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Abstract

Objectives: Acute chest pain is a common presentation in the emergency department, characterized by sudden onset with high morbidity and
mortality. Traditional diagnostic methods, such as computed tomography (CT) and CT angiography (CTA), are often time-consuming and fail to
meet the urgent need for rapid triage in emergency settings.

Materials and Methods: \We developed a multimodal model that integrates Bio-ClinicalBERT and ensemble learning (AdaBoost, Gradient
boosting, and XGBoost) based on 41 382 patient data from April 1, 2013 to April 1, 2025 at Chongging Daping Hospital. By integrating clinical
texts and laboratory indicators, the model aims to classify the 3 major causes of fatal chest pain (acute coronary syndrome, pulmonary embo-
lism, and aortic dissection), as well as other causes of chest pain, aiding rapid triage. We adopt strict data preprocessing and rank importance
feature selection.

Results: The multimodal fusion model based on Gradient boosting exhibits the best performance: accuracy of 838.40%, area under the curve of
0.951, F1-score of 74.56%, precision of 77.50%, and recall of 72.52%. SHapley Additive exPlanations (SHAP) analysis confirmed the clinical
relevance of key features such as d-dimer and high-sensitivity troponin. When reducing the number of numerical features to 30 key indicators,
the model enhanced robustness without compromising performance.

Discussion and Conclusion: \We developed an artificial intelligence model for chest pain classification that effectively addresses the problem
of overlapping clinical symptoms through multimodal fusion, and the model has high accuracy. However, future work needs to better integrate
model development with clinical workflows and practical constraints.

Lay Summary

Acute chest pain is a common emergency in the emergency department and can be caused by several very dangerous cardiac or vascular condi-
tions. Rapid identification of the specific etiology is crucial to save lives, but traditional tests (eg, CT or CTA) are often time-consuming and are
not conducive to rapid triage in emergency medicine. We developed a novel artificial intelligence multimodal model that integrates 2 aspects of
information: a textual description of the medical record recorded by the doctor and the patient’s laboratory test results. Utilizing data from over
40 000 chest pain patients at Chongging Daping Hospital, we completed training and testing of the model. The model performed excellently in
differentiating between the 3 major fatal causes of chest pain (acute coronary syndrome, pulmonary embolism, and aortic coarctation) and other
causes of chest pain, with an accuracy of 88.40%. The study also confirmed the value of certain key indicators in determining etiology. The
model has the potential to become an efficient intelligent triage tool for emergency chest pain, helping physicians make faster decisions.

Key words: chest pain; acute coronary syndrome; pulmonary embolism; aortic dissection; ensemble learning.

cardiovascular disease accounted for 48.00% and 45.86% of
deaths in rural and urban areas, respectively. Although pre-
liminary screening can be conducted among various differen-
tial diagnoses through routine methods such as medical
history inquiry, physical examination, and electrocardio-
gram, a considerable number of patients still require further
examination to confirm the diagnosis.’ In emergencies,

Introduction

Acute chest pain is one of the most common diseases in cardi-
ovascular and emergency departments,' with a rapid onset
and often the first symptom of various life-threatening condi-
tions. Cardiologists and general practitioners often face the
challenge of managing chest pain symptoms caused by com-
plex etiologies.” The 2022 Heart Disease and Stroke Statistics

Report released by the American Heart Association,” based
on 2019 data, shows that the mortality rate caused by cardio-
vascular disease in the United States is 214.6 cases per
100 000 people. Statistics show that cardiovascular disease
causes 1 death every 36.1 seconds, with a total of 2396
deaths per day. Meanwhile, in China, the 2022 China Cardi-
ovascular Health and Disease Report shows that in 2020,*

