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The well-being of a colony and replenishment of the workers depends on a healthy queen.

Diseases in queens are seldom reported, and our knowledge on viral infection in queens is limited.

In this study, 86 honey bee queens were collected from beekeepers in Denmark. All queens were

tested separately by two real-time PCRs: one for the presence of deformed wing virus (DWV),

and one that would detect sequences of acute bee-paralysis virus, Kashmir bee virus and Israeli

acute paralysis virus (AKI complex). Worker bees accompanying the queen were also analysed.

The queens could be divided into three groups based on the level of infection in their head, thorax,

ovary, intestines and spermatheca. Four queens exhibited egg-laying deficiency, but visually all

queens appeared healthy. Viral infection was generally at a low level in terms of AKI copy

numbers, with 134/430 tissues (31 %) showing the presence of viral infection ranging from 101 to

105 copies. For DWV, 361/340 tissues (84 %) showed presence of viral infection (DWV copies

ranging from 102 to 1012), with 50 tissues showing viral titres .107 copies. For both AKI and

DWV, the thorax was the most frequently infected tissue and the ovaries were the least frequently

infected. Relative to total mass, the spermatheca showed significantly higher DWV titres than the

other tissues. The ovaries had the lowest titre of DWV. No significant differences were found

among tissues for AKI. A subsample of 14 queens yielded positive results for the presence of

negative-sense RNA strands, thus demonstrating active virus replication in all tissues.

INTRODUCTION

Honey bees (Apis mellifera L.) harbour a variety of
pathogens such as bacteria, fungus, protozoa, viruses and
pests such as mites and insects. Among these, viruses are
the most recently characterized and least understood
pathogens. Viruses in honey bees, once thought to be
benign and asymptomatic infections (Bailey, 1967), have
now been implicated as posing serious risks after the global
spread of varroa mites (Varroa destructor Andersen &
Trueman) carrying the viruses (Berthoud et al., 2010;
Carreck et al., 2010; Martin et al., 2012). Advancements in
modern molecular methods and diagnostic techniques
have led to the characterization of several viruses in honey
bees (Chen & Siede, 2007).

Most virus studies focus on honey bee workers, as all non-
reproductive functions are carried out by worker bees and
heavy loss of worker bees can lead to the collapse of
colonies (Vanengelsdorp et al., 2009). Honey bee workers
have relatively short lives and are susceptible to viral
infections, occasionally showing overt outbreaks of disease.
In contrast, the queen seldom shows symptomatic disease,
although she is the longest-living member (3–4 years) of a
bee hive (Winston, 1987). The queen is the main
reproductive female in the bee colony (Visscher, 1989),
and therefore the growth of a new colony and the

replenishment of old workers depend on an egg-laying
queen. One of the most extensive descriptions of diseases
in queens was compiled in 1964 (Fyg, 1964). A few studies
have explored viral infection in queens (Chen et al., 2005a;
de Miranda & Fries, 2008; Fievet et al., 2006; Gauthier
et al., 2011). A study on honey bee queens by Chen et al.
(2005a) showed that 93 % of the queens (n529) harboured
multiple viral infections. Viruses tested include black queen
cell virus (BQCV; 85 % of queens tested positive), chronic
bee-paralysis virus (CBPV; 14 %), deformed wing virus
(DWV; 100 %), Kashmir bee virus (KBV; 21 %) and
sacbrood virus (SBV; 62 %), but acute bee-paralysis virus
(ABPV) was absent. Queens are replaced by beekeepers for
a variety of reasons including poor egg-laying capacity,
aggressive colony behaviour and supersedure, but replace-
ment due to disease is seldom reported (Tarpy et al., 2012).

