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Abstract
Objectives: Acute chest pain is a common presentation in the emergency department, characterized by sudden onset with high morbidity and 
mortality. Traditional diagnostic methods, such as computed tomography (CT) and CT angiography (CTA), are often time-consuming and fail to 
meet the urgent need for rapid triage in emergency settings.
Materials and Methods: We developed a multimodal model that integrates Bio-ClinicalBERT and ensemble learning (AdaBoost, Gradient 
boosting, and XGBoost) based on 41 382 patient data from April 1, 2013 to April 1, 2025 at Chongqing Daping Hospital. By integrating clinical 
texts and laboratory indicators, the model aims to classify the 3 major causes of fatal chest pain (acute coronary syndrome, pulmonary embo
lism, and aortic dissection), as well as other causes of chest pain, aiding rapid triage. We adopt strict data preprocessing and rank importance 
feature selection.
Results: The multimodal fusion model based on Gradient boosting exhibits the best performance: accuracy of 88.40%, area under the curve of 
0.951, F1-score of 74.56%, precision of 77.50%, and recall of 72.52%. SHapley Additive exPlanations (SHAP) analysis confirmed the clinical 
relevance of key features such as d-dimer and high-sensitivity troponin. When reducing the number of numerical features to 30 key indicators, 
the model enhanced robustness without compromising performance.
Discussion and Conclusion: We developed an artificial intelligence model for chest pain classification that effectively addresses the problem 
of overlapping clinical symptoms through multimodal fusion, and the model has high accuracy. However, future work needs to better integrate 
model development with clinical workflows and practical constraints.

Lay Summary
Acute chest pain is a common emergency in the emergency department and can be caused by several very dangerous cardiac or vascular condi
tions. Rapid identification of the specific etiology is crucial to save lives, but traditional tests (eg, CT or CTA) are often time-consuming and are 
not conducive to rapid triage in emergency medicine. We developed a novel artificial intelligence multimodal model that integrates 2 aspects of 
information: a textual description of the medical record recorded by the doctor and the patient’s laboratory test results. Utilizing data from over 
40 000 chest pain patients at Chongqing Daping Hospital, we completed training and testing of the model. The model performed excellently in 
differentiating between the 3 major fatal causes of chest pain (acute coronary syndrome, pulmonary embolism, and aortic coarctation) and other 
causes of chest pain, with an accuracy of 88.40%. The study also confirmed the value of certain key indicators in determining etiology. The 
model has the potential to become an efficient intelligent triage tool for emergency chest pain, helping physicians make faster decisions.
Key words: chest pain; acute coronary syndrome; pulmonary embolism; aortic dissection; ensemble learning. 

Introduction
Acute chest pain is one of the most common diseases in cardi
ovascular and emergency departments,1 with a rapid onset 
and often the first symptom of various life-threatening condi
tions. Cardiologists and general practitioners often face the 
challenge of managing chest pain symptoms caused by com
plex etiologies.2 The 2022 Heart Disease and Stroke Statistics 
Report released by the American Heart Association,3 based 
on 2019 data, shows that the mortality rate caused by cardio
vascular disease in the United States is 214.6 cases per 
100 000 people. Statistics show that cardiovascular disease 
causes 1 death every 36.1 seconds, with a total of 2396 
deaths per day. Meanwhile, in China, the 2022 China Cardi
ovascular Health and Disease Report shows that in 2020,4

cardiovascular disease accounted for 48.00% and 45.86% of 
deaths in rural and urban areas, respectively. Although pre
liminary screening can be conducted among various differen
tial diagnoses through routine methods such as medical 
history inquiry, physical examination, and electrocardio
gram, a considerable number of patients still require further 
examination to confirm the diagnosis.5 In emergencies, 
quickly and accurately identifying the cause of chest pain in 
patients, and effectively screening high-risk chest pain 
patients, is crucial for reducing complications, lowering mor
tality rates, and making reasonable treatment decisions.

