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Complex diseases are associated with a wide range of cellular, physiological,

and clinical phenotypes. To advance our understanding of disease mechanisms

and our ability to treat these diseases, it is critical to delineate the molecular

basis and therapeutic avenues of specific disease phenotypes, especially those

that are associated with multiple diseases. Inflammatory processes constitute

one such prominent phenotype, being involved in a wide range of health

problems including ischemic heart disease, stroke, cancer, diabetes mellitus,

chronic kidney disease, non-alcoholic fatty liver disease, and autoimmune and

neurodegenerative conditions. While hundreds of genes might play a role in the

etiology of each of these diseases, isolating the genes involved in the specific

phenotype (e.g., inflammation “component”) could help us understand the

genes and pathways underlying this phenotype across diseases and predict

potential drugs to target the phenotype. Here, we present a computational

approach that integrates gene interaction networks, disease-/trait-gene

associations, and drug-target information to accomplish this goal. We apply

this approach to isolate gene signatures of complex diseases that correspond to

chronic inflammation and use SAveRUNNER to prioritize drugs to reveal new

therapeutic opportunities.
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1 Introduction

Acute inflammation is an organism’s healthy response to

invasion by pathogens or to cellular damage caused by injury

(Rock and Kono 2008). Systemic chronic inflammation (CI)

occurs when these inflammatory responses do not resolve,

resulting in persistent, low-grade immune activation that

causes collateral damage to the affected tissue over time

(Furman et al., 2019). While the direct connection of CI to

autoimmune diseases has been well known for some time, only

recently has the medical community uncovered the prevalence of

CI in a multitude of complex diseases and disorders (Furman

et al., 2019; Vos et al., 2020). Therefore, it is imperative to better

understand the different molecular mechanisms of CI

manifestation across diseases.

Network-based methods are powerful collection of tools for

both elucidating specific pathways and processes that may

underlie a complex phenotype (Ghiassian et al., 2015;

Leiserson et al., 2015; Ghiassian et al., 2016) and for drug

repurposing (Chen et al., 2015; Cheng et al., 2018; Fiscon and

Paci 2021). For instance, HotNet2 is a pan-cancer network

analysis tool that identifes active network modules in a

genome-wide molecular network by guiding the module

detection algorithm with thousands of genes scored by how

prevalent they are across 12 cancers in TCGA (Leiserson

et al., 2015). HotNet2 is then able to determine if any module

is enriched for a given cancer type, pathway, or process. In a

similar vein, another approach, DIAMOnD, starts with a

genome-wide network, and then creates a disease-specific

network using an expanded set of known disease-gene

annotations (Ghiassian et al., 2015). This disease-specific

network is then analyzed and compared to other disease-

specific networks generated using the same technique. Both

approaches find regions of a genome-wide network that are

enriched for disease-related genes.

Inflammation is an example of an endophenotype, or

intermediate phenotype, of a complex disease. Ghiassian et al.

studied endophenotype network models by starting with a

genome-wide network and constructing modules for sets of

seed genes related to three endophenotypes: inflammation,

thrombosis, and fibrosis (Ghiassian et al., 2016). The authors

showed that the network modules derived from the three

endophenotypes have strong overlap in the network and that

these modules are enriched for genes differentially expressed in

various complex diseases. While the above methods provide

invaluable insight in disease mechanisms using a disease-

focused and a phenotype-focused approach, respectively, they

raise the critical question of identifying phenotypic signatures

specific to individual diseases. For instance, can we identify the

CI-signature that is specific to a given disease and use that to find

avenues for therapeutic intervention?

In this work, we address this question using a network-

based approach. We first generate a network consisting of

only genes associated with a single disease (Figure 1A, steps

1–2) Here, like in DIAMOnD (Ghiassian et al., 2015), we

expand our original disease-gene annotations to build more

robust networks and glean insight into unstudied genes. We

use a network-based supervised machine learning model,

shown to systematically outperform label propagation

methods like DIAMOnD, to expand our gene sets (Liu

et al., 2020). We then cluster the disease-specific network,

find clusters that are significantly enriched for known CI

genes, and compare these CI signatures across diseases

(Figures 1A,B steps 12). We then use the SAveRUNNER

(Fiscon and Paci 2021) method on these enriched clusters

to predict drugs that might help treat the CI-component

specific to a given disease (Figure 1B, step 3).

2 Methods

2.1 Disease selection and disease-
associated seed genes

2.1.1 Complex and autoimmune diseases
We searched the literature (Furman et al., 2019; Dregan

et al., 2014; Armstrong et al., 2013; Yashiro 2014; Chou et al.,

2016; Autoimmune Diseases: Causes, 2022) and curated

examples of 17 complex diseases associated with chronic

inflammation (CI) and nine common autoimmune

diseases. Some of these diseases are quite broad (i.e

“Malignant neoplasm of lung”), and to add more narrowly

defined diseases to our list, we used the Human Disease

Ontology (Schriml et al., 2019) to identify child terms of

these diseases. The chosen diseases were not meant to be

comprehensive, but examples of autoimmune diseases and

complex diseases thought to have immune components. We

then identified genes annotated to each disease by the

DisGeNet database, which is a database that stores a

collection of disease-gene annotations from expert curated

repositories, GWAS catalogs, animal models and the

scientific literature (Piñero et al., 2020). To ensure that our

disease gene sets were largely non-overlapping, we created a

network such that nodes were diseases, and an edge was

created between two diseases if the two gene sets had ≥ 0.6
overlap (|A ∩ B|/ min (|A|, |B|)). We then chose the most

representative disease from each connected component.

