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Abstract: Recently, it has been reported that a camera-captured-like color image can be generated
from the reflection data of 3D light detection and ranging (LiDAR). In this paper, we present that
the color image can also be generated from the range data of LiDAR. We propose deep learning
networks that generate color images by fusing reflection and range data from LiDAR point clouds.
In the proposed networks, the two datasets are fused in three ways—early, mid, and last fusion
techniques. The baseline network is the encoder-decoder structured fully convolution network
(ED-FCN). The image generation performances were evaluated according to source types, including
reflection data-only, range data-only, and fusion of the two datasets. The well-known KITTI evaluation
data were used for training and verification. The simulation results showed that the proposed last
fusion method yields improvements of 0.53 dB, 0.49 dB, and 0.02 in gray-scale peak signal-to-noise
ratio (PSNR), color-scale PSNR, and structural similarity index measure (SSIM), respectively, over the
conventional reflection-based ED-FCN. Besides, the last fusion method can be applied to real-time
applications with an average processing time of 13.56 ms per frame. The methodology presented in
this paper would be a powerful tool for generating data from two or more heterogeneous sources.

Keywords: artificial intelligence; fusion technique; heterogeneous source; image generation; LiDAR
range; LiDAR reflection; sparse input

1. Introduction

Light detection and ranging (LiDAR) sensors are widely used for the advanced driver-assistance
systems (ADAS) and autonomous vehicles. LiDAR sensors provide information that consists of range
(distance) and reflection. LiDAR range data have been used for various applications, such as semantic
segmentation [1–4], 3D mapping [5,6], and object detection [7–14]. On the other hand, reflection data
have been utilized for the recognition of driving-related factors in the environment, such as lanes, road
marks, and traffic signs, which have relatively high reflectivity [15–18].

Interestingly, it has been reported that the deep learning-based encoder-decoder structured fully
convolution network (ED-FCN) can successfully generate camera-captured-like color images from
heterogeneous LiDAR reflection data [19–21]. Note that the ED-FCN network is originally applied
for semantic segmentation. The methods [19–21] consist of two steps, as shown in Figure 1. In the
first step, LiDAR 3D reflection data are projected into 2D color image coordinate. The color image is
generated from the projected reflection data in the second step.
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Figure 1. The camera-captured-like color-image-generation method using 3D LiDAR point clouds.
The method consists of two steps: (a) LiDAR 3D-to-2D projection and (b) color image generation.

In [19], a low-complexity ED-FCN network was used for camera-captured-like gray-scale image
generation. Note that the monochrome images were generated from the LiDAR reflection data.
The projected reflection image had different sparsity and characteristics, compared with the target
image. To increase better generation performance and generate color image, an asymmetric ED-FCN,
i.e., a decoder, with greater depth than the encoder, was proposed in [20]. The asymmetric ED-FCN
outperformed symmetric ED-FCN and the generative adversarial network (GAN)-based colorization
method [22]. Recently, a selected connection UNET (SC-UNET) was proposed in [21], which considers
the sparseness of each level in the encoder network and the similarity between the same levels of
encoder and decoder networks. The SC-UNET with the connection between encoder and decoder at
the two lowest levels outperforms the SC-UNET with other connections and the asymmetric ED-FCN.
One interesting result discussed in [19–21] was that shadow-free images were generated since the
LiDAR reflection data were originally produced, irrespective of the illumination. Note that these
methods [19–21] generate an image only from the reflection data of LiDAR.

In this study, we firstly tried to generate color images using the LiDAR range data. The simulation
result confirms that the color image can be also generated from the range data. Accordingly, we propose
three color-image-generation methods which fuse both reflection and range data to improve the quality
of generated image—early fusion, mid fusion, and last fusion-based LiDAR to color-image-generation
methods. KITTI-based evaluation dataset was used for training and performance verification [20,21].
Peak signal-to-noise ratio (PSNR) [23] and structural similarity index measure (SSIM) [23,24] metrics
were used for the performance evaluation. The number of weights and the average operation time
of the network were used for the comparison of the computational complexities of various image
generation networks. The proposed fusion methods improve image generation performance over the
conventional image generation methods which use only reflection data. In addition, the proposed
fusion methods have operating times applicable to real-time applications. The simulation results show
that the proposed fusion methods give better performance compared reflection-only methods.