Chest pain triple-rule-out (TRO) refers to 3 diseases and 
complications characterized by acute chest pain attacks, 
including acute coronary syndrome (ACS), pulmonary 
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embolism (PE), and aortic dissection (AD).6 These diseases 
have a dangerous onset, high misdiagnosis rate, and mortality 
rate. Their clinical symptoms mainly include chest pain, diffi
culty breathing, and hemoptysis. Although chest pain caused 
by different etiologies has similarities in symptoms and differ
ent characteristics, it can manifest as pain in different parts, 
of different natures, and to varying degrees. Early identifica
tion of the cause and timely and effective treatment are key to 
the treatment of patients with acute chest pain.7 However, 
traditional diagnostic methods such as computed tomogra
phy and computed tomography angiography have certain 
limitations. These examination methods are time-consuming, 
not conducive to early diagnosis, and difficult to meet the 
needs of rapid triage in emergency departments.

In recent years, with the rapid development of artificial intelli
gence (AI) technology, the application of machine learning and 
pre-trained language models in the medical field has gradually 
emerged. Machine learning can automatically learn patterns 
and rules from large amounts of data by constructing algorith
mic models, discovering complex patterns and associated fea
tures hidden in the data, and making predictions and 
classifications based on them.8,9 Pre-trained language models, 
with their powerful natural language processing capabilities, 
can understand human language and provide new avenues for 
processing and analyzing medical text data.10 Although there 
have been numerous studies exploring the application of AI in 
chest pain diagnosis, most of them have focused on the diagno
sis of a single chest pain disease, such as using AI to assist in the 
diagnosis of ACS,11–13 PE,14–17 or AD.18–20 TRO has high clini
cal overlap in clinical manifestations and further research is 
needed.21

This study innovatively integrates pre-trained language 
models and machine learning techniques to construct a multi
modal classification model, aiming to achieve an early auxili
ary diagnosis of the 3 major emergencies of TRO and other 
causes of chest pain. By integrating clinical texts and labora
tory indicators, this framework is expected to improve the 
efficiency of chest pain diagnosis, reduce misdiagnosis and 
missed diagnosis rates, and provide intelligent decision sup
port for rapid triage in emergency departments.

Methods
Patients and dataset
We collected data on hospitalized patients with acute chest 
pain admitted to Chongqing Daping Hospital from April 1, 
2013 to April 1, 2025. Inclusion criteria: (1) chief complaint 
of acute chest pain; (2) age ≥ 18 years old; and (3) no multi
ple TRO symptoms. The final dataset included a total of 
41 382 patients, including ACS (n¼23 604), PE (n¼2073), 
AD (n¼ 1361), and Non-TRO chest pain (Non-TRO, such 
as coronary heart disease, myocarditis, heart failure, etc, 
n¼ 14 344). All clinical examinations were performed in 
strict accordance with the European Society of Cardiology 
(ESC) guidelines for ACS, PE, and AD diagnosis and manage
ment.22–24 After the clinical diagnosis was established, an 
adjudication board of experienced cardiologists grouped the 
patients into final diagnoses.

To enable rapid classification during early diagnostic 
stages, we selected clinically accessible data aligned with 

established clinical guidelines. These data included demo
graphics (gender, age, and BMI), clinical records (chief com
plaint, present medical history, and past medical history), 
and examination findings (physical exam, vital signs, and 
electrocardiographic). Laboratory data encompassed 56 indi
cators, including those from complete blood count (12 items), 
coagulation panel (6 items), cardiac injury markers (6 items), 
thyroid function tests 
(5 items), liver function tests (9 items), renal function tests 
(3 items), lipid profile (4 items), electrolytes (6 items), fasting 
blood glucose, glycated hemoglobin, procalcitonin, c-reactive 
protein, and carbon dioxide (CO2). Detailed indicator infor
mation is provided in Supplementary File S1.

Data preprocessing and feature engineering
To address the issue of missing values in raw data, mode 
imputation is used for categorical variables, and k-nearest 
neighbor interpolation (K¼5) is used for continuous varia
bles. All numerical features are standardized using Z-score.