Our knowledge of viral infection in queens is rather
limited; however, for some viruses, venereal transmission
has been suggested (de Miranda & Fries, 2008; Yue et al.,
2007). The presence of viral particles in the seminal vesicles
and mucus glands of young drones has been shown by
transmission electron microscopy (Da Cruz-Landim et al.,
2012). The viruses analysed in this study were those of the
ABPV–KBV–Israeli acute paralysis virus (IAPV) complex
(AKI) (de Miranda et al., 2010) and DWV (de Miranda &
Genersch, 2010). These viruses were chosen because of
their pathogenic importance, implications in global pan-
demics such as colony collapse disorder, association with
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varroa mites and widespread presence in bee colonies
(Nordstrom et al., 1999; Tentcheva et al., 2004a).

DWV (Lanzi et al., 2006) is the most common and widely
studied honey bee virus and causes symptomatic crippled-
wing syndrome (Möckel et al., 2011), often seen in heavily
infected bees and usually resulting in a reduced lifespan
(Dainat et al., 2012). DWV has been found in all
developmental stages including the egg (Chen et al.,
2005b), larvae, pupae (Gauthier et al., 2007), adults and
all castes including queens (Chen et al., 2005a; Gauthier
et al., 2011), workers and drones (Chen et al., 2004b;
Yanez et al., 2012). DWV has been shown to be
transmitted horizontally (Chen et al., 2006a; Möckel
et al., 2011) from nurse bees to larvae and from infected
semen to queen offspring by artificial insemination (de
Miranda & Fries, 2008). DWV is known to be transmitted
by varroa mites and is strongly correlated with mite
infestation levels in bee colonies (Bowen-Walker et al.,
1999). DWV has been found to infect the head of queens,
adipose tissues, gut, ovaries (Fievet et al., 2006) and
workers’ brains (Shah et al., 2009). DWV has been
reported in drone tissues (Fievet et al., 2006), including
semen (Yue et al., 2006), suggesting that queens may be
infected during mating. Both positive- and negative-
strand DWV RNA has been found in the head, thorax and
abdomen of crippled workers, but was found only in the
thorax and abdomen of asymptomatic bees (Yue &
Genersch, 2005). DWV has been reported to replicate in
varroa mites based on the detection of negative-sense
RNA in the mites (Gisder et al., 2009; Ongus et al., 2004).
Other studies probing specific mite tissues have reported
the absence of DWV replication in mites (Santillan-
Galicia et al., 2010; Zhang et al., 2007).

ABPV, KBV and IAPV are three closely related virus species
with a worldwide distribution (Ellis & Munn, 2005),
commonly existing as covert low-titre infections. High
titres of ABPV and IAPV on injection are reported to
produce observable symptoms such as paralysis, trembling,
inability to fly, and darkening and loss of hair from the
thorax and abdomen (Bailey & Gibbs, 1964; Bailey et al.,
1963; Maori et al., 2007; Ribiere et al., 2008). These
symptoms are usually not observed at the colony level, as
the high-titre individuals are rapidly killed. However, a
sharp decline in the adult population can be observed with
severe infection (Todd et al., 2004).

ABPV is one of most common honey bee viruses in Europe
(Bakonyi et al., 2002; Gauthier et al., 2007; Nielsen et al.,
2008; Tentcheva et al., 2004a) and has been implicated in
winter losses (Siede et al., 2008). The virus has been
detected in the brain and hypopharyngeal glands (Bailey &
Milne, 1969) and in faeces implying oral transmission
(Chen et al., 2006a). ABPV has been detected in semen
indicating possible vertical transmission (Yue et al., 2006).
It has been shown to be vectored by mites (Ball, 1983,
1985) and implicated in varroa-associated colony losses
(Békési et al., 1999; Berényi et al., 2006; Faucon et al.,

1992). KBV was first identified in Apis cerana bees from
northern India (Bailey & Woods, 1977). KBV is serologic-
ally and genetically similar to ABPV, but the capsid protein
profiles were reported to be different (Allen and Ball,
1995). KBV is generally less prevalent than ABPV (Nielsen
et al., 2008; Siede et al., 2005; Tentcheva et al., 2004a) but
has been detected in workers, queens, honey, pollen, royal
jelly and brood food (Shen et al., 2005a). It has been found
in the faeces of workers and queens (Hung, 2000), and was
detected in eggs but not in queens (Chen et al., 2006b).
KBV seems to be the most virulent of all known honey bee
viruses (Bailey et al., 1979). KBV was detected in varroa
mites (Hung & Shimanuki, 1999; Shen et al., 2005b), and
the mites were later found to be an effective vector (Chen et
al., 2004a) linked to colony losses (Hung et al., 1995, 1996;
Todd et al., 2007).