This resulted in 10 autoimmune diseases and 37 complex

diseases (Supplementary Table S1).

2.1.2 Non-disease traits
Two lab members manually curated 113 non-disease-traits

that are unlikely to be associated with CI (i.e. handedness, coffee

intake, and average household income) from the list of traits with

GWAS results from the UK Biobank (Sudlow et al., 2015) to be

used as negative controls. Based on GWAS summary statistics
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from the Neale group (Abbot et al., 2021), we used Pascal

(Lamparter et al., 2016) (upstream and downstream windows

of 50 KB with the sum-of-chi-squared statistics method; only

autosomal variants) to associate genes with the non-disease

traits. Genes with p< 0.001 were included as seed genes for

that trait.

FIGURE 1
Schematics describing the experimental pipeline. (A) Describes predicting new disease related genes (step 1), clustering the disease-specific
interaction network (step 2) as well as 5,000 networksmade from randomly-selected degree-matched genes for each disease (step3), identifying CI-
enriched clusters (steps 4 and 5), and calculating the proportion of diseases with at least one CI-enriched cluster. These steps were performed for
each gene-gene interaction network in combination with each inflammation gene set described in the methods. (B) Describes using
SAveRUNNER to find groups of CI-enriched clusters from all diseases with similar CI-signatures (steps 1 and 2), and prioritize treatments for the CI
component of complex diseases (step 3). Using ConsensusPathDB with the high-confidence GeneShot derived CI gene set resulted in the highest
proportion of autoimmune diseases and the lowest proportion of non-disease traits with at least one CI-enriched cluster. Therefore, steps one to
three were performed with clusters from that network-CI gene set combination only.
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2.2 GenePlexus

To predict new genes associated with a set of input seed

genes, we used GenePlexus, a tool that builds an L2-

regularized logistic regression model using features from a

gene interaction network (Liu et al., 2020). As input features,

we used the adjacency matrices from STRING, STRING with

only experimentally derived edges (STRING-EXP)

(Szklarczyk et al., 2017), BioGRID (Stark et al., 2006), and

ConsensusPathDB (Kamburov et al., 2013). For predicting

disease genes, positive examples were disease/trait seed genes

and negative example genes were generated by: (i) finding the

union of all genes annotated to all diseases in DisGeNET

(Piñero et al., 2020), (ii) removing genes annotated to the

given seed genes, and (iii) removing genes annotated to any

disease in the collection that significantly overlapped with the

given seed genes (p< 0.05 based on the one-sided Fisher’s

exact test) (Liu et al., 2020). We tested the performance of the

above features for predicting new genes associated with our

diseases and traits of interest using three-fold cross validation

and only included diseases in subsequent analyses if the

diseases/traits had ≥ 15 associated genes and median

log2(auPRC/prior)≥ 1 (i.e. the area under the precision-

recall curve ‘auPRC’ is at least twice as much as expected

by random chance ‘prior’ (Liu et al., 2020)). See Figure 1A,

step 1 and Supplementary Table S1.

2.3 Identifying clusters of interacting
genes within a disease-specific network

One list of disease-associated genes was formed for each of

the four biological networks used as features in GenePlexus.

Specifically, we added genes with a GenePlexus prediction

probability of ≥ 0.80 on the network of interest to the original

disease or trait seed gene list to create our final set of associated

genes for each disease or trait for that network. We formed

disease-/trait-specific networks by subsetting a given network to

include only the disease-/trait-associated genes and any edges

directly connecting those genes (Figure 1A, step 2). We tested five

prediction-network—cluster-network combinations: Genes

predicted on each of the four networks were clustered on the

same network. Genes predicted on STRING were also clustered

on both STRING and STRING-EXP to test if using the full

network for novel gene prediction but only experimentally

derived gene-gene associations for clustering would improve

performance. We then used the Leiden algorithm (Traag

et al., 2019) to partition the disease-/trait-specific networks

into clusters (Figure 1A, step 2). Specifically, we used the

leiden_find_partition function from the leidenbase R package

(v 0.1.3) (https://github.com/cole-trapnell-lab/leidenbase) with

100 iterations and ModularityVertexPartition as the partition

type. We retained clusters containing ≥ 5 genes.

2.4 Cluster GOBP enrichment analysis

We used the R package topGOwith the “weight01” algorithm

and Fisher testing (Alexa and Rahnenfuhrer 2022) (v 2.44.0) to

find enrichment of genes annotated to GO biological processes

(min size = 5, max size = 100) among disease gene clusters. The

annotations were taken from the Genome wide annotation for

Human bioconductor annotation package, org.Hs.eg.db (Carlson

2019) (v 3.13.0). The background gene set included all human

genes present in the network of interest. This was performed for

every prediction/clustering method combination.