To optimize the feature space, we used the permutatio
n_importance function25 of scikit-learn to analyze the contri
bution of numerical features by selecting 30 high-impact 
features (eg, D-dimer, high-sensitivity troponin [hs-Tn], etc) 
from all numerical features, as shown in Figure 1. The core 
idea of the method is to measure the importance of a feature 
by randomly disrupting the value of that feature on the vali
dation set and observing the impact this operation causes on 
the model performance. To improve the stability of the 
results, we repeat the reordering process n_repeats¼10 times 
for each feature and take the average of its performance deg
radation as the final importance score of that feature.

To address the issue of class imbalance, we adopt a class 
weighted learning strategy combined with ensemble algo
rithms to enhance the ability to recognize minority classes 
(PE or AD). In addition, clinical text data are transformed 
into structured features through vectorization techniques.

Construction of multimodal models
This study proposes a multimodal architecture that integrates 
Bio_ClinicalBERT26 and ensemble learning (as shown in Fig
ure 2) to achieve early classification of TRO and other chest 
pain diseases by integrating clinical text and numerical data. 
The specific process is as follows: (1) Text feature processing: 
5 types of clinical text features (chief complaint, current med
ical history, past medical history, physical examination, and 
electrocardiogram report) are input into the Bio_Clinical
BERT model (pre-trained based on MIMIC III clinical notes) 
to generate 512-dimensional semantic embedding vectors; (2) 
Numerical feature processing: The filtered 30 key numerical 
features are input into 3 ensemble models27: AdaBoost 
(dynamically adjusting sample weights), Gradient boosting 
(iterative decision tree ensemble), and XGBoost (regularized 
optimization tree structure); (3) Multimodal fusion: concate
nate text embedding vectors with the probability outputs of 3 
numerical models, train a random forest meta learner28

through stacking strategy, and learn the optimal feature com
bination decision boundary.
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Model evaluation
In the experiment, we used 5 evaluation metrics to measure 
the performance of the model, including accuracy, F1-score, 
recall, precision, and area under the curve (AUC) value. To 
obtain more accurate and less biased results, we used a 5- 
fold cross-validation method. Finally, we took the average 
as the final evaluation result of the model and calculated 

the standard deviation (SD) to reflect the volatility of the 
results.

During optimization, we set the learning rate at 2e-5 and 
used a batch size of 32. The model was trained on a computer 
equipped with a 24-core CPU, 64 GB of RAM, and an NVI
DIA RTX A6000 GPU with 48 GB of memory. We imple
mented the model via Python 3.10 and PyTorch 2.6.

Figure 1. The importance ranking of the 30 key numerical features included. The vertical axis lists feature names in descending order of importance, 
while the horizontal axis represents the corresponding importance scores.

Figure 2. Multimodal model architecture. Displayed the process of text features, numerical features, and multimodal fusion.
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Results
Patient characteristics
This study ultimately included 30 key numerical features 
(selected by feature importance ranking, as shown in Fig
ure 1), covering clinical testing dimensions such as blood rou
tine, biochemistry, coagulation function, and myocardial 
injury markers. Among them, core biomarkers such as D- 
dimer and hs-Tn have been confirmed by literature to have a 
significant correlation with TRO.29 Table 1 presents the stat
istical results of the characteristics of patient groups with 4 
types of chest pain causes (ACS, AD, PE, and Non-TRO), 
with the distribution differences of baseline data in each 
group presented in the form of mean ± SD.

Overall predictive performance of multimodel 
models
We constructed 3 multimodal models: the Bio_ClinicalBERT 
model was uniformly used for text feature extraction, and the 
numerical models were based on AdaBoost, Gradient boost
ing, and XGBoost ensemble learning algorithms, respectively. 
The performance of these 3 models was evaluated through 5- 
fold cross-validation (Table 2). See Supplementary File S2 for 
more detailed results per fold.

From the experimental results in Table 2, it can be seen 
that the multimodal model Gradient boosting-based has the 
best comprehensive performance, with an accuracy of 
88.40% ± 0.007, F1-score of 74.56% ± 0.014, precision of 
77.50% ± 0.018, recall of 72.52% ± 0.012, and AUC value 
of 0.951 ± 0.004. Next is the Adaboost-based model, with an 

accuracy of 87.75% ± 0.003 and an AUC value of 0.946 ± 
0.004. The XGBoost-based model is slightly inferior in accu
racy and AUC, with an accuracy of 86.16% ± 0.006 and 
0.917 ± 0.007, respectively. The SD of all 3 models is below 
0.018, confirming the stability and generalization ability of 
the experiment.