quickly and accurately identifying the cause of chest pain in
patients, and effectively screening high-risk chest pain
patients, is crucial for reducing complications, lowering mor-
tality rates, and making reasonable treatment decisions.
Chest pain triple-rule-out (TRO) refers to 3 diseases and
complications characterized by acute chest pain attacks,
including acute coronary syndrome (ACS), pulmonary
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embolism (PE), and aortic dissection (AD).® These diseases
have a dangerous onset, high misdiagnosis rate, and mortality
rate. Their clinical symptoms mainly include chest pain, diffi-
culty breathing, and hemoptysis. Although chest pain caused
by different etiologies has similarities in symptoms and differ-
ent characteristics, it can manifest as pain in different parts,
of different natures, and to varying degrees. Early identifica-
tion of the cause and timely and effective treatment are key to
the treatment of patients with acute chest pain.” However,
traditional diagnostic methods such as computed tomogra-
phy and computed tomography angiography have certain
limitations. These examination methods are time-consuming,
not conducive to early diagnosis, and difficult to meet the
needs of rapid triage in emergency departments.

In recent years, with the rapid development of artificial intelli-
gence (Al) technology, the application of machine learning and
pre-trained language models in the medical field has gradually
emerged. Machine learning can automatically learn patterns
and rules from large amounts of data by constructing algorith-
mic models, discovering complex patterns and associated fea-
tures hidden in the data, and making predictions and
classifications based on them.®® Pre-trained language models,
with their powerful natural language processing capabilities,
can understand human language and provide new avenues for
processing and analyzing medical text data.'® Although there
have been numerous studies exploring the application of Al in
chest pain diagnosis, most of them have focused on the diagno-
sis of a single chest pain disease, such as using Al to assist in the
diagnosis of ACS,'"™13 PE,'*'7 or AD.'®° TRO has high clini-
cal overlap in clinical manifestations and further research is
needed.”!

This study innovatively integrates pre-trained language
models and machine learning techniques to construct a multi-
modal classification model, aiming to achieve an early auxili-
ary diagnosis of the 3 major emergencies of TRO and other
causes of chest pain. By integrating clinical texts and labora-
tory indicators, this framework is expected to improve the
efficiency of chest pain diagnosis, reduce misdiagnosis and
missed diagnosis rates, and provide intelligent decision sup-
port for rapid triage in emergency departments.

Methods
Patients and dataset

We collected data on hospitalized patients with acute chest
pain admitted to Chongging Daping Hospital from April 1,
2013 to April 1, 2025. Inclusion criteria: (1) chief complaint
of acute chest pain; (2) age > 18 years old; and (3) no multi-
ple TRO symptoms. The final dataset included a total of
41 382 patients, including ACS (n=23 604), PE (n=2073),
AD (n=1361), and Non-TRO chest pain (Non-TRO, such
as coronary heart disease, myocarditis, heart failure, etc,
n=14 344). All clinical examinations were performed in
strict accordance with the European Society of Cardiology
(ESC) guidelines for ACS, PE, and AD diagnosis and manage-
ment.”?>* After the clinical diagnosis was established, an
adjudication board of experienced cardiologists grouped the
patients into final diagnoses.

To enable rapid classification during early diagnostic
stages, we selected clinically accessible data aligned with
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established clinical guidelines. These data included demo-
graphics (gender, age, and BMI), clinical records (chief com-
plaint, present medical history, and past medical history),
and examination findings (physical exam, vital signs, and
electrocardiographic). Laboratory data encompassed 56 indi-
cators, including those from complete blood count (12 items),
coagulation panel (6 items), cardiac injury markers (6 items),
thyroid function tests
(5 items), liver function tests (9 items), renal function tests
(3 items), lipid profile (4 items), electrolytes (6 items), fasting
blood glucose, glycated hemoglobin, procalcitonin, c-reactive
protein, and carbon dioxide (CO,). Detailed indicator infor-
mation is provided in Supplementary File S1.

Data preprocessing and feature engineering

To address the issue of missing values in raw data, mode
imputation is used for categorical variables, and k-nearest
neighbor interpolation (K=135) is used for continuous varia-
bles. All numerical features are standardized using Z-score.

