocin–nicotinamide-induced diabetic
rats. In fact, they revealed that the protective properties might be exerted by increasing
the hepatic glycogen content and glycolysis [151]. In one study, Wang and coworkers eval-
uated the glucose consumption level in palmitate induced-insulin resistant HepG-2 cells.
They found that baicalin significantly increased glucose consumption and downregulated
gluconeogenic genes via the AMPK signaling pathway [152]. Similarly, another study also
determined that baicalin suppressed gluconeogenic gene expression in the liver of HFD-fed
mice. Moreover, in this study, it was shown that this effect of baicalin was dependent on
STAT3 acetylation and activity, regulated by the downregulation of SirT1 [143]. Further-
more, the p38MAPK inhibitor has been shown to strengthen the inhibitory effects of baicalin
on glucagon-mediated gluconeogenic gene expression, indicating that baicalin suppresses
gluconeogenic activity, at least in part, via the downregulation of p38MAPK [142]. The
convergence of multiple pathways suggests that baicalin exerts coordinated regulation of
hepatic glucose production.

Another strategy for the treatment of diabetes is the improvement of insulin resistance.
It is the decreased sensitivity of target tissues to glucose uptake in response to insulin. In
normal conditions, glucose transporter isoform 4 (GLUT4) responds to insulin signals and
translocates from the cytoplasm to the cell surface, facilitating the storage of glucose. Sev-
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eral studies have indicated the protective effects of baicalin on the upregulation of GLUT4
levels. Yang et al. found that baicalin promoted glucose disposal in adipocytes dependent
on increased AMPK phosphorylation, which subsequently enhanced AS160 phosphoryla-
tion, resulting in increased GLUT4 translocation to the plasma membrane [153]. Similar
conclusions were also confirmed in myotubes [144,154]. In addition, activated insulin
signaling pathways were also reported after baicalin administration in DIO mice [155].

Chronic hyperglycemia leads to complications of diabetes, consisting of microvas-
cular diseases, such as retinopathy, neuropathy, and nephropathy, and macrovascular
diseases, including coronary heart disease and cerebrovascular disorders. Excess mito-
chondrial superoxide production explains the pathobiology of diabetic complications, with
inflammation also being involved [156]. Baicalin is an efficient antioxidant through the
increased expression of antioxidant enzyme activities in type 2 diabetic rats [157]. In
diabetes-associated cognitive impairment, the antioxidant and anti-inflammatory defense
of baicalin was mediated through the KEAP1-Nrf2 axis [158]. Its protective effects were
also confirmed in hyperglycemia-induced malformation of the cardiovascular system [91]
and diabetes-associated kidney disease [58,59]. These studies emphasize the potential of
baicalin not only as a hypoglycemic agent but also as a systemic protector against diabetes-
related end-organ damage. In addition, one study reported that baicalin suppressed the
progression of type 2 diabetes-induced liver tumors through the reversal of high glucose
concentration-induced JAK2/STAT1/caspase-3 inhibition [159].

Glucose metabolism and lipid metabolism have a clear and complex biological link.
For example, diabetes can lead to disorder in bone–fat balance, and the progression of
diabetic nephropathy is usually due to the obstruction of fatty acid oxidation in the renal
tubules [59,160]. Baicalin often targets the skeletal muscle, the adipose tissue, and the liver
to exert its beneficial effects on glucose and lipid metabolism [145]. In animal models, it has
shown great effects in reducing body weight, decreasing hyperglycemia, and mediating
dyslipidemia. Taken together, baicalin holds strong translational potential, yet further
validation in clinical applications is necessary.