The rest of this paper is organized as follows. In Section 2, we propose fusion network architectures
which generates a camera-captured-like 2D color image from both the range and reflection 3D LiDAR
data. The training and inference processes are also described. In Section 3, the performances of
the proposed networks are compared with the performance of the conventional reflection-based
ED-FCN network. Additionally, the range-based ED-FCN network is compared. Section 4 draws
the conclusions.
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2. Proposed Method

The conventional color-image-generation methods [19–21] use only LiDAR reflection data.
To verify the possibility of color image generation from range data, the range data are applied to
the conventional image generation networks. To improve the color image generation performance,
we propose three-color image generation networks using LiDAR range data and reflection data.
Considering that LiDAR range and reflection data have different characteristics, fusion network
architectures were proposed and evaluated through experiments.

2.1. Transformation of 3D LiDAR Point Cloud

The 3D LiDAR point cloud [X, Y, Z, R]T provided by the LiDAR sensor consists of the world
coordinate position [X, Y, Z]T and the reflection data R(X, Y, Z) of the object. The 3D LiDAR point
cloud is projected onto the coordinate [u, v]T of the color image to be generated by using Equation (1).

s

 u
v
1

 =

 fu 0 cu

0 fv cv

0 0 1


 1 0 0 0

0 1 0 0
0 0 1 0

( RC
L tC

L
0 1

)
X
Y
Z
1

 (1)

where s indicates the scale factor, fk; ck and k = u, v are focal length and principal point of the
camera, respectively; and RC

L ∈ R3×3 and tC
L ∈ R1×3 represent the rotation and translation matrices for

LiDAR-to-camera transform, respectively.
The 2D reflection images are obtained according to Equation (2). Practically, several 3D LiDAR

points, (Xi, Yi, Zi), i = 1, . . . , N provided by a LiDAR sensor may be projected onto the same location
of (u, v) in the image plane. In this case, the reflection value, r(u, v) is determined by the average of
the reflection values of the N LiDAR points.

r(u, v) =
1
N

N

∑
i=1

R(Xi, Yi, Zi) (2)

The 2D range images are calculated by using Equation (3). Similarly, for N 3D LiDAR points
projected onto the same location of (u, v), the distance value, d(u, v), is determined by the minimum
of the distance values of the N LiDAR points.

d(u, v) = min
i=1...N

√
X2

i + Y2
i + Z2

i (3)

2.2. Single-Input-Based Color Image Generation

The color-image-generation methods from the LiDAR 2D projected reflection or range image are
shown in Figure 2.
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(a) The conventional LiDAR reflection-based method [20].
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Figure 2. The color camera-captured-like image generation methods using 2D projected (a) reflection
and (b) range data.

2.2.1. LiDAR Reflection-Based Method

Figure 2a shows the ED-FCN-based color-image-generation method by using only a reflection
image proposed in previous works [19,20]. The ED-FCN network generates the RGB color image
(size: 592 × 112 × 3) from the sparse 2D reflection image (size: 592 × 112 × 1). In Figure 2, each block
in the network is expressed by (N f CNk-B- fa)×Nb where the Nb is the number of convolution blocks and
each convolution block is composed of the convolution layer with N f filters with (Nk × Nk) kernel size,
a batch-normalization [25] layer, and fa kind of activation function. For example, (16C3-B-Relu) × 6
means six of the convolution blocks, each of which includes the convolution layer of 16 filters with
(3 × 3) kernel size, the batch-normalize layer, and the ReLU [26] activation function which is repeated
six times. As another example, (3C3-tanh) × 1 means one convolution block including the convolution
layer with 3 filters of (3 × 3) size and the tanh [27] activation function. In each convolution layer,
stride 1 and zero-padding are commonly applied. For down and up samplings, max-pooling and
un-pooling [28] with a factor of 2 are applied, respectively.

2.2.2. LiDAR Range-Based Method

Figure 2b shows a method which uses the same network of Figure 2a but input is replaced with
the range image instead of the reflection image to verify the image generation performance according
to the type of LiDAR data.

2.3. Proposed Multi-Input-Based Color Image Generation

In applications with two or more multi-input datasets with different characteristics, fusion
networks are classified into three types: early fusion [1,2,9,15], mid fusion [3,7–11,29], and last
fusion [2,13] methods, depending on where the data are combined together. In the case of the early
fusion method, multiple sources are concatenated into a single input before being applied to the image
generation network. The mid fusion method merges the features of the intermediate output of each
network with different input data. The last fusion method combines the outputs of each network into
a final output.