To optimize the feature space, we used the permutatio-
n_importance function®® of scikit-learn to analyze the contri-
bution of numerical features by selecting 30 high-impact
features (eg, D-dimer, high-sensitivity troponin [hs-Tn], etc)
from all numerical features, as shown in Figure 1. The core
idea of the method is to measure the importance of a feature
by randomly disrupting the value of that feature on the vali-
dation set and observing the impact this operation causes on
the model performance. To improve the stability of the
results, we repeat the reordering process n_repeats =10 times
for each feature and take the average of its performance deg-
radation as the final importance score of that feature.

To address the issue of class imbalance, we adopt a class
weighted learning strategy combined with ensemble algo-
rithms to enhance the ability to recognize minority classes
(PE or AD). In addition, clinical text data are transformed
into structured features through vectorization techniques.

Construction of multimodal models

This study proposes a multimodal architecture that integrates
Bio_ClinicalBERT?® and ensemble learning (as shown in Fig-
ure 2) to achieve early classification of TRO and other chest
pain diseases by integrating clinical text and numerical data.
The specific process is as follows: (1) Text feature processing:
5 types of clinical text features (chief complaint, current med-
ical history, past medical history, physical examination, and
electrocardiogram report) are input into the Bio_Clinical-
BERT model (pre-trained based on MIMIC III clinical notes)
to generate 512-dimensional semantic embedding vectors; (2)
Numerical feature processing: The filtered 30 key numerical
features are input into 3 ensemble models””: AdaBoost
(dynamically adjusting sample weights), Gradient boosting
(iterative decision tree ensemble), and XGBoost (regularized
optimization tree structure); (3) Multimodal fusion: concate-
nate text embedding vectors with the probability outputs of 3
numerical models, train a random forest meta learner’®
through stacking strategy, and learn the optimal feature com-
bination decision boundary.
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Figure 1. The importance ranking of the 30 key numerical features included. The vertical axis lists feature names in descending order of importance,

while the horizontal axis represents the corresponding importance scores.
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Figure 2. Multimodal model architecture. Displayed the process of text features, numerical features, and multimodal fusion.

Model evaluation

In the experiment, we used 5 evaluation metrics to measure
the performance of the model, including accuracy, Fl-score,
recall, precision, and area under the curve (AUC) value. To
obtain more accurate and less biased results, we used a 5-
fold cross-validation method. Finally, we took the average
as the final evaluation result of the model and calculated

the standard deviation (SD) to reflect the volatility of the
results.

During optimization, we set the learning rate at 2e-5 and
used a batch size of 32. The model was trained on a computer
equipped with a 24-core CPU, 64 GB of RAM, and an NVI-
DIA RTX A6000 GPU with 48 GB of memory. We imple-
mented the model via Python 3.10 and PyTorch 2.6.



Results
Patient characteristics

This study ultimately included 30 key numerical features
(selected by feature importance ranking, as shown in Fig-
ure 1), covering clinical testing dimensions such as blood rou-
tine, biochemistry, coagulation function, and myocardial
injury markers. Among them, core biomarkers such as D-
dimer and hs-Tn have been confirmed by literature to have a
significant correlation with TRO.?” Table 1 presents the stat-
istical results of the characteristics of patient groups with 4
types of chest pain causes (ACS, AD, PE, and Non-TRO),
with the distribution differences of baseline data in each
group presented in the form of mean = SD.

Overall predictive performance of multimodel
models

We constructed 3 multimodal models: the Bio_Clinical BERT
model was uniformly used for text feature extraction, and the
numerical models were based on AdaBoost, Gradient boost-
ing, and XGBoost ensemble learning algorithms, respectively.
The performance of these 3 models was evaluated through 5-
fold cross-validation (Table 2). See Supplementary File S2 for
more detailed results per fold.