2.5 Isolating CI-associated disease
clusters

2.5.1 Defining CI-associated genes
We tested several different sets of chronic inflammation

associated genes for this study including the GO biological

process (GOBP) terms GO:0002544 (“chronic inflammatory

response”) and GO:0006954 (“inflammatory response”). These

were collected from the Genome wide annotation for Human

bioconductor annotation package, org. Hs.eg.db (Carlson 2019)

(v 3.13.0) with and without propagation of gene-term

relationships from the descendent terms

(org.Hs.egGO2ALLEGS and org.Hs.egGO2EG, respectively).

GO:0006954 was also filtered to retain gene-term relationships

inferred from experiments (evidence codes EXP, IDA, IPI, IMP,

IGI, IEP, HTP, HDA, HMP, HGI, and HEP). As GO:

0002544 without propagation contained < 15 genes, this list

was ultimately not included in the study. We also identified

genes associated with chronic inflammation using Geneshot

which, given the search term “chronic inflammation”, searches

Pubmed using manually collected GeneRif gene-term

associations to return a ranked list containing genes that have

been previously published in association with the search term

(Lachmann et al., 2019). We tested both the entire Geneshot

generated list, and the subset of genes with > 10 associated

publications (“High-confidence GeneShot”). As with the

disease genes, we predicted additional chronic-inflammation-

associated genes using GenePlexus with features from each

network. Negative examples for GenePlexus were derived

from non-overlapping GOBP terms. We added genes with a

prediction probability of ≥ 0.80 to the seed gene list to create our
final sets of CI-associated genes.

2.5.2 Creating random traits
After running GenePlexus to predict new genes for each trait,

the gene lists for each trait were used to generate 5,000 random

gene lists that have matching node degree distributions to the

original traits (Figure 1A, step 3). That is, a random gene list was

generated for a given trait by replacing each of its genes in the

network of interest with a (randomly chosen) gene that has the
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same node degree, or a gene that has a close node degree if there

are a small number of genes with the exact node degree

(Leiserson et al., 2015; Fiscon and Paci 2021). We clustered

the random traits as described in Section 2.3. Only clusters with

at least five genes were included. Real traits with no

corresponding permuted traits with clusters containing at least

five genes were excluded from the analysis.

2.5.3 Finding CI-gene enriched disease clusters
For each prediction-network—cluster-network pair and each

CI gene list expanded on the prediction network of interest, for

each disease and random trait cluster containing ≥ 5 genes, we

calculated an enrichment score:

E � log2((CG ∩ CI)/CG
CI/background)

where CG are the genes in a disease cluster, CI are the CI genes,

and background is all the genes present in the clustering

network (Figure 1A, step 4). For each real disease or trait

cluster, we used the matching random trait clusters to

calculate a p-value:

p � ∑n
i�1xi

n + 1

where n is the number of random trait clusters from all 5k

matching random traits, and

xi � { 1, Erandom cluster i ≥Edisease cluster

0, Erandom cluster i <Edisease cluster

We corrected for multiple comparisons across clusters within

a disease using the Benjamini–Hochberg procedure (Benjamini

and Yosef 1995) (Figure 1A, step 5). Clusters with an FDR< 0.05

and E> 0 were considered chronic-inflammation-associated

disease clusters and were deemed to represent the ‘CI

signature’ of the disease.

2.5.4 Identifying the optimal prediction-
network/cluster-network/CI gene source
combination

We chose the network/inflammation gene set combination

that resulted in the highest proportion of autoimmune diseases

and lowest proportion of non-disease traits with at least one CI-

enriched cluster of any network/CI-gene set combination,

ConsensusPathDB and the high-confidence Geneshot

generated list.

2.5.5 Comparing CI-signatures across diseases
For CI-enriched clusters identified using ConsensusPathDB

and the high-confidence Geneshot CI genes, we used the

SAveRUNNER R package to quantify the similarity between

each pair of CI-enriched clusters using ConsensusPathDB as the

base network (Fiscon and Paci 2021) (Figure 1B, step 1). For each

pair, SAveRUNNER computes the average shortest path between

each gene in cluster A and the closest gene in cluster B and uses

this value to calculate an adjusted similarity score. Then, a

p-value is estimated based on a null distribution of adjusted

similarity scores between randomly generated clusters with the

same node degree distributions as clusters A and B. Because the

similarity scores and p-values are not symmetric

(i.e., A → B ≠ B → A) we used Stouffer’s method to combine

p-values for the same pair of clusters and averaged the adjusted

similarities. We then used the Leiden algorithm as described in

Section 2.3 to group related clusters (Figure 1B, step 2). For each

group, we took the union of the genes belonging to the resident

CI-enriched clusters. Using genes unique to each group, with all

the ConsensusPathDB genes as background, we used TopGO as

in Section 2.4 to identify enriched GOBPs.

2.6 Predicting novel treatment
opportunities

2.6.1 Identifying expert-curated drug-target
associations

The known drug-gene interactions used in this study are the

subset of the interactions present in the DrugCentral database

(Avram et al., 2021) that are also among the expert curated

interactions in the Drug-Gene Interaction database (DGIdb)

(Freshour et al., 2021). Specifically, we used the DGIdb API to

retrieve only drug-gene interactions that were marked “Expert

curated” (based on the source trust levels endpoint). Intersecting

these interactions with those in DrugCentral (through a list of

drug synonyms from DrugCentral) resulted in the final list of

expert-curated drug-gene pairs.