IAPV is the most recently characterized of these three
viruses (Maori et al., 2007) and has been strongly
implicated in colony collapse disorder (Cox-Foster et al.,
2007). Other studies have also associated IAPV with
collapsing colonies (Antúnez et al., 2006; Blanchard et al.,
2008). IAPV has been shown to be vectored by varroa mites
(Di Prisco et al., 2011). Transmission of IAPV has not been
studied in much detail. All three of these viruses have been
found in Denmark (Francis & Kryger, 2012). In this study,
we investigated the qualitative and quantitative aspects of
the AKI complex and DWV infection in five tissues of 86
honey bee queens.

RESULTS

Of the 86 queens analysed, seven were obtained from
experimental hives with a heavy infestation of varroa mites,
whilst 79 were obtained from beekeepers who had
exchanged them for various reasons. Four queens were
removed due to egg-laying deficiency, nine due to disease
in the colony and seven due to old age, whilst 59 were
considered healthy but were exchanged for breeding
purposes. Visual examination during dissection revealed
no obvious health deficiencies in any of the queens. Six
queens (11Q21, 11Q34, 11Q35, 11Q48, 11Q49 and 11Q52)
showed slight yellowish discoloration in the ovaries.
However, we observed no significant relationship between
this discoloration and queen removal due to poor egg
laying or old age. The discoloured queens also showed no
correlation with viral titres or titre groups. Six samples for
which the b-actin assay failed were excluded for AKI and
DWV. However, RNA in most of the samples was
confirmed to be intact and detectable. For quantitative
analysis, only results below a cut-off cycle threshold (Ct)
value of 34 were used, yielding quantitative results from 56
AKI, 510 b-actin and 341 DWV reactions.

Viral prevalence

Of the 86 queens analysed, 56 were infected with AKI in at
least one tissue, and among these, 41 queens had infected
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workers. Eighteen queens (21 %) were infected in the ovary
for AKI (Fig. 1a). Only six (7 %) queens had all five tissues
infected with AKI (Fig. 1b). The number of queens where
only a single tissue was infected is shown in Fig. 1(c). In 13
AKI cases, the workers were infected but the respective
queens were free of viruses in all tissues. For DWV, all 86
queens were infected in at least one tissue and 73 queens
had DWV-infected workers. Eighty-five queens (99 %)
were infected in the thorax. Fifty-five queens (64 %) had all
five tissues infected with DWV.

Viral titres

Single symptomatic adult worker bees with deformed
wings were analysed individually as a measure to assess the
viral titre in bees with obvious disease symptoms. These
DWV-positive controls were then related to the DWV
titres obtained in the queen tissues. The symptomatic adult
workers showed a mean DWV viral load of 1010–1012

copies per bee (n511). Viral copies per adult crippled bee
from other studies include 105–108 copies (Tentcheva et al.,
2004b), 105–109 copies (Gauthier et al., 2007) and 1010–
1012 copies (Gisder et al., 2009).

The mean DWV titre across all 430 tissues in the 86 queens
was 261010 copies (range 0–261012) whilst the mean
number of AKI copies was 26103 (range 0–46105) (Fig.
S1, available in JGV Online). The mean number of b-actin
copies per tissue ranged from 7.46107 in the spermatheca
to 2.86109 in the ovaries. In general, the AKI infection
level was low and any notable infection could only be
observed in the workers. The total number of copies per
worker was not estimated, as the workers accompanying
the queen were too few in number to be considered a true
indicator of colony-level infection.