From the experimental results in Table 2, it can be seen
that the multimodal model Gradient boosting-based has the
best comprehensive performance, with an accuracy of
88.40% = 0.007, Fl-score of 74.56% = 0.014, precision of
77.50% = 0.018, recall of 72.52% = 0.012, and AUC value
of 0.951 +0.004. Next is the Adaboost-based model, with an
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accuracy of 87.75% = 0.003 and an AUC value of 0.946 =
0.004. The XGBoost-based model is slightly inferior in accu-
racy and AUC, with an accuracy of 86.16% = 0.006 and
0.917 +0.007, respectively. The SD of all 3 models is below
0.018, confirming the stability and generalization ability of
the experiment.

Table 2 shows the average results of the 3 models sepa-
rately for all classes in the 5-fold cross-validation, and as can
be seen from Supplementary File S2, the performance of the
results for each fold remains relatively stable. Therefore, in
Table 3, we report the individual performance of the 4 classes
in 1-fold of the 5-fold cross-validation for the best perform-
ing Gradient boosting-based model. Specifically, classes 1 to
4 correspond to PE, AD, ACS, and Non-TRO, respectively.
The results show that the performance of classes 1 and 2 is
slightly lower than that of the other 2 classes, but the differ-
ence is not significant, and the differences between the differ-
ent classes across the metrics are all less than 15%. This
indicates that our model can effectively identify minority
classes. In addition, we further visualize the receiver operat-
ing characteristic (ROC) curves of the 3 models for each class
in Figure 3. All models show high AUC values (>0.88) in all
4 classes, which indicates that our models have good discrim-
inative ability in categorization tasks.

To improve clinical applicability, we studied the relation-
ship between the number of features and the prediction per-
formance using the Gradient boosting-based multimodal
model with the best prediction performance (Table 4). The
experimental results show that when the number of numeri-
cal features is reduced to 30, the model performance does not

Table 1. The statistical distribution results (mean and SD) of the 30 key numerical features included in the patient population of 4 types of chest pain

causes (ACS, AD, PE, and Non-TRO).

Characteristics ACS (n=23604) AD (n=1361) PE (n=2073) Non-TRO (n=14344)
Age (years) 66.41 (11.50) 58.69 (13.67) 64.93 (13.51) 57.74 (15.65)
BMI 25.01 (12.99) 24.19 (3.85) 24.86 (20.95) 25.09 (36.86)
Temperature (Temp) 36.62 (7.06) 36.49 (0.28) 36.53 (0.44) 36.66 (8.69)
Systolic blood pressure (SBP) 130.69 (25.28) 139.12 (24.66) 127.84 (20.13) 125.43 (23.00)
Red blood cell count (RBC#) 4.43 (0.64) 4.45 (0.77) 4.21 (0.78) 4.51 (0.61)
Lymphocyte percentage (Lymph%) 23.53 (9.50) 18.43 (10.62) 19.13 (10.22) 24.01 (9.49)
Basophil percentage (Baso%) 0.33 (0.27) 0.34 (0.29) 0.35(0.28) 0.45(0.51)
Eosinophil percentage (Eos%) 2.04 (2.38) 1.65 (2.14) 1.93 (2.97) 2.22(2.67)
D-dimer (ug/L) 374.03 (2323.60) 2362.74 (9466.07) 3060.39 (16094.29) 408.26 (1292.42)
Thrombin time (TT) 15.22 (8.43) 15.26 (6.67) 15.10 (7.39) 14.65 (7.2)
Fibrinogen (Fbg) 3.25(1.01) 3.39 (1.34) 3.74 (1.48) 3.58(1.28)
Myoglobin (Mb) 116.77 (231.05) 107.41 (236.40) 112.58 (207.83) 52.03 (80.59)
Ceatine kinase (CK) 163.41 (702.68) 125.35(198.21) 377.55 (2156.19) 155.41 (576.57)
hs-Tn 0.23 (0.77) 0.08 (0.30) 0.06 (0.21) 0.03 (0.17)
High-sensitivity cardiac troponin T (hs-cTnT) 0.33(1.02) 0.02 (0.03) 0.04 (0.07) 0.01 (0.05)
Brain natriuretic peptide (BNP) 677.97 (2202.67) 153.85(242.03) 477.23 (2064.04) 144.04 (582.12)
Thyroid stimulating hormone (TSH) 2.89 (7.20) 3.08 (9.97) 2.96 (4.87) 2.72 (5.07)
Free triiodothyronine (FT3) 4.49 (1.14) 4.60 (0.81) 4.34 (1.01) 4.86 (1.31)
Total trilodothyronine (TT3) 1.35(0.41) 1.32(0.36) 1.23 (0.43) 1.44 (0.41)
Total thyroxine (TT4) 109.48 (28.74) 114.81 (34.57) 102.85 (49.39) 105.08 (37.41)
Aspartate aminotransferase (AST) 60.36 (219.63) 63.90 (486.77) 53.30(162.84) 29.05 (40.98)
y-Glutamyl transferase (GGT) 44.39 (71.08) 58.18 (139.82) 63.89 (100.67) 43.33 (70.56)
Albumin (ALB) 43.78 (9.30) 40.91 (7.66) 38.60 (8.97) 42.78 (8.41)
Creatinine (Crea) 83.98 (61.41) 98.88 (116.64) 81.95 (71.79) 71.62 (46.98)
Total calcium (Ca) 2.27(0.13) 2.22 (0.14) 2.20(0.17) 2.27(0.14)
Magnesium (Mg2+) 0.87(0.11) 0.86 (0.10) 0.87(0.11) 0.86 (0.09)
Glucose (Glu) 6.40 (2.84) 6.19 (2.71) 5.97(2.19) 5.48 (1.75)
Hemoglobin Alc (HbAlc) 6.36 (1.46) 5.98 (1.19) 6.35(1.43) 6.23 (1.31)
C-reactive protein (CRP) 14.61 (30.08) 30.94 (46.95) 42.93 (55.80) 31.73 (48.61)
Carbon dioxide (CO,) 24.34 (3.00) 24.18 (3.31) 24.32 (3.67) 25.27(2.72)