Table 2 shows the average results of the 3 models sepa
rately for all classes in the 5-fold cross-validation, and as can 
be seen from Supplementary File S2, the performance of the 
results for each fold remains relatively stable. Therefore, in 
Table 3, we report the individual performance of the 4 classes 
in 1-fold of the 5-fold cross-validation for the best perform
ing Gradient boosting-based model. Specifically, classes 1 to 
4 correspond to PE, AD, ACS, and Non-TRO, respectively. 
The results show that the performance of classes 1 and 2 is 
slightly lower than that of the other 2 classes, but the differ
ence is not significant, and the differences between the differ
ent classes across the metrics are all less than 15%. This 
indicates that our model can effectively identify minority 
classes. In addition, we further visualize the receiver operat
ing characteristic (ROC) curves of the 3 models for each class 
in Figure 3. All models show high AUC values (>0.88) in all 
4 classes, which indicates that our models have good discrim
inative ability in categorization tasks.

To improve clinical applicability, we studied the relation
ship between the number of features and the prediction per
formance using the Gradient boosting-based multimodal 
model with the best prediction performance (Table 4). The 
experimental results show that when the number of numeri
cal features is reduced to 30, the model performance does not 

Table 1. The statistical distribution results (mean and SD) of the 30 key numerical features included in the patient population of 4 types of chest pain 
causes (ACS, AD, PE, and Non-TRO).

Characteristics ACS (n¼23604) AD (n¼1361) PE (n¼2073) Non-TRO (n¼14344)

Age (years) 66.41 (11.50) 58.69 (13.67) 64.93 (13.51) 57.74 (15.65)
BMI 25.01 (12.99) 24.19 (3.85) 24.86 (20.95) 25.09 (36.86)
Temperature (Temp) 36.62 (7.06) 36.49 (0.28) 36.53 (0.44) 36.66 (8.69)
Systolic blood pressure (SBP) 130.69 (25.28) 139.12 (24.66) 127.84 (20.13) 125.43 (23.00)
Red blood cell count (RBC#) 4.43 (0.64) 4.45 (0.77) 4.21 (0.78) 4.51 (0.61)
Lymphocyte percentage (Lymph%) 23.53 (9.50) 18.43 (10.62) 19.13 (10.22) 24.01 (9.49)
Basophil percentage (Baso%) 0.33 (0.27) 0.34 (0.29) 0.35 (0.28) 0.45 (0.51)
Eosinophil percentage (Eos%) 2.04 (2.38) 1.65 (2.14) 1.93 (2.97) 2.22 (2.67)
D-dimer (ug/L) 374.03 (2323.60) 2362.74 (9466.07) 3060.39 (16094.29) 408.26 (1292.42)
Thrombin time (TT) 15.22 (8.43) 15.26 (6.67) 15.10 (7.39) 14.65 (7.2)
Fibrinogen (Fbg) 3.25 (1.01) 3.39 (1.34) 3.74 (1.48) 3.58 (1.28)
Myoglobin (Mb) 116.77 (231.05) 107.41 (236.40) 112.58 (207.83) 52.03 (80.59)
Ceatine kinase (CK) 163.41 (702.68) 125.35 (198.21) 377.55 (2156.19) 155.41 (576.57)
hs-Tn 0.23 (0.77) 0.08 (0.30) 0.06 (0.21) 0.03 (0.17)
High-sensitivity cardiac troponin T (hs-cTnT) 0.33 (1.02) 0.02 (0.03) 0.04 (0.07) 0.01 (0.05)
Brain natriuretic peptide (BNP) 677.97 (2202.67) 153.85 (242.03) 477.23 (2064.04) 144.04 (582.12)
Thyroid stimulating hormone (TSH) 2.89 (7.20) 3.08 (9.97) 2.96 (4.87) 2.72 (5.07)
Free triiodothyronine (FT3) 4.49 (1.14) 4.60 (0.81) 4.34 (1.01) 4.86 (1.31)
Total triiodothyronine (TT3) 1.35 (0.41) 1.32 (0.36) 1.23 (0.43) 1.44 (0.41)
Total thyroxine (TT4) 109.48 (28.74) 114.81 (34.57) 102.85 (49.39) 105.08 (37.41)
Aspartate aminotransferase (AST) 60.36 (219.63) 63.90 (486.77) 53.30 (162.84) 29.05 (40.98)
γ-Glutamyl transferase (GGT) 44.39 (71.08) 58.18 (139.82) 63.89 (100.67) 43.33 (70.56)
Albumin (ALB) 43.78 (9.30) 40.91 (7.66) 38.60 (8.97) 42.78 (8.41)
Creatinine (Crea) 83.98 (61.41) 98.88 (116.64) 81.95 (71.79) 71.62 (46.98)
Total calcium (Ca) 2.27 (0.13) 2.22 (0.14) 2.20 (0.17) 2.27(0.14)
Magnesium (Mg2þ) 0.87 (0.11) 0.86 (0.10) 0.87 (0.11) 0.86 (0.09)
Glucose (Glu) 6.40 (2.84) 6.19 (2.71) 5.97 (2.19) 5.48 (1.75)
Hemoglobin A1c (HbA1c) 6.36 (1.46) 5.98 (1.19) 6.35 (1.43) 6.23 (1.31)
C-reactive protein (CRP) 14.61 (30.08) 30.94 (46.95) 42.93 (55.80) 31.73 (48.61)
Carbon dioxide (CO2) 24.34 (3.00) 24.18 (3.31) 24.32 (3.67) 25.27 (2.72)