Normalized viral titre

The tissue weights of three queens were measured to
normalize the quantitative copies against tissue weight. The
total weight of the queens (n53) was 184±13 mg. The
weights of queen tissues (n53) were as follows: head,
11.5±1.8 mg; thorax, 54.5±4.7 mg; ovary, 42.5±11.1 mg;
gut, 13.1±2.2 mg; and spermatheca, 0.9±0.1 mg. The total
number of copies per tissue was divided by the respective
weights of each tissue in grams to obtain copies (g tissue)21.
For AKI, the difference in titres between tissues was not
significant. For DWV, a non-parametric Friedman test
showed viral titres between the five tissues to be significantly
different (P,2.2610216). A post-hoc Wilcoxon test for
paired data using Bonferroni correction revealed the
following results: significant differences (P,0.05) were
found between the following tissue pairs: head–ovaries,
head–spermatheca, thorax–ovaries, thorax–spermatheca,
gut–ovaries, ovaries–spermatheca and gut–spermatheca.

Fig. 2 shows normalized copies [copies (g tissue)21] of AKI,
DWV and b-actin among the different tissues. Both AKI
and DWV show the highest mean number of viral copies in
the spermatheca, whilst the ovary was the least infected
(not significant for AKI). The spermatheca was the most
infected tissue for AKI in six queens (7 %) and for DWV in
48 queens (56 %). The thorax was the most infected tissue
for DWV in nine queens (10 %).

Hierarchial clustering

The hierarchical clustering did not reveal any evidence of
viral progression through the tissues examined. However,
the queens were grouped based on AKI and DWV viral
titres across all tissues (Fig. S2). For both viruses, we
detected three obvious clusters; however, these were more
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Fig. 1. Qualitative results for 86 queens (and their workers) showing AKI and DWV infection. (a) Percentage of queens infected
for each tissue with AKI and DWV. H, Head; T, thorax; O, ovary; G, gut; S, spermatheca; W, workers (workers were pooled and
30–40 mg was used). (b) Percentage of queens infected in 0, 1, 2, 3, 4 or 5 tissues. (c) Percentage of queens where only a
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linked to the overall level of viral titres than to specific
tissues being targeted by viral infection. Fig. 3 shows the
viral titres for the different tissues in the three groups. The
AKI clustering showed the low-level infection group to be
identical, as they all had zero AKI copies. The percentages
of queens in the three AKI clusters were 85 % in the zero-
titre group, 8 % in the low-titre group and 7 % in the
medium-titre group. The viral copies in the three AKI
groups for all tissues were as follows: zero titre, 0–3.16105

copies in the low-titre group and 0–26108 copies in the
medium-titre group. The percentages of queens in the
three DWV clusters were 40 % in the low-titre group, 50 %
in the medium-titre group and 10 % in the high-titre
group, and the range of viral copies in the three groups
were 0–4.26107 copies in the low-titre group, 0–7.16109

in the medium-titre group and 36108–2.561014 copies in
the high-titre group. Therefore, only 7–10 % of the queens
showed detrimental infection levels.

Strand-specific analysis

For DWV, strand-specific analysis was carried out on six
high-titre queens and eight low-titre queens to analyse the
quantity of positive- and negative-sense DWV copies in
five tissues. A correlation analysis was carried out with
DWV positive-sense copies, DWV negative-sense copies
and standard DWV copies (Fig. 4). DWV positive-sense
copies were positively correlated with negative strands
(R250.77). The standard DWV results were positively
correlated with positive-sense DWV copies (R250.82) and
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with negative-sense DWV copies (R250.72). As shown in
Table S1, the number of positive-sense copies exceed the
number of negative-sense copies and also the standard
DWV copies. Some queens that yielded negative results
using the standard primers were found to be quantifiable
using strand-specific positive-sense primers (n526) and
negative-sense primers (n525). Negative-strand detection
was not carried out for AKI due to its low prevalence in the
queens studied here.