Figure 3 shows the proposed fusion-based LiDAR to color image generation networks using
two heterogeneous datasets, i.e., LiDAR reflection and range data, where ED-FCN is used.
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(b) Mid fusion-based LiDAR to color image generation network.
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Figure 3. The proposed fusion-based LiDAR to color image generation networks using LiDAR reflection
and range data: (a) early fusion, (b) mid fusion, and (c) last fusion-based LiDAR to color image
generation networks.

2.3.1. Early Fusion-Based LiDAR to Color Image Generation Network

The projected 2D reflection and range images are concatenated in channel direction to form an
input. For instance, reflection and range images with the resolution of (592 × 112 × 1) are combined
into a (592 × 112 × 2) concatenated image. The concatenated input is applied to the same network as
shown in Figure 2. The overall architecture of the early fusion network is depicted in Figure 3a.

2.3.2. Mid Fusion-Based LiDAR to Color Image Generation Network

For the mid fusion network, as shown in Figure 3b, two encoder networks independently extract
the feature-maps from the projected 2D range and reflection images, respectively. The two feature-maps
are merged by concatenation operation. Additionally, then, the convolution layers with the 256 (1 × 1)
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filters, batch-normalize layer, and ReLU activation are repeatedly applied. Finally, the color image is
generated by using a decoder network which is the same decoder network used in image generation
network with single input.

2.3.3. Last Fusion-Based LiDAR to Color Image Generation Network

For the last fusion network, as shown in Figure 3c, two decoder feature maps are independently
extracted from the projected 2D reflection and range images by using single-input-based image
generation network. It should be noted that the activation functions of the last convolution layer use
ReLU activation, unlike other networks wherein tanh is used. The resultant feature-maps are also
merged by using a concatenation. The final color image is generated by using convolution layer with
the three (1 × 1) filters and following tanh activation.

2.4. Training and Inference Processes

We used a dataset [19,20] composed of a triplet of sparse LiDAR 2D projected reflection images,
sparse 2D projected range images, and their corresponding dense RGB color images. The projected
reflectance and range images were obtained from a LiDAR 3D point cloud with reflection intensity
through Equations (2) and (3). The color images synchronized with the reflection and range data
were captured from the camera and were used for ground truth (GT) data. In the case of the
single-input-based image generation network shown in Figure 2, the 2D reflection image or range
image was used. Additionally, in the multi-input-based image generation network shown in Figure 3,
both the reflection image and the range image were used as input data of the network. The range
and reflection data are normalized into [0, 1], before feeding to the network. The target image of the
image generation network, in other words, GT image, is the RGB color image which corresponds
to the two LiDAR 2D projected images. As the tanh activation function [27] in the last layer in the
image generation networks is used, the dynamic range of generated output data is confined to [−1, 1].
The target color images are, therefore, normalized to have the same dynamic range during the training
process. As in the previous works [19–21], mean squared error (MSE) is used as a loss function
for training.

For training, the proposed network architectures are trained by using adaptive moment estimation
(Adam) solver [30] with a maximum of 2000 epochs. All other parameters are the same as those of the
Adam solver used in [20]. The early stopping technique with a patience parameter of 25 is applied for
validation loss [31].

In the inference process, three-channel output data having the dynamic range [−1, 1] are generated
and normalized for the final RGB color images to have the dynamic range of [0, 255].

3. Experimental Results

3.1. Simulation Environment

3.1.1. Evaluation Dataset

The evaluation dataset was reconstituted from the KITTI raw dataset [32], as in [19,20]. The dataset
consists of a triplet of images—a projected 2D LiDAR reflection image, a 2D LiDAR range image, a and
color image—that were recorded simultaneously. The reflection and range images were used for the
input and the color image was used for ground truth. The triplets of the images that were recorded
under heavy shadows were manually excluded in the evaluation dataset, because one advantage
of the proposed method is to generate shadow-free color images from LiDAR data. The evaluation
dataset consisted of 4308 triplets—2872 triplets for training, 718 for validation, and 718 for testing as
used in [19,20]. All evaluation images had the same resolution of 592 × 112 (66,304 pixels). Both the
reflection and range images had on average 3502 valid values. In other words, the density of both the
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projected 2D LiDAR images was 5.28% [21]. Therefore, both the LiDAR images were very sparse and
even irregular compared to the target RGB color image.