ACS, acute coronary syndrome; AD, aortic dissection; PE, pulmonary embolism; Non-TRO, Non chest pain triple-rule-out
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Table 2. Comparison of prediction results of 3 multimodal models with 5-fold cross-validation (mean and SD).

Multimodel model Accuracy F1-score Precision Recall AUC
XGBoost-based 86.16 (0.006) 71.15 (0.007) 73.22 (0.009) 69.68 (0.007) 0.917 (0.007)
Adaboost-based 87.75 (0.003) 73.13 (0.013) 76.99 (0.008) 70.76 (0.013) 0.946 (0.004)
Gradient boosting-based 88.40 (0.007) 74.56 (0.014) 77.50 (0.018) 72.52 (0.012) 0.951 (0.004)

AUC, area under the curve.

Table 3. Individual performance of 4 classes of 1-fold in 5-fold cross-
validation of the Gradient boosting-based model.

Class Accuracy F1-score Precision Recall AUC
Class 1 82.64 72.39 72.62 70.36 0.932
Class 2 77.81 69.49 73.13 68.43 0.935
Class 3 87.51 79.79 85.09 77.39 0.984
Class 4 92.56 83.66 87.61 80.10 0.984
Mean 89.42 76.33 79.61 74.07 0.959

AUC, area under the curve.

significantly degrade, but instead the accuracy improves from
88.34% = 0.004 to 88.40% = 0.007. This suggests that most
of the removed features are redundant or noisy features. Fea-
ture selection enhances the generalization ability and robust-
ness of the model, which is especially important when the
feature dimension is high. The slight decrease in the other
metrics is as expected. A small amount of information that
contributes slightly to the metrics may have been removed in
the process of removing features, resulting in a small decrease
in these metrics.