DISCUSSION

In this study, we demonstrated the presence of AKI and
DWV in five queen tissues: head, thorax, ovary, gut and
spermatheca, as well as in accompanying workers. AKI and
DWV were chosen due to their impact on colony health
and widespread prevalence. BQCV, a virus commonly
associated with queens, was not studied here as it is rarely
found in Denmark (Nielsen et al., 2008). The head is
commonly used in viral diagnosis, and viral presence in the
head is thought to be an indicator of high-tire infection.
The thorax was chosen, as high DWV titres in workers
often result in deformed wings. The gut often shows the
presence of ingested viruses and is indicative of transmis-
sion by trophallaxis. The ovaries and spermatheca were
selected to investigate venereal transmission.

DWV copies in the 86 queens tested ranged from 0 to
261012 copies compared with 3.26107 copies (Fievet et
al., 2006) and 108–1012 copies (Gauthier et al., 2011) in
previous studies. The AKI titres ranged from 0 to 46105

copies, and none of the 56 AKI-positive queens showed
titres close to those of symptomatic workers (1010 copies).
Given the low prevalence and low titres of AKI, we decided
not to investigate which of the three viruses of this complex
was actually present. Detection of high AKI titres is
unlikely in live queens, as AKI would kill them rapidly.

The queens were generally found to be in a healthy state,
supporting the beekeepers’ observations (Table S2). In
queens with high viral titres, the accompanying workers
also exhibited equal or higher viral titres. Visual examina-
tion of the queens showed no obvious disease symptoms in
most queens, as reported previously (Chen et al., 2005b).
Six queens showed a slight yellowish discoloration in the
ovaries. The level of discoloration was far less than the
discoloration symptoms observed previously (Gauthier et
al., 2011), and we found no correlation between discol-
oration and viral load. The detailed study by Gauthier et al.
(2011) focused on a novel pathology affecting queen
ovaries characterized by yellow discoloration and degen-
erative lesions in the follicles. The Gauthier study also
compared viral infection in virgin queens with that in
mated queens. The mated queens (n530, from across
France) showed the presence of DWV (100 %) and IAPV
(10 %) but absence of ABPV and KBV. The virgin queens
(n540) showed a lower presence of DWV (37 %) and none
of the AKI viruses was detected. This indicated that mating
can transmit viral disease; however, mated queens are older
than virgin queens, which results in a higher probability of
infection from workers.

Nine queens showed DWV titres close to the level of
deformed-wing workers, but none of these queens
exhibited any obvious signs of disease. Incidences of
crippling overt infection in queens have seldom been
reported (Williams et al., 2009). Queens are unlikely to be
exposed to the virus during the developmental stages, as
queen cells are not attractive to varroa mites. Trophallaxis
or vector-mediated pathways seem probable routes of
infection in adult queens, as they are constantly fed and
consume twice their own weight each day. The ovaries had
the lowest infection counts and the lowest viral titres.
Hence, it is possible that the ovaries may be protected to
preserve the vital reproductive functions.
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Honey bee queens are known to mate with more than ten
drones (Schluns et al., 2005). Each mating increases the risk
to the queen, as it has been shown that many DWV-
infected drones arrive at the drone congregation areas for
mating (Yanez et al., 2012). The presence of DWV has been
demonstrated in multiple tissues of drones (Fievet et al.,
2006), including drone semen (Yue et al., 2006) and the
endophallus, which remains in the queen after mating with
high viral titres of up to 109 copies (Yanez et al., 2012). It is
difficult to conclude from the previous studies of queen
viral infection (Chen et al., 2005a; Gauthier et al., 2011)
whether the higher prevalence of DWV in mated queens
results from infection during mating (de Miranda & Fries,
2008) or simply because mated queens are older than virgin
queens.