6. Discussion
In this review, we summarize the current knowledge regarding the pharmacological

effects and associated mechanisms of baicalin in tumors, cardiovascular diseases, and
neurological and metabolic disorders. From these studies, we conclude that many of the
biological effects of baicalin are attributed to its potent anti-inflammatory and antioxidant
capacities [161–163] (Figure 5). ROS are closely linked to a variety of oxidative stress-related
diseases such as diabetes, Alzheimer’s disease, and Parkinson’s disease. Ferroptosis, a
recently discovered type of programmed cell death characterized by the overproduction
of ROS [164], is also relevant here. Baicalin can play a protective role in various tissues
by scavenging ROS and inhibiting ferroptosis [122,164]. The ortho-dihydroxyl groups in
ring A of baicalin contribute significantly to its radical scavenging ability [165–167]. As
for its anti-inflammatory properties, baicalin modulates various inflammatory signaling
pathways, including STING, the NLRP3 inflammasome, TLRs, and NF-κB. Extensive stud-
ies have been conducted using different inflammatory disease models, demonstrating that
baicalin acts on diverse immune cell types, especially macrophages, T cells, and mast cells.
Most experiments have examined the effects on macrophages. Robust evidence supports
the anti-inflammatory effect of baicalin in LPS-induced inflammation in macrophages,
wherein it decreases the expression of pro-inflammatory proteins and genes [168–170].
Similarly, in various animal models of inflammatory diseases, baicalin shows protective
effects by modulating the Th17/Treg paradigm, reducing pro-inflammatory cytokine lev-
els, and increasing Treg cell and related cytokine levels [69,171,172]. Mast cells, which
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play a critical role in allergic reactions, are also influenced by baicalin. For instance, in
ovalbumin-induced allergic rhinitis guinea pigs, oral administration of baicalin improved
histological changes in the nasal mucosa and decreased serum levels of histamine and
other inflammatory markers [64]. The broad anti-inflammatory and antioxidant activities
noted in pharmacological studies also indicate its non-selectivity. Conflicting results are
observed across different disease models, particularly between tumor models and other
disease models. For example, in studies using HCC tumor supernatant-derived TAMs
or BMDM-derived macrophages polarized to M1-like or M2-like phenotypes, baicalin
treatment skewed M2-like macrophages toward an M1-like phenotype without signifi-
cantly affecting M1-like macrophages [33]. These findings, along with others showing
baicalin-induced M1-type polarization [87], contradict its known anti-inflammatory effects.
Regarding ROS, baicalin has been shown to increase ROS levels to inhibit tumors [42] but
decrease peroxide-induced oxidative stress to protect tissues [70,140]. This bidirectional
regulatory profile suggests that baicalin may act through a complex network of molecular
targets. Therefore, we need to further elucidate its differential manifestations across various
cells, tissues, and disease states.

 

Figure 5. Schematic representation of baicalin targeting in key signaling pathways to promote
anti-inflammatory and antioxidant effects. Yellow balls indicate baicalin.



Biology 2025, 14, 637 17 of 27

To date, most studies have focused on phenotypic observations and explored mecha-
nisms to some extent but lack a systematic exploration of the structure–activity relationship
of baicalin. Notably, Wang et al. [54] employed activity-based protein profiling (ABPP),
successfully identifying carnitine palmitoyl-transferase 1 (CPT1) as the specific molecular
target of baicalin. Based on this finding, they conducted further target-oriented structural
modifications, representing a valuable attempt to elucidate its precise molecular mecha-
nisms. From a medicinal chemistry perspective, structure optimization strategies based
on molecular target characteristics hold great promise. Molecular design, aimed at en-
hancing target selectivity, improving pharmacokinetic properties, and reducing toxicity,
is a feasible and valuable approach for advancing baicalin as a candidate for innovative
drug development.