2.6.2 Treatment prediction and scoring
We predicted treatment opportunities for the inflammatory

component of complex diseases by using the SAveRUNNER R

package (Fiscon and Paci 2021) (Figure 1B, step 3).

SAveRUNNER builds a bipartite drug-disease network by

utilizing the previously determined expert-curated drug

targets, the CI-associated cluster disease genes, and the

ConsensusPathDB network as a human interactome. Network

similarity scores returned by SAveRUNNER represent the

proximity between disease and drug modules, where a high

similarity score means that the disease and drug modules have

high proximity in ConsensusPathDB. SAveRUNNER calculates a

p-value where a significant value suggest that the disease genes

and drug targets closer in the network than expected by chance

(based on an empirical null distribution built using 200 pairs of

randomly selected groups of genes with the same size and degree

distribution of the original sets of disease genes and drug targets).

Using the list of final predicted associations after normalization

of network similarity, the p-values were corrected for multiple

comparisons within each disease using the Benjamini–Hochberg
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procedure. Drugs were associated to diseases based on the disease

cluster with the lowest FDR. Predicted treatments are disease-

drug pairs with an FDR< 0.01.

2.6.3 Evaluating SAveRUNNER prediction
performance

We calculated log2(auPRC/prior) by ranking disease-drug

pairs by −log10(SAveRUNNERFDR) and using either

previously indicated drug-disease pairs (both approved and

off-label) or drug-disease pairs tested in a clinical trial as

positive labels. Approved and off-label drug-disease pairs were

collected from DrugCental (Avram et al., 2021). Only drugs with

expert curated target genes were included (see Section 2.6.1). The

Unified Medical Language System (UMLS) Concept Unique

Identifiers (CUI) were limited to diseases (T047) and

neoplastic processes (T191), and our diseases were matched to

diseases in DrugCentral using UMLS CUIs. Drug-disease pairs

tested in a clinical trial were collected from the database for

Aggregate Analysis of Clinical Trials (AACT) (AACT Database,

2022). AACT reports the Medical Subject Headings (MeSH)

vocabulary names for diseases. We used disease vocabulary

mapping provided by DisGeNET to translate UMLS CUIs for

our diseases to MeSH vocabulary names, further restricted to

only those that were present in AACT. We filtered AACT for

trials with “Active, not recruiting”, “Enrolling by invitation”,

“Recruiting”, or “Completed” status.

2.6.4 Enrichment of predicted drug-disease
pairs among previously indicated drug-disease
pairs

To test for an enrichment of predicted drug-disease pairs

among previously indicated drug-disease pairs for each disease,

we tallied the total number of unique drugs previously indicated

to any disease, the number of those drugs indicated to the disease

of interest, the number of drugs predicted to treat the disease by

our method, and the number of drugs predicted to treat the

disease by our method that were also previously indicated for that

disease. We calculated a p-value using a one tailed Fisher’s exact

test and corrected for multiple comparisons within each disease

across drugs using the Benjamini–Hochberg procedure.

2.6.5 Enrichment of anti-inflammatory drugs
and immunosuppressants among predicted
treatments

We searched the DrugBank database for the ATC codes for

anti-inflammatory drugs and immunosuppressants including

Immunosuppressants (L04), Corticosteroids for systemic use

(H02), Anti-inflammatory and antirheumatic products (M01),

and Antihistamines (R06) (Wishart et al., 2018). We used these

codes to pull all the drugs in these categories from our expert

curated drug to target gene database. For each disease we ranked

predicted drugs by −log10(SAveRUNNERFDR) and used the

fgsea R package (v 1.20.0) to perform gene set enrichment

analysis for drugs belonging to each of the four classes

(Subramanian et al., 2005; Korotkevich et al., 2021).

3 Results

3.1 Expanding lists of disease-related
genes and identifying disease-specific
gene subnetworks

Our first goal was to establish a comprehensive list of genes

associated with the complex diseases of interest and resolve the

genes linked to each disease into subsets of tightly connected

genes in an underlying molecular network. Towards this goal, we

selected 37 complex diseases associated with underlying systemic

inflammation (see Methods). To ensure that we correctly isolate

chronic inflammation (CI) signatures, we devised a set of positive

and negative controls. We selected 10 autoimmune disorders as

positive controls because autoimmune disorders are

characterized by CI and should have an easily identifiable CI

gene signature. For negative controls, we selected 113 traits from

UK Biobank (Sudlow et al., 2015) that are unlikely to be

associated with CI (i.e. Right handedness, filtered coffee

intake, and distance between home and workplace).

Supplementary Table S2 contains the full list of diseases and

traits used in this analysis along with their original associated

genes.

While thousands of genes may play a role in the etiology of a

chronic disease, it is unlikely that all of these genes have been

cataloged in available databases such as DisGeNET or identified

by GWAS. Hence, we expanded the lists of disease-or-trait-

associated genes using GenePlexus (Liu et al., 2020)

(Figure 1A, step 1). Briefly, GenePlexus performs supervised

machine learning using network-based features to predict novel

genes related to a set of input seed genes. Here, we built one

GenePlexus model per disease using disease-associated genes

from DisGeNET or trait-associated genes from the UK Biobank

GWAS as seed genes (positive examples). To test the robustness

of this method for identifying CI enriched clusters, we tested four

different biological interaction networks of varying sizes and edge

densities—STRING, STRING with only experimentally derived

edges (STRING-EXP) (Szklarczyk et al., 2017), BioGRID (Stark

et al., 2006), and ConsensusPathDB (Kamburov et al., 2013)

(Figure 1A, step 1, see Methods Section 2.2). Genes predicted by

the GenePlexus model with a probability ≥ 0.80 were added to

the seed gene list to create an expanded list of disease- or trait-

associated genes.