A recent publication (Martin et al., 2012) demonstrating a
selective sweep of DWV following the introduction of
varroa mites could be the reason for the widespread
infection of queens. Part of the virus population seems
more adapted to vector transmission than to venereal
transmission. Assuming that venereal transmission is the
main source of queen infection, we would have expected
the spermatheca to be the most frequently infected tissue.
Furthermore, we would have expected the infection to be
confined to the spermatheca in order to avoid killing the
queen. In contrast, our results indicated that the thorax is
the most frequently infected part of the queen. The highest
DWV titres were actually observed in the spermatheca,
based on normalized data. However, it should be noted
that the small tissue size of the spermatheca is coupled with
uncertainty of weight measurements and sperm content.
The debate regarding the polyandrous mating system
(Kraus & Moritz, 2010) of honey bees centres on the
individual cost of the queen relative to the colony-level
benefits from increased genetic diversity (Mattila & Seeley,
2007). Whilst we cannot exclude venereal transmission, it
seems to play a minor role in queen viral titres, and thus
the cost of multiple mating to the queen seems low.

In the current study, the spermatheca showed the highest
titre of DWV whereas the ovaries had the lowest. This
suggests that DWV transmission during mating is confined
mainly to the spermatheca, in spite of the deposition of
sperm in the oviduct following mating. Only a minor
difference was observed in the fraction of queens with
infected ovaries compared with those with infected
spermatheca. Of the queens with DWV in either the
ovaries or the spermatheca (n555), 54 queens had higher
viral titres in the spermatheca than the ovary (Table S3).
The question of venereal transmission has been addressed
by means of artificial insemination of honey bee queens
with semen from infected drones (de Miranda & Fries,
2008), demonstrating the transmission of DWV in two of
three inseminated queens, thus indicating a venereal route,
although this may not be 100 % effective. The DWV titres
in the ovaries were higher than those of the spermatheca in
the two queens where transmission was successful, in
contrast to our finding. We failed to detect any tissue

preference for either virus using hierarchical clustering.
The low-level infection queens showed low viral titres in all
tissues, and high titres were observed in all tissues of high-
level infection queens.

The presence of negative-sense RNA indicates active
replication of virus in the particular tissue, rather than a
passive presence. Several tissues negative with the standard
DWV primers were found to be quantifiable with strand-
specific primers. This discrepancy could result from the use
of random hexamers for cDNA conversion in the standard
methodology, which leads to competition between bee
RNA and viral RNA. In contrast, strand-specific primers
used for cDNA conversion transcribe viral RNA more
selectively and efficiently. Indeed, higher titres of positive-
strand-specific copies were evident for most queens (Fig.
4b). However, for the low-titre queens, there was
considerable variance between the results from the
standard primers and the negative- and positive-strand-
specific primers, either because viral titres in these queens
were close to the limit of quantification or because of false
positives (Boncristiani et al., 2009). In Fig. 4(a), it can be
observed that, for the low-titre queens, several queens were
quantifiable using either of the strand-specific primers, but
the linear relationship only started at 107 positive-sense
copies. This was probably due to false priming, as is also
evident from Fig. 4(b) and (c). Thus, queens that lie
outside the linear range of copies (,107) may not be
quantified accurately using strand-specific primers. From
Fig. 4(c), it can be seen that, for the high-titre queens, there
were 1000 times more DWV standard copies compared
with DWV strand-specific copies. Several low-titre queens
yielded ambiguous temperature profiles based on dissoci-
ation curves. From all of this, we infer limitations for the
quantification of negative-sense copies in low-titre queens.

In summary, our results suggest covert viral infection in
queens from most healthy colonies. In colonies with severe
varroa mite infestation, the queen may eventually be
infected. Thus, queens are not entirely immune to viral
infections, which appear to be transmitted from their
worker offspring rather than via the often-discussed sexual
transmission during multiple mating. The protective
mechanisms behind this pattern remain to be elucidated.

METHODS

Sample collection and processing. A total of 86 honey bee queens

of various ages were analysed in this study. Seventy-nine queens were

donated by Danish beekeepers. Observations by the beekeepers

leading to queen exchange were collected and recorded if possible.