ACS, acute coronary syndrome; AD, aortic dissection; PE, pulmonary embolism; Non-TRO, Non chest pain triple-rule-out
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significantly degrade, but instead the accuracy improves from 
88.34% ± 0.004 to 88.40% ± 0.007. This suggests that most 
of the removed features are redundant or noisy features. Fea
ture selection enhances the generalization ability and robust
ness of the model, which is especially important when the 
feature dimension is high. The slight decrease in the other 
metrics is as expected. A small amount of information that 
contributes slightly to the metrics may have been removed in 
the process of removing features, resulting in a small decrease 
in these metrics.

Next, the model framework proposed in this study utilizes 
SHapley Additive exPlanations (SHAP)30 values to extract 
feature importance. When a model makes specific predictions 
based on a set of features, its contribution is determined by 
calculating the impact of the presence or absence of each fea
ture on the performance of the model. If the absence of a cer
tain feature leads to a significant decline in model 
performance, that feature will be assigned a higher contribu
tion score. Figure 4 shows the SHAP value analysis results of 
a multimodal model based on Gradient boosting. The figure 
not only displays the SHAP values for each class but also 
shows the average SHAP values for each class. Each point 
corresponds to a sample in the training set and its SHAP 
value. The variables are arranged in descending order of 
SHAP values, with D-dimer having the highest average fea
ture importance and BNP having the lowest average feature 
importance. The horizontal position of the point represents 
the impact of the feature value on the prediction result, with 
red indicating a higher feature value and the horizontal axis 
depicting the “positive” or “negative” impact of the feature 
on the prediction.

To more comprehensively evaluate the performance of our 
multimodal model and verify its advantages over unimodal 
models, we have added comparisons with models using only 
numerical data and text data in Supplementary File S3. These 
unimodal models utilized numerical and text features for pre
diction, respectively, to assess the contribution of different 
data sources to model performance. The experimental results 
show that the unimodal models do not perform as well as the 
multimodal model on all metrics. Specifically, the model 
using only text data slightly outperforms the model using 
only numerical data on all metrics, but neither can reach the 

performance level of the multimodal model (Gradient 
boosting-based). This indicates that the multimodal model 
can more comprehensively capture information from differ
ent data sources when dealing with complex clinical scenar
ios, thus achieving more accurate predictions.

Discussion
This study is based on medical data from Daping Hospital in 
Chongqing, and it successfully developed and validated a 
multimodal model that integrates a pre-trained language 
model (Bio_ClinicalBERT) and ensemble learning (AdaBoost, 
Gradient boosting, and XGBoost) techniques, achieving pre
liminary classification of the 3 major emergencies of TRO 
and other chest pain related diseases. To our knowledge, this 
is the first study to comprehensively predict TRO using AI 
technology.