Figure 2 shows results for ConsensusPathDB. The proportion of

genes predicted by GenePlexus for the non-disease traits is lower

than those for the autoimmune and complex diseases (Figure 2B).

This observation indicates that genes associated with a specific

autoimmune/complex disease tend to have more similar network

neighborhoods than genes associated with non-disease traits. All
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disease-associated genes after GenePlexus prediction are listed in

Supplementary Table S3.

Next, for each disease/trait, we clustered the expanded lists of

genes based on their interactions in the gene-gene interaction

network (Figure 1A step 2 and Figure 2C; Supplementary Table

S3). On ConsensusPathDB, the complex diseases had the highest

proportion of genes grouped into clusters of ≥5 genes, followed by

autoimmune diseases and non-disease traits (Figure 2D). To assess

whether clusters are biologically meaningful, we performed an

enrichment analysis between every cluster and hundreds of GO

Biological Process (GOBP) gene sets. We theorize that significant

enrichment of a cluster with a GOBP means the genes in the cluster

likely function together to carry out a specific cellular process or

pathway. On ConsensusPathDB, for autoimmune and complex

diseases, the median proportion of GOBP enriched clusters are

> 0.75 and > 0.60, respectively, suggesting most clusters are

biologically relevant (Figure 2E). In contrast, most clusters in

non-disease traits are not enriched for a GOBP (Figure 2E).

3.2 Isolating CI-enriched disease clusters

Clusters of related, disease-associated genes on functional gene

interaction networks are likely to correspond to the pathways and

biological processes disrupted during disease progression. For

complex disorders, multiple pathways are likely to be affected.

Our next goal was to identify which cluster(s) within a set of

disease-associated genes corresponds to the CI component of the

disease. For this analysis, similar to the expansion of disease- or

trait-associated genes, we used GenePlexus to predict novel

inflammation genes for each of the five sets of inflammation-

related seed genes procured from different sources (see Methods

Section 2.5.1, Supplementary Table S4). We then scored the

enrichment of CI genes in each disease cluster and performed a

permutation test using 5,000 random gene sets for each disease to

determine the significance of the enrichment score (see Methods

Section 2.5.2 and Section 2.5.3 and Figure 1A steps 3–5,

Supplementary Table S5).

FIGURE 2
(A) Number of genes per disease/trait. (B) Proportion of the genes per disease/trait that were predicted by GenePlexus. (C) Number of clusters
per disease/trait containing at least five genes. (D) Proportion of total genes assigned to a cluster containing at least five genes. (E) Proportion of
clusters per disease/trait enriched with genes from at least one GO biological process.
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With various base networks and CI gene sources, we tested all

network–CI-geneset combinations and chose the one that

resulted in the highest proportion of autoimmune diseases

and lowest proportion of non-disease traits with at least one

CI-enriched cluster. Based on this test, we picked

ConsensusPathDB as the base network and “high-confidence

Geneshot” as the source of CI genes (Supplementary Figure S2).

We were able to identify clusters enriched for CI genes in all of

the autoimmune disorders surveyed (9/9), while finding no CI-

enriched clusters among the non-disease traits (Figure 3A). We

identified at least one CI-enriched cluster in 18 of 30 of the

complex diseases (Figure 3A). Twelve out of the 27 diseases with

at least one CI-enriched cluster had two or more CI-enriched

clusters, and the median proportion of CI-enriched clusters out

of the total clusters is higher for autoimmune diseases than

complex diseases (Figure 3B). The number of diseases with at

least one CI-enriched cluster varied with different combinations

of prediction network, cluster network, and inflammation gene

set (Supplementary Table S6). In every case, however, the

proportion of autoimmune diseases with at least one CI-

enriched cluster was higher than that for non-disease traits

suggesting that our method is robust to changes in base-

network and inflammation gene set (Supplementary Figure S2).

We hypothesized that, through guilt-by-association, even

the genes with no known relationship with chronic

inflammation residing in a CI-enriched cluster should have

a higher probability of being CI-associated than those in non-

CI-enriched clusters. To test this hypothesis, we used

GenePlexus with features from each gene-gene interaction

network to calculate the probability that every gene is

associated with each inflammation gene set. Then, focusing

on the genes in disease clusters that were not present in the

inflammation gene set, we found that the mean CI probability

of these genes in CI-enriched clusters is significantly higher

for CI-enriched clusters than non-enriched clusters in 24 out

of 25 network/CI-gene set combinations (Supplementary

Figure S3-S7), including ConsensusPathDB with the high-

confidence Geneshot CI gene set (Figure 3C). This observation

suggests that the CI-enriched clusters as a whole, and not just

the genes in the high-confidence Geneshot CI gene set residing

within them, are CI-associated in the disease of interest.

Knocking out putative inflammation associated genes in

animal models of the appropriate disease and testing for an

increase in known inflammation markers would confirm this

result.