3.1.2. Measurement Metrics

To evaluate the image quality between the generated color image and target color image,
PSNR [23] and SSIM [23,24] were used. In the case of PSNR performance evaluation, since both
the generated image and the GT image were in color, PSNR was calculated based on the RGB color
image. In other words, PSNRs were separately calculated for each R, G, and B channel, and their
average, denoted as PSNRc was used for the evaluation. Additionally, the gray-scale PSNR, denoted
as PSNRg was measured using only the gray-scale Y component between the generated and the GT
images. For the SSIM, only the gray-scale Y component was used.

For the evaluation of the complexity, the average inference computation time and the total number
of weights of the network were compared. We used a workstation with an Intel Core i7-6850 CPU
3.60 GHz and a Nvidia Titan X Pascal GPU. The software environments were Ubuntu 16.04, Python
3.5.6, Tensorflow 1.13.1 [33], and Keras 2.3.1 [34].

3.2. Performances of Single-Input-Based Methods

In this section, the performances of the single-image input-based color-image-generation methods
are compared. LiDAR reflection-based and LiDAR range-based networks shown in Figure 2a,b were
implemented and evaluated respectively. As mentioned in the previous section, the network was the
same, but input data were different.

Table 1 shows the results of the image quality from the single-input-based color image generation
network according to the input data type. Average PSNR and average SSIM are listed with standard
deviation in parenthesis. The LiDAR range input-based image generation can also generate a color
image as the reflection input-based method. However, the range-based network has on average 0.67 dB
in PSNRg, 0.64 dB in PSNRc, and 0.05 in SSIM less than the reflection-based network, respectively.
The gray-scale PSNR (PSNRg) is higher than color-scale PSNRc, irrespective of input data. The results
show the possibility of color image generation from LiDAR range data.

Table 1. Generated image quality performance using single-input-based color-image-generation
methods in terms of average gray-scale PSNR (PSNRg), color PSNR (PSNRc), and SSIM, where standard
deviation is listed in parenthesis.

Input Data
Validation Test

PSNRg PSNRc SSIM PSNRg PSNRc SSIM

LiDAR reflection 19.57 19.18 0.51 19.53 19.15 0.51
(±2.49) (±2.36) (±0.11) (±2.47) (±2.34) (±0.11)

LiDAR range 18.90 18.55 0.46 18.86 18.51 0.46
(±2.01) (±1.95) (±0.09) (±2.00) (±1.94) (±0.09)

Table 2 shows the computational complexity according to the input data type in the
single-input-based color image generation network. As both input-data-based networks use the
same image generation network, the number of weights and average inference computation time were
the same, 3,350,243 and 6.91 ms, respectively.

Table 2. Complexity performance results of single-input-based color-image-generation methods in
terms of the number of weights and average inference processing time.

Input Data The Number of Weights Average Processing Time [ms]

LiDAR Refection 3,350,243 6.91
LiDAR Range 3,350,243 6.91



Sensors 2020, 20, 5414 8 of 12

3.3. Performances of Proposed Multi-Input-Based Methods

For evaluation of the performances of the multi-input-based color-image-generation methods
(here, two-inputs: reflection and range), the three fusion networks shown in Figure 3 were tested
and evaluated.

Table 3 shows the results of the image quality performances of the multi-input-based color
image generation networks. Like the experimental results in Section 3.2, gray-scale PSNR (PSNRg)
was higher than the color-scale PSNR (PSNRc), irrespective of fusion type. The results show that the
mid fusion-based method had better image generation performance than the early fusion method,
and the last fusion was better than the mid fusion. On average, the last fusion method showed higher
improvements of 0.35 dB in PSNRg, 0.33 dB in PSNRc, and 0.01 in SSIM over the early fusion method,
respectively. Among all image generation methods, including single-input and multi-input-based
methods, the last fusion method had the best performance. In addition, on average, the last fusion
method achieved a color image generation performance of 20.06 dB in PSNRg, 19.64 dB in PSNRc,
and 0.53 in SSIM.

Table 3. Image quality performance results of the proposed fusion-based color image generation in
terms of average gray-scale PSNR (PSNRg), color PSNR (PSNRc), and SSIM.