Moreover, while numerous studies have reported promising biological functions, the
majority of them are based on in vitro or murine models. Challenges such as a lack of pre-
cise molecular target identification and an incomplete understanding of long-term effects
hinder the clinical development of baicalin. This highlights the necessity of critically assess-
ing the current preclinical evidence and the underlying mechanisms. Also, well-designed
clinical trials are needed to validate baicalin’s therapeutic efficacy, particularly with regard
to key aspects such as oral bioavailability, human pharmacokinetics, and long-term safety.
It should be noted that a higher dose of drug exposure is required in vivo to achieve an
equivalent effect in vitro due to reasons such as oral bioavailability and drug metabolism.
In animal models, various strategies have been proposed to enhance its drug transport
and administration methods. Interestingly, a combination of acupuncture with the oral
administration of Scutellaria baicalensis Georgi extracts significantly improved baicalin ab-
sorption in normal rats [173]. Additionally, novel drug delivery systems have attracted
attention in the pharmaceutical field. For example, Labrasol, a penetration enhancer, has
been shown to increase the corneal permeability and bioavailability of baicalin following
topical administration in rabbits [174]. Low-molecular-weight chitosans have also been
found to enhance baicalin’s transdermal delivery [175]. Regarding pharmacokinetics, the
discrepancy between in vitro and in vivo active forms is often overlooked, and the metab-
olized components may induce toxicity. Therefore, it is necessary to clearly explain the
true components of the drug after metabolism in the body. The toxicity of TCM has always
been a concern, with liver injury reported as a proven adverse effect of flavocoxid (which
includes baicalin and catechins) [176]. However, another study found no toxicological
changes or mortality after oral administration of fermented Scutellariae radix extract at
a dose of up to 2000 mg/kg in rats or dogs [177]. Experimental data also suggest that
baicalin exerts hepatoprotective activity against various hepatotoxic insults, including drug-
induced hepatotoxicity [178], liver injury [179,180], hepatic fibrosis [181,182], non-alcoholic
steatohepatitis [55], and cirrhosis [183].

Therefore, future studies on baicalin should focus on the following aspects:

I. Identifying specific molecular targets in different diseases;
II. Exploring the dose–response relationship between baicalin and the tissue-specific

response mechanism under multi-organ and multi-pathological conditions to delineate
its tissue selectivity;

III. Standardizing baicalin preparations, clarifying its pharmacokinetic characteristics,
and exploring its application in combination therapies to bridge the gap between
bench and bedside;

IV. Optimizing chemical structure or delivery systems to enhance its oral bioavailability,
stability, and overall pharmacological efficacy.
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7. Conclusions
Baicalin’s versatile beneficial functions in human diseases are increasingly recog-nized,

further clinical studies are needed to identify the mechanisms involved in specific human
pathological conditions. Moreover, while validating its efficacy through scientific and
modern methods, we aspire to unearth its more potent pharmacological actions and, when
necessary, employ advanced techniques to structurally modify it, thereby enhancing its
value and therapeutic potential.
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Abbreviations
The following abbreviations are used in this manuscript:

TCM traditional Chinese medicine
HCC hepatocellular carcinoma
TME tumor microenvironment
TAM tumor-associated macrophage
ROS reactive oxygen species
CVDs cardiovascular diseases
H/R hypoxia/reoxygenation
IR ischemia–reperfusion
Ang II angiotensin II
AAC abdominal aortic constriction
VSMCs vascular smooth muscle cells
PDGF platelet-derived growth factor
VEGF vascular endothelial growth factor
VDCCs voltage-dependent Ca2+ channels
BK large-conductance Ca2+-activated channels
BBB Blood–brain barrier
NMDA N-methyl-D-aspartate
NOS nitric oxide synthase
GS glutamine synthetase
pMCAO permanent middle cerebral artery occlusion
TNFα tumor necrosis factor α
AD Alzheimer’s disease
PD Parkinson’s disease
CNS central nervous system.
BSCB blood–spinal cord barrier
PPAR peroxisome proliferator-activated receptor
T2DM type 2 diabetes mellitus
NAFLD non-alcoholic fatty liver disease
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SREBP-1c sterol-CoA response element binding protein-1c
AMPK AMP-activated protein kinase
HFD high-fat diet
CPT1 carnitine palmitoyl-transferase1
GLUT4 glucose transporter isoform 4
DARTS drug affinity responsive target stability
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