3.3 Comparing CI gene signatures across
diseases

To determine if related diseases have similar chronic

inflammation signatures, we used a network-based

approach to quantify the similarity between each pair of

ConsensusPathDB/high-confidence GeneShot CI-enriched

disease clusters across diseases and grouped similar clusters

together using the Leiden algorithm (Traag et al., 2019; Fiscon

et al., 2021) (Figure 1B, steps 1–2). Several diseases have more

than one CI-enriched cluster and none of these diseases have

clusters belonging only to one group (Figure 4A,

Supplementary Table S7). Moreover, diseases belonging to

the same broad category—i.e. autoimmune, cancer, or

cardiovascular disease—do not have a larger proportion of

clusters belonging to a particular group than expected by

chance (one-sided Fisher’s exact test, Figure 4A). This

suggests that one disease can harbor more than one type of

chronic-inflammation signature, and that the same signatures

can be found in very different diseases. For example,

rheumatoid arthritis, myocardial ischemia,

atherosclerosis, and chronic obstructive airway disease all

have CI-enriched clusters belonging to each of the three

signature groups.

To determine the biological significance of these signature

groups, we performed enrichment analyses for genes unique

to each group among GO biological processes (Figure 4B,

Supplementary Table S8). The top 10 significantly enriched

terms for each group are largely distinct, with group 1 being

enriched for immune relevant signaling pathways, group 2 for

regulation of immune cell proliferation, and group 3 for

regulation of immune cell chemotaxis (Figure 4B).

FIGURE 3
(A) Number of diseases/traits with at least one cluster
overlapping the expanded chronic inflammation (CI) geneset (dark
pink), out of the total number of diseases/traits. (B) The proportion
of CI-enriched disease clusters among all disease clusters per
disease. (C) Mean probability that genes with no known
relationship with chronic inflammation residing in a CI-enriched
cluster or non-CI-enriched cluster are associated with CI. p-value
calculated using a one-sided Fisher’s Exact test.
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3.4 Predicting novel treatment
opportunities

Our final goal was to leverage the ConsensusPathDB/

high confidence GeneShot CI-enriched disease clusters we

discovered to find potential avenues for repurposing

approved drugs to therapeutically target systemic

inflammation underlying complex diseases (Figure 1B,

step 3). Towards this goal, we used SAveRUNNER to

find associations between CI-enriched clusters and FDA

approved drugs through each drug’s target genes (Fiscon

et al., 2021). We found that SAveRUNNER predictions for

known treatments were better than random chance

— log2(auPRC/prior)> 0— for diseases with at least five

known treatments (Figure 5A). Moreover, with the

exception of myocardial ischemia, SAveRUNNER

predicted drugs in Phase IV clinical trials better than

random chance (Figure 5A) (AACT Database, 2022).

Drugs in Phase IV are those that have already

been proved effective for treating a disease (in Phase

III) and are being monitored for long-term safety and

efficacy.

SAveRUNNER predicted between 3 and 178 high-

confidence (FDR< 0.01) treatments for each disease and

identified previously indicated drugs for five of the nine

autoimmune disorders (Figure 5B, Supplementary Table

S9), with significant enrichment among drug predictions

for celiac disease (one-sided Fisher’s exact test, BH

corrected FDR< 0.001). SAveRUNNER found previously

indicated treatments for only three of the 18 complex

diseases (Figure 5B, Supplementary Table S9). This result

is expected given that, unlike for autoimmune disorders,

most known treatments for these complex disorders are not

likely to target the immune system. Treatments previously

FIGURE 4
(A)Number of CI-enriched clusters per disease colored by CI-signature group. (B) Top ten enriched GOBP categories by Benjamini–Hochberg
procedure corrected FDR for each CI-signature group—the group is denoted by the colored blocks to the left of the heatmap. The heatmap shows
the −log10(FDR) of the enrichment for each CI-signature group — * denotes p< 0.05.
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tested in a clinical trial were predicted for six

autoimmune disorders and seven of the complex disorders

(Figure 5B).

We tested for enrichment of drugs belonging to four

immune-related drug classes among treatment predictions

highly ranked by SAveRUNNER for each complex disorder

(Figure 6A). SAveRUNNER allows for drug prioritization

based both on the p-value and on the adjusted similarity score

between drug target genes and CI-enriched cluster genes.

Highly scoring drug-cluster pairs have genes that are closely

related in the gene interaction network, which increases the

likelihood that the drug will be on-target for the paired

disease (Fiscon et al., 2021). We found that antihistamines

as a whole are enriched for six of the 18 complex disorders

(Figure 6A). Antihistamines that specifically target histamine

receptor H1 (HRH1) have the highest adjusted similarity

score for six of the seven complex disorders with any

antihistamine among their high-confidence targets

(Figure 6B). SAveRUNNER predicted that cyproheptadine,

which targets both HRH1 and the serotonin 2A receptor,

HTR2A, instead of HRH1 alone would be the best

antihistamine for treating non-alcoholic fatty liver disease

(Figure 6B). While cyproheptadine is also a high-confidence

predicted treatment for atherosclerosis, myocardial ischemia,

and chronic obstructive airway disease, it is unlikely to be an

effective treatment for myocardial infarction or

malignant mesothelioma (Figure 6B). Interestingly, of the

eight diseases, only myocardial infarction and malignant

mesothelioma do not have a CI-enriched cluster

belonging to CI-signature group 2 (Figure 4A). This

finding suggests that, even among drugs in the same

class, we can predict disease-specific treatments

for the chronic inflammation component of the disease

etiology.