Fusion-Based Network
Validation Test

PSNRg PSNRc SSIM PSNRg PSNRc SSIM

Early fusion-based network 19.79 19.37 0.52 19.71 19.31 0.52
(±2.51) (±2.37) (±0.11) (±2.52) (±2.37) (±0.11)

Mid fusion-based network 19.96 19.55 0.52 19.91 19.50 0.52
(±2.46) (±2.34) (±0.11) (±2.44) (±2.30) (±0.11)

Last fusion-based network 20.10 19.68 0.53 20.06 19.64 0.53
(±2.62) (±2.44) (±0.11) (±2.61) (±2.42) (±0.11)

Table 4 shows the computational complexities of the three types of fusion-based networks.
The networks used in the early fusion, the mid fusion, and the last fusion-based networks have
the about 1.06, 1.45, and 2.00 times of the weights of the single-input-based network, respectively.
Additionally, the average computation times of the early fusion, the mid fusion, and the last
fusion-based methods are about 1.02, 1.44, and 1.96 times slower than the single-input-based image
generation, respectively.

Table 4. Complexity performance results of the proposed fusion-based color image generation in terms
of the number of weights and average inference processing time.

Fusion-Based Network The Number of Weights Average Processing Time [ms]

Early fusion-based network 3,550,315 7.03
Mid fusion-based network 4,863,219 9.93
Last fusion-based network 6,700,531 13.56

3.4. Subjective Image Quality Evaluation

For the evaluation of subjective image quality, two representative inference examples are given
in Figure 4, where GT color images are shown in the first row, and the second to sixth rows are the
images generated by range-based (in the second row) and reflection-based (in the third row) single-
input networks and early fusion (in the fourth row), mid fusion (in the fifth row), and last fusion-based
multi-input networks (in the sixth row), respectively.

All image generation methods generate blurred images compared to GT images. As shown
in the second row of Figure 4, the range-based image generation method generated a somewhat
camera-captured-like image. However, the range-based method did not produce color information
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properly and produced the most blurred image compared to the other methods. The images in the
third row show that the reflection-based, single-input image generation can generate color images.

(a) (b)

Figure 4. Two representative inference examples. (a) shows that the white road-pillar located on the
right side does not appear in the reflection-based single-input network. (b) shows that the visual
qualities are similar to the objective performances shown in Tables 1 and 3. The GT color image is
shown in the top row. The second to sixth rows are the images generated by range-based (in the second
row) and reflection-based (in the third row) single-input networks and early fusion (in the fourth row),
mid fusion (in the fifth row), and last fusion-based multi-input networks (in the sixth row), respectively.

The proposed three fusion methods generate color images more faithfully than reflection-based,
single-input image generation. That means the LiDAR range data are clearly useful for the color image
generation from LiDAR.

One interesting result is the generation of the white road-pillar on the right side of the image
shown in Figure 4a; the reflection-based single-input network could not produce the pillar but the
range-based network produced it. That means that the LiDAR range data are helpful in generating
geometric structures of objects, thereby producing generated images with better subjective qualities.
For the cases of the multi-input networks, the mid fusion and the last fusion networks produced the
pillar. In particular, the last fusion-based multi-input network demonstrated faithful generation of
the pillar.

Figure 4b shows that the five image generation methods have visual performances similar to the
objective performance shown in Tables 1 and 3.

4. Conclusions

In this paper, we examined the effectiveness of the LiDAR range data for camera-like color image
generation. LiDAR range data are used as input data in the existing reflection-based single-input
color generation network that consists of ED-FCN. Through the simulations, we showed that the
range-based single-input method can generate camera-like images, even though the visual quality of
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the generated image is slightly less than for the reflection-based method. Clearly, the LiDAR range
data are useful for LiDAR to color image generation. We considered the use of both LiDAR reflection
and range data, and then proposed three kinds of fusion networks based on multiple inputs, i.e., two
inputs. The early fusion, mid fusion, and last fusion-based LiDAR-to-color image generation networks
were designed and tested.

The proposed last fusion-based method achieved higher improvements of 0.53 dB in PSNRg,
0.49 dB in PSNRc, and 0.02 in SSIM over the previous reflection-based single input method. In addition,
the last fusion method is applicable to real-time applications with an average processing time of
13.56 ms.

Therefore, these results show that the fusion of the feature-maps of the decoder networks is
better than the fusion of the feature-maps of the encoder networks when the input and output of
the image generation network have different characteristics. These results can be applied to various
applications, such as object recognition, segmentation, and 3D map-generation using LiDAR data and
image generation.
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