In terms of model construction, we used the outstanding 
Gradient boosting model and Bio_ClinicalBERT for stacking 
fusion. The model demonstrated excellent performance on 
the complex dataset of this study, with an accuracy of 
88.40%, an F1-score of 74.56%, a precision of 77.50%, a 
recall of 72.52%, and an AUC value of 0.951. This experi
mental result fully demonstrates that our multimodal model 
architecture effectively integrates text and numerical data 
information, combines the advantages of deep learning and 
machine learning, and can better capture the complex corre
lations between features and chest pain etiology.

Given the crucial role of rapid diagnosis of acute chest pain 
in improving prognosis, we are committed to building a more 
streamlined and suitable classification model for early diag
nosis. Through feature importance analysis, we identify and 
remove redundant or minimally contributing features. After 
significantly reducing the number of numerical features to 
30, the model’s performance was not only maintained, but its 
accuracy even slightly improved. This move speeds up the 
diagnostic decision-making process for acute chest pain by 
significantly reducing the cost of time spent on clinical tests 
by retaining only the most relevant features. This streamlined 
model is more focused on key clinical factors, which 
improves the interpretability of the results, reduces the risk of 
model overfitting to the training data, and enhances the mod
el’s generalization ability and robustness. In addition, this 
process significantly reduces the computational cost and time 
required for model training and prediction.

The interpretability analysis using SHAP values revealed 
key features of model decision-making, such as D-dimer and 
hs-Tn biomarkers. The results were highly consistent with the 
value of these biomarkers in chest pain diagnosis confirmed 
by existing research, significantly enhancing the credibility 
and clinical practicality of the model results.

Most current research focuses on using AI technology to 
assist in the diagnosis of a single chest pain disease. For 
example, the ensemble learning framework constructed by 

Table 2. Comparison of prediction results of 3 multimodal models with 5-fold cross-validation (mean and SD).

Multimodel model Accuracy F1-score Precision Recall AUC

XGBoost-based 86.16 (0.006) 71.15 (0.007) 73.22 (0.009) 69.68 (0.007) 0.917 (0.007)
Adaboost-based 87.75 (0.003) 73.13 (0.013) 76.99 (0.008) 70.76 (0.013) 0.946 (0.004)
Gradient boosting-based 88.40 (0.007) 74.56 (0.014) 77.50 (0.018) 72.52 (0.012) 0.951 (0.004)

AUC, area under the curve.

Table 3. Individual performance of 4 classes of 1-fold in 5-fold cross- 
validation of the Gradient boosting-based model.

Class Accuracy F1-score Precision Recall AUC

Class 1 82.64 72.39 72.62 70.36 0.932
Class 2 77.81 69.49 73.13 68.43 0.935
Class 3 87.51 79.79 85.09 77.39 0.984
Class 4 92.56 83.66 87.61 80.10 0.984
Mean 89.42 76.33 79.61 74.07 0.959

AUC, area under the curve.
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Figure 3. ROC curves of 3 multimodal models for each category. ROC: receiver operating characteristic.

Table 4. Prediction results of the Gradient boosting-based multimodal model on different number of features (mean and SD).

Numerical features Accuracy F1-score Precision Recall AUC

30 features 88.40 (0.007) 74.56 (0.014) 77.50 (0.018) 72.52 (0.012) 0.951 (0.004)
All features 88.34 (0.004) 74.83 (0.012) 77.54 (0.009) 72.91 (0.014) 0.953 (0.005)

AUC, area under the curve.