FIGURE 5
(A) log2(auPRC/prior)of SAveRUNNER predictions using drugs previously indicated for the disease (top) or drugs ever in Phase IV clinical trials
for a disease (bottom) as positive examples. The dotted line is atlog2(auPRC/prior) � 0. log2(auPRC/prior)>0 denotes predictions better than
random chance. (B) Number of SAveRUNNER predicted genes (Benjamini–Hochberg procedure corrected FDR<0.01) per disease.
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4 Discussion

Complex diseases exhibit a staggering amount of

heterogeneity, being associated with hundreds of genes and

with a range of phenotypes. Therefore, to continue advancing

our understanding of disease mechanisms and our ability to

treat these diseases, it is critical to deconvolve disease

heterogeneity by: a) resolving subsets of disease genes (and

cellular processes/pathways) that underlie specific disease-

associated phenotypes, and b) identifying avenues to

diagnostically and/or therapeutically target those specific

phenotypes.

Here, we present a computational data-driven approach to

address this critical need (Figure 1). We used our approach to

study chronic inflammation (CI) — a phenotype present across

many complex diseases. We generated comprehensive lists of

(known and predicted) disease-associated genes and identified

and classified the CI signal among these genes. We used these

signatures to predict novel treatment options to target the

inflammatory components of 18 complex diseases.

A key aspect of our approach is ensuring its sensitivity to

detect CI disease signatures using autoimmune diseases as

positive controls. In autoimmune diseases, the immune system

mistakenly attacks healthy tissue causing long-term systemic

FIGURE 6
(A)Heatmap showing the enrichment of anti-inflammatory and immunomodulating drugs among highly ranked SAveRUNNER predicted drugs
(gene set enrichment analysis, * denotes adjusted p − value< 0.05). (B) Bar plot showing the adjusted similarity scores of antihistamines for complex
diseases with at least one antihistamine among drugs predicted by SAveRUUNER to treat the disease — * denotes FDR<0.01. HRH1 specific
antihistamines are those listed in our high-confidence drug target database as only targeting HRH1.
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inflammation. Thus, we expect that the underlying CI disease

signatures would be easily identifiable by a valid approach.

Indeed, in each of the nine autoimmune diseases analyzed,

our approach isolated gene clusters enriched for CI genes

(Figure 1A), and identified drugs already used to treat a

number of these disorders (Figure 5B). This finding is

encouraging given that we conservatively matched drugs to

diseases only based on expert-curated drug-target data from

DGIDb (Freshour et al., 2021) rather than using all drug-

target information in DrugCentral (Avram et al., 2021).

To show that our method was not erroneously uncovering CI

signals where there were none, we identified UK Biobank traits

not patently associated with CI (along with their genes) to use as

negative controls. Following this analysis, we found that the

median fraction of trait-associated genes predicted by

GenePlexus and the median fraction of genes assigned to

sizable clusters were lower for these traits than for

autoimmune and complex diseases (Figures 2C,D). Given that

GenePlexus is a method that leverages network connectivity for

predicting new genes belonging to a set, these results suggest that

the genes associated with non-disease traits may not be as highly

connected to one another in ConsensusPathDB as the

autoimmune and complex disease genes. Moreover, most of

the non-disease trait clusters were not enriched with genes

annotated to GO biological processes, suggesting that these

clusters are diffuse and that the member genes are unlikely to

work together to support a coherent biological task. While non-

disease traits like coffee intake and handedness have been

associated with inflammation (Searleman and Fugagli 1987;

Paiva et al., 2019), this analysis (using GWAS-based trait-

associated genes) suggests it is unlikely that SNPs in a

coordinated inflammation pathway influence non-disease

traits and more likely that any association with inflammation

is environmental, not genetic. Taken together, these results

suggest that these chosen traits serve as reasonable negative

controls and offer a way to meaningfully contrast the results

from complex diseases. Ideally, diseases or traits with no

underlying inflammatory component but with associated

genes that cluster in a network (as well as the autoimmune

and complex disease) will serve as better negative controls. Given

how common inflammatory processes are in disease, however,

such diseases are difficult to definitively identify.

Complex disorders like cardiovascular diseases, diabetes,

cancer, and Alzheimer’s disease are among the leading causes

of death and disability among adults over 50 years of age, and

all are associated with underlying systemic inflammation

(Furman et al., 2019; Vos et al., 2020). Patients with

systemic inflammation caused by autoimmune disorders are

more likely to have another CI disorder like cardiovascular

disease, type 2 diabetes mellitus, and certain types of cancer

(Armstrong et al., 2013; Dregan et al., 2014; Yashiro 2014).

Further, treating one chronic-inflammatory disease can

reduce the risk of contracting another, suggesting a

common underlying pathway (Fullerton and Gilroy 2016).

For example, treating rheumatoid arthritis with tumor

necrosis factor (TNF) antagonists lowers the incidence of

Alzheimer’s disease and type II diabetes (Antohe et al.,

2012; Chou et al., 2016).