The queens were placed in queen cages along with a few workers and

mailed alive to the laboratory. Seven queens were collected from

experimental colonies that were known to be heavily infested with

varroa mites.

Upon arrival, the queen and workers from each cage were processed

as separate samples, but the accompanying workers from each queen

were pooled. The queens and workers were killed with CO2 gas. The

queen was pinned onto a sterile dissection surface with clean pins.

Patterns of viral infection in honey bee queens
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Dissection was carried out using sterile scissors and forceps cleaned
with 70 % alcohol between subsamples. Each queen and her
individual organs were inspected visually for obvious signs of
infection or disease. Each queen’s organs were dissected and stored
as seven separate subsamples: head, two thoracic (left and right), two
ovarial (left and right), intestines and spermatheca. Dissected tissues
from the queens were stored in 1.5 ml microcentrifuge tubes and
workers were stored in 50 ml plastic bottles with tight-fitting screw
caps. Samples were freeze dried on a Heto LyoPro 6000 apparatus for
~72 h at a pressure of 0.05 hPa and at 280 uC. After lyophilization,
all samples were stored immediately at 280 uC until further use.

RNA extraction and quantitative PCR (qPCR). Dissected queen
tissues were flash frozen using liquid N2 and crushed using
micropestles. Worker samples were homogenized on a Geno/
Grinder 2000 apparatus for 1 min at 1500 r.p.m. with metal beads
added to the bottle. For pooled workers, a small amount of tissue
(30–40 mg) was used. Total RNA was extracted using a Nucleospin
RNA II kit (Macherey-Nagel). Extracted RNA (60 ml) was stored in
96-well microtitre plates (Thermo Scientific) at 280 uC until further
use. The RNA was transcribed into cDNA using a High-Capacity
cDNA Reverse Transcription kit (Applied Biosystems). RNA (10 ml)
was added to 10 ml cDNA master mix yielding a 20 ml cDNA solution.
The incubation conditions were as recommended by the kit: 10 min
at 25 uC, 120 min at 37 uC and 5 min at 85 uC. The cDNA solution
was then diluted tenfold (10 ml cDNA in 90 ml sterile H2O) and stored
at 280 uC.

Real-time qPCR assays were carried out on an ABI PRISM 7600HT
(Applied Biosystems) using SYBR Green DNA binding dye (Applied
Biosystems). The primers used in this study are listed in Table S4.
Two sets of primers were used for each virus (AKI and DWV),
referred to as outer and inner primers as in Gauthier et al. (2007). The
AKI viruses were detected in a single assay using a single pair of
primers referred to as ‘AKI’ primers (Francis & Kryger, 2012). The
volume for qPCRs was 12 ml, with a final primer concentration of
0.4 mM. Diluted (tenfold) cDNA was used in constructing the
standard curve and RNase-free water was used as template for the
negative controls. All reactions were run on optical 384-well PCR
plates in replicates of two. Standard cycling parameters were used for
thermal cycling and the dissociation curve. Twelve symptomatic bees
with crippled wings were collected and processed similarly to estimate
viral load in DWV symptomatic bees.

Data processing and analysis. Nine dilutions for the AKI and b-
actin4 primers and eight dilutions for the DWV3 primers were used
to create standard curves and subsequent linear regression (Fig. S3).
The reaction efficiencies for AKI, b-actin4 and DWV3 were 2.04, 2.04
and 1.98, respectively. Pearson’s correlation coefficients (Ct values
against log10 of copies) for AKI, b-actin and DWV were 20.998, 21
and 20.998, respectively. The baseline was automatically set and a
manual threshold of 0.19 was used for all control runs and test runs.
Dissociation profiles for all reactions were examined visually and
flagged as appropriate. Data from the qPCR runs were analysed in R

(R Development Core Team, 2011) and Microsoft Excel. Replicates
showing a coefficient of variation of .10 % were flagged, and
replicates were examined and corrected manually if required. Samples
that did not cross the threshold before cycle 40 were given a Ct value
of 0 (no virus). Samples with an incorrect melting-curve profile were
given a Ct value of 0.