Next, the model framework proposed in this study utilizes
SHapley Additive exPlanations (SHAP)*® values to extract
feature importance. When a model makes specific predictions
based on a set of features, its contribution is determined by
calculating the impact of the presence or absence of each fea-
ture on the performance of the model. If the absence of a cer-
tain feature leads to a significant decline in model
performance, that feature will be assigned a higher contribu-
tion score. Figure 4 shows the SHAP value analysis results of
a multimodal model based on Gradient boosting. The figure
not only displays the SHAP values for each class but also
shows the average SHAP values for each class. Each point
corresponds to a sample in the training set and its SHAP
value. The variables are arranged in descending order of
SHAP values, with D-dimer having the highest average fea-
ture importance and BNP having the lowest average feature
importance. The horizontal position of the point represents
the impact of the feature value on the prediction result, with
red indicating a higher feature value and the horizontal axis
depicting the “positive” or “negative” impact of the feature
on the prediction.

To more comprehensively evaluate the performance of our
multimodal model and verify its advantages over unimodal
models, we have added comparisons with models using only
numerical data and text data in Supplementary File S3. These
unimodal models utilized numerical and text features for pre-
diction, respectively, to assess the contribution of different
data sources to model performance. The experimental results
show that the unimodal models do not perform as well as the
multimodal model on all metrics. Specifically, the model
using only text data slightly outperforms the model using
only numerical data on all metrics, but neither can reach the

performance level of the multimodal model (Gradient
boosting-based). This indicates that the multimodal model
can more comprehensively capture information from differ-
ent data sources when dealing with complex clinical scenar-
ios, thus achieving more accurate predictions.

Discussion

This study is based on medical data from Daping Hospital in
Chonggqing, and it successfully developed and validated a
multimodal model that integrates a pre-trained language
model (Bio_ClinicalBERT) and ensemble learning (AdaBoost,
Gradient boosting, and XGBoost) techniques, achieving pre-
liminary classification of the 3 major emergencies of TRO
and other chest pain related diseases. To our knowledge, this
is the first study to comprehensively predict TRO using Al
technology.

In terms of model construction, we used the outstanding
Gradient boosting model and Bio_ClinicalBERT for stacking
fusion. The model demonstrated excellent performance on
the complex dataset of this study, with an accuracy of
88.40%, an Fl-score of 74.56%, a precision of 77.50%, a
recall of 72.52%, and an AUC value of 0.951. This experi-
mental result fully demonstrates that our multimodal model
architecture effectively integrates text and numerical data
information, combines the advantages of deep learning and
machine learning, and can better capture the complex corre-
lations between features and chest pain etiology.

Given the crucial role of rapid diagnosis of acute chest pain
in improving prognosis, we are committed to building a more
streamlined and suitable classification model for early diag-
nosis. Through feature importance analysis, we identify and
remove redundant or minimally contributing features. After
significantly reducing the number of numerical features to
30, the model’s performance was not only maintained, but its
accuracy even slightly improved. This move speeds up the
diagnostic decision-making process for acute chest pain by
significantly reducing the cost of time spent on clinical tests
by retaining only the most relevant features. This streamlined
model is more focused on key clinical factors, which
improves the interpretability of the results, reduces the risk of
model overfitting to the training data, and enhances the mod-
el’s generalization ability and robustness. In addition, this
process significantly reduces the computational cost and time
required for model training and prediction.

The interpretability analysis using SHAP values revealed
key features of model decision-making, such as D-dimer and
hs-Tn biomarkers. The results were highly consistent with the
value of these biomarkers in chest pain diagnosis confirmed
by existing research, significantly enhancing the credibility
and clinical practicality of the model results.

Most current research focuses on using Al technology to
assist in the diagnosis of a single chest pain disease. For
example, the ensemble learning framework constructed by
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Table 4. Prediction results of the Gradient boosting-based multimodal model on different number of features (mean and SD).