To better understand how CI-associated disorders relate to

one another, we used a network-based approach to quantify the

similarity between their CI-enriched clusters. We hypothesized,

for example, that Crohn’s disease and “malignant tumor of

colon” would have similar CI-signatures, given that patients

with inflammatory bowel disease are at increased risk for

developing colorectal cancer (Shah and Itzkowitz 2022).

However, Crohn’s disease CI-enriched clusters are members

of signature groups 1 and 2, while the “malignant tumor of

colon” CI-enriched cluster belongs to group 3 (Figure 4A).

Instead of sharing CI-signatures, related CI diseases may,

instead, have complementary signatures. Indeed, the group

1 signature, which characterizes two of the three Crohn’s

disease CI-enriched clusters, is enriched for genes that

positively regulate proinflammatory cytokines TNF and in

interferon-gamma (IFNɣ) (Figure 4B). When these cytokines

bind to their respective receptors, reactive oxygen species are

generated causing oxidative stress (Chatterjee 2016). Oxidative

stress, in turn, induces DNA-damage that can lead to tumor

formation. Colorectal tumors are infiltrated with lymphocytes,

which mediate the recruitment of immune cells that suppress

tumor growth (Idos et al., 2020). Immune cell infiltration likely

leads to our ability to detect the group 3 CI-signature among

genes associated with “malignant tumor of colon”, given that

group 3 is enriched for immune cell migration and chemotaxis

(Figures 4A,B). Alternatively, there is a possibility that every CI-

associated disease actually exhibits all three CI-signatures, and

our method is only sensitive enough to detect these in a handful

of diseases.

Common treatments for systemic inflammation, including

non-steroidal anti-inflammatory drugs (NSAIDs),

corticosteroids, and biologics like TNF antagonists, can cause

adverse effects when used long term. For instance, patients

treated with corticosteroids or TNF antagonists have increased

risk of infection (Rosenblum and Howard 2011; Murdaca et al.,

2015; Shah and Itzkowitz 2022), and corticosteroid use increases

both the risk of fracture (Kanis et al., 2004; Mitra 2011) and the

risk of developing type II diabetes (Blackburn et al., 2002).

NSAIDs present a unique set of side effects, particularly in

elderly patients, including gastrointestinal problems ranging

from indigestion to gastric bleeding, and kidney damage

(Griffin 1998; Griffin et al., 2000; Marcum and Hanlon 2010).

Therefore, the search for better treatment options for CI is

ongoing.

Here, we leverage the CI-signatures to identify novel

treatment opportunities for the CI-component of

18 complex diseases (Figure 5B). Interestingly,

antihistamines were among the top drug associations for
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six of 18 complex diseases (Figure 6A), including

atherosclerosis. Atherosclerosis is characterized by the

deposition of cholesterol plaques on the inner artery walls.

Mast cells, immune cells best known for their response to

allergens, are recruited to arteries during plaque progression,

where they release histamines. Histamines then activate the

histamine H1-receptor, increasing vascular permeability,

which allows cholesterol easier access to arteries

promoting plaque buildup (Rozenberg et al., 2010).

Mepyramine, one of the HRH1-specific antihistamines

highly associated with atherosclerosis, has already been

shown to decrease the formation of atherogenic plaques in

a mouse model of the disease (Rozenberg et al., 2010).

Interestingly, it is not predicted as a treatment for

myocardial ischemia, which occurs when plaque buildup

obstructs blood flow to a coronary artery, suggesting

disease-specific antihistamine efficacy even among related

diseases. Cetirizine and fexofenadine are also HRH1-

specific antihistamines highly associated with

atherosclerosis but neither prevented or reduced

atherosclerosis progression in a mouse model of

atherosclerosis, and both increased atherosclerotic lesions

at low doses (Raveendran et al., 2014). In the expert-

curated drug-target database used in this study, the

histamine H1-receptor is the only target listed for all three

drugs; however, the contradictory results from Rosenberg

et al. and Raveendran et al. suggests that drug-specific off-

target effects are mediating atherosclerosis treatment

outcomes. A more complete understanding of drug-gene

targets would allow for better predictions of novel disease

treatments.

For example, unlike the other diseases with antihistamines as

predicted treatments, only cyproheptadine, and not the HRH1-

specific drugs, is likely to be an effective treatment for non-

alcoholic fatty liver disease (NAFLD) (Figure 6B).

Cyproheptadine is an antagonist for both histamine receptor

H1 and the serotonin 2A receptor (HTR2A), suggesting that

blocking the serotonin 2A receptor could be specifically helpful

for ameliorating symptoms of NAFLD. Indeed, liver-specific

Htr2a knockout mice are resistant to high-fat diet induced

hepatic steatosis and increased fat in the liver (Choi et al.,

2018). Moreover, increased serum serotonin levels were

correlated with increased disease severity in patients with

NAFLD (Wang and Fan. 2020).

Overall, we have shown that our method is capable of

isolating the chronic inflammation gene signature of a

complex disease using a network-based strategy and, by

integrating information across multiple complementary

sources of data, it can predict and prioritize potential

therapies for the systemic inflammation involved in that

specific disease. Importantly, our approach provides a

blueprint for identifying and prioritizing therapeutic

opportunities for any disease endophenotype.
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