Figure 4. SHAP value analysis of multimodal models based on Gradient boosting. Among them, Class 0 to Class 3 correspond to the SHAP result graphs 
of the 4 types of chest pain causes, and Mean represents the average SHAP result graph. Each point in the figure corresponds to a sample in the training 
set and its SHAP value, and the variables are arranged in descending order of SHAP value. The horizontal position of the point represents the degree of 
influence of the feature value on the prediction result, with red indicating a higher feature value and the horizontal axis indicating the "positive" or 
"negative" impact of the feature on the prediction. SHAP: SHapley Additive exPlanations.
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Emakhu et al11 as a diagnostic aid for ACS can avoid mis
diagnosis. It analyzed data from 31 228 patients and achieved 
an AUC value of 0.933. The Bayesian network model devel
oped by Huo et al19 was used for early diagnosis of aortic dis
section, with a prediction accuracy of 84.55% and an AUC 
value of 0.857. Xi et al9 developed a machine learning model 
based on 8 clinical features to assist in PE diagnosis, with an 
AUC value of 0.726, and compared it with the current clini
cal probability assessment model. These studies have made 
significant contributions to improving the accuracy of diag
nosing a single cause of chest pain. However, due to the 
highly overlapping clinical manifestations of TRO, the limita
tions of single disease diagnostic research in practical applica
tions are highlighted, making it difficult to meet the clinical 
demand for rapid differentiation of multiple chest pain dis
eases. This study innovatively focuses on acute chest pain, 
covering the classification of ACS, AD, PE, and Non-TRO 
diseases, which is more applicable in clinical practice and 
promises to provide comprehensive and efficient solutions for 
early triage of chest pain patients, with a significant value for 
clinical promotion and application. However, despite the bet
ter performance of the model, the possibility of misclassifica
tion still exists. Therefore, model outputs should be 
considered as one of the references for clinical decision- 
making rather than the sole basis. Clinicians should combine 
other clinical information and experience when using the 
model to ensure the accuracy and safety of decision-making.

However, this study also has certain limitations. First, 
although the overall performance of the model is good, espe
cially in terms of AUC and accuracy, the clinical manifesta
tions of chest pain triad are highly overlapping, which poses 
certain challenges to F1-score, precision, and recall metrics, 
making their performance relatively limited. Therefore, 
future research needs to further optimize feature engineering 
and model parameters, explore the integration of more 
potential biomarkers with clinical features, to continuously 
improve the diagnostic performance and generalization abil
ity of the model.

Second, while we used routine interpolation when dealing 
with missing values in laboratory data, we did not adequately 
consider the nonrandom nature of missing data in acute care 
scenarios. As noted in a recent study,31 tests are often per
formed selectively based on clinical suspicion, and simple 
interpolation may lead to bias. For this reason, in the future, 
we will analyze the mechanisms of missing data in depth, and 
further investigate the patterns of missing data through statis
tical analyses and recommendations from clinical experts to 
determine whether missing data are associated with the clini
cal presentation and initial diagnosis of patients. The use of 
multiple interpolation and machine learning-based predictive 
filling methods will also be explored, which can better take 
into account the underlying mechanisms of missing data and 
reduce the bias introduced by the mishandling of missing 
values.

Third, although a large number of features have been 
reduced through the feature selection work, some of the fea
tures are still difficult to obtain quickly in real clinical acute 
situations. Therefore, we should prioritize the acquisition of 
key features and gradually validate the effectiveness of the 
model in the clinical scenario. Currently, our feature selection 
work has been participated in and supported by 2 clinical 
experts. Going forward, we plan to further expand the 
involvement of clinical experts to ensure that the model 

design closely matches the actual clinical needs, which will 
cover several key aspects such as model interpretation, result 
validation, etc, thus introducing more clinical perspectives.

Finally, it is critical to test the performance of the model in 
clinical deployments, with particular attention to its false 
negative and false positive rates, to ensure its reliability and 
safety in real-world clinical settings. Therefore, external vali
dation through larger sample sizes and multicenter studies is 
needed to apply the model to clinical applications.

Conclusions
This study constructed a multimodal framework that integra
tes a pre-trained language model of Bio_ClinicalBERT with 
Gradient boosting ensemble learning, achieving efficient clas
sification of the 3 major emergencies of TRO and Non-TRO 
etiology. The experiment based on 41 382 patients showed 
that the model maintained excellent performance even after 
numerical feature reduction to 30 key indicators. This frame
work is expected to overcome the difficult problem of highly 
overlapping clinical symptoms in TRO diseases and provide a 
fast and accurate intelligent auxiliary tool for emergency 
triage.
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