Whilst converting to copy numbers, copies near 1 were rounded to 0
or 1, as it is assumed that there has to be one copy of the virus/b-actin
gene or none. As thorax and ovary samples were split and processed
separately, the best Ct values of the biological replicates were selected,
converted to copies and then multiplied by 2. Based on the standard
curves, a Ct value of 34 was chosen as a cut-off for quantitative results
because the standard curves were no longer linear after cycle 34. All

results where fluorescence crossed the threshold after cycle 34 were

considered qualitatively positive but not quantifiable and were

omitted from quantitative calculations. These were, however,

included in the qualitative calculations. Based on the regression,

cycle 34 corresponded to 13, 10 and 243 copies of AKI, b-actin and

DWV, respectively.

Normalization to tissue weight. Three queens were dissected and

their tissues weighed separately to determine individual tissue weights

(Table S5). The absolute number of quantifiable copies per tissue was

divided by the mean weight of the respective tissues to obtain viral/b-

actin copies (g tissue)21. These copies are referred to as normalized

copies. This was carried out only on queen tissues and not on the

accompanying workers, as the workers were pooled samples and not

representative of colony-level worker titres. The normalized copies

were used in further analyses. Hierarchical clustering was carried out

to identify possible patterns in progression of the viral infection. This

was also a means of categorizing the queens based on viral titres in all

the tissues. For hierarchical clustering, Euclidean distances were

computed for AKI and DWV copies separately and clustering (K53)

was carried out on the distances using Ward’s method, based on the

viral titres of all queen tissues.

Negative-strand analysis. Strand-specific qPCR was performed on

14 selected queens (six high-titre queens and eight low-titre queens)

to quantify DWV-positive and -negative strands across five tissues.

The presence of the negative strand of DWV indicated active

replication of the virus in the specific tissue. Each queen was analysed

for five tissues (head, thorax, ovary, intestines and spermatheca).

RNA (2 ml) was converted to cDNA in a 12 ml reaction using a

ThermoScript Reverse Transcriptase kit (Invitrogen) with 10 mM

dNTP mix (Invitrogen). The cDNA conversion was carried out in two

separate reactions, one reaction containing a tagged DWV forward

primer and the second containing a tagged DWV reverse primer

(Table S1). The reaction was processed in 96-well plates and placed

on a 2720 Thermal Cycler (Applied Biosystems) with the following

temperature profile: 60 uC for 55 min, followed by 85 uC for 5 min.

The unique nature of the high-temperature-tolerant reverse tran-

scriptase allowed reverse transcription to be carried out at a high

temperature to ensure high-specificity primer binding. The qPCR was

carried out using the tag and one of the DWV3 primers. Non-enzyme

controls and non-template controls were included between steps.

Similar qPCR volumes and conditions were used for DWV as

indicated above and the same standard curves were used to estimate

the number of viral copies ml21. The same Ct cut-off value of 34 was

used to define quantitative copies within the range of standard curves.

The number of viral copies ml21 was converted to viral copies per

tissue, followed by normalizing to tissue weights.

ACKNOWLEDGEMENTS

We wish to thank Promilleafgiftsfonden for funding this study. We

wish to thank Svend Sejr, Nicolaj Wium, Mogens Poulsen, Henrik

Steffensen, Niels Wistisen, Benny Gansler and other beekeepers for

providing us with queen samples. We thank Marina Meixner and

others for proof-reading and valuable feedback. We also thank the

referees for constructive criticism, which helped us to improve the

manuscript considerably.

REFERENCES

Allen, M. F. & Ball, B. V. (1995). Characterisation and serological

relationships of strains of Kashmir bee virus. Ann Appl Biol 126, 471–

484.

R. M. Francis, S. L. Nielsen and P. Kryger

674 Journal of General Virology 94
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