F1-score

Precision

Numerical features Accuracy

Recall AUC

88.40 (0.007)
88.34 (0.004)

30 features
All features

77.50 (0.018)
77.54 (0.009)

74.56 (0.014)
74.83 (0.012)

72.52 (0.012)
72.91 (0.014)

0.951 (0.004)
0.953 (0.005)

AUC, area under the curve.
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Emakhu et al'! as a diagnostic aid for ACS can avoid mis-

diagnosis. It analyzed data from 31 228 patients and achieved
an AUC value of 0.933. The Bayesian network model devel-
oped by Huo et al'® was used for early diagnosis of aortic dis-
section, with a prediction accuracy of 84.55% and an AUC
value of 0.857. Xi et al” developed a machine learning model
based on 8 clinical features to assist in PE diagnosis, with an
AUC value of 0.726, and compared it with the current clini-
cal probability assessment model. These studies have made
significant contributions to improving the accuracy of diag-
nosing a single cause of chest pain. However, due to the
highly overlapping clinical manifestations of TRO, the limita-
tions of single disease diagnostic research in practical applica-
tions are highlighted, making it difficult to meet the clinical
demand for rapid differentiation of multiple chest pain dis-
eases. This study innovatively focuses on acute chest pain,
covering the classification of ACS, AD, PE, and Non-TRO
diseases, which is more applicable in clinical practice and
promises to provide comprehensive and efficient solutions for
early triage of chest pain patients, with a significant value for
clinical promotion and application. However, despite the bet-
ter performance of the model, the possibility of misclassifica-
tion still exists. Therefore, model outputs should be
considered as one of the references for clinical decision-
making rather than the sole basis. Clinicians should combine
other clinical information and experience when using the
model to ensure the accuracy and safety of decision-making.

However, this study also has certain limitations. First,
although the overall performance of the model is good, espe-
cially in terms of AUC and accuracy, the clinical manifesta-
tions of chest pain triad are highly overlapping, which poses
certain challenges to Fl-score, precision, and recall metrics,
making their performance relatively limited. Therefore,
future research needs to further optimize feature engineering
and model parameters, explore the integration of more
potential biomarkers with clinical features, to continuously
improve the diagnostic performance and generalization abil-
ity of the model.

Second, while we used routine interpolation when dealing
with missing values in laboratory data, we did not adequately
consider the nonrandom nature of missing data in acute care
scenarios. As noted in a recent study,®’ tests are often per-
formed selectively based on clinical suspicion, and simple
interpolation may lead to bias. For this reason, in the future,
we will analyze the mechanisms of missing data in depth, and
further investigate the patterns of missing data through statis-
tical analyses and recommendations from clinical experts to
determine whether missing data are associated with the clini-
cal presentation and initial diagnosis of patients. The use of
multiple interpolation and machine learning-based predictive
filling methods will also be explored, which can better take
into account the underlying mechanisms of missing data and
reduce the bias introduced by the mishandling of missing
values.

Third, although a large number of features have been
reduced through the feature selection work, some of the fea-
tures are still difficult to obtain quickly in real clinical acute
situations. Therefore, we should prioritize the acquisition of
key features and gradually validate the effectiveness of the
model in the clinical scenario. Currently, our feature selection
work has been participated in and supported by 2 clinical
experts. Going forward, we plan to further expand the
involvement of clinical experts to ensure that the model

design closely matches the actual clinical needs, which will
cover several key aspects such as model interpretation, result
validation, etc, thus introducing more clinical perspectives.

Finally, it is critical to test the performance of the model in
clinical deployments, with particular attention to its false
negative and false positive rates, to ensure its reliability and
safety in real-world clinical settings. Therefore, external vali-
dation through larger sample sizes and multicenter studies is
needed to apply the model to clinical applications.

Conclusions

This study constructed a multimodal framework that integra-
tes a pre-trained language model of Bio_ClinicalBERT with
Gradient boosting ensemble learning, achieving efficient clas-
sification of the 3 major emergencies of TRO and Non-TRO
etiology. The experiment based on 41 382 patients showed
that the model maintained excellent performance even after
numerical feature reduction to 30 key indicators. This frame-
work is expected to overcome the difficult problem of highly
overlapping clinical symptoms in TRO diseases and provide a
fast and accurate intelligent auxiliary tool for emergency
triage.
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