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Abstract: Cancer immunotherapy is a promising treatment strategy that aims to strengthen 
immune responses against cancer. However, the low immunogenicity of tumor cells and 
inhibition of effector T cells in the tumor immunosuppressive microenvironment remain two 
major challenges. Immunogenic cell death (ICD) inducers not only directly kill cancer cells 
but also increase the tumor immunogenicity and induce antitumor immune responses. 
Immune checkpoint inhibitors can alleviate the inhibition of immune cells. Significantly, 
the combination of ICD inducers and immune checkpoint inhibitors elicits a remarkable 
antitumor effect. Nanoparticles confer the ability to modulate systemic biodistribution and 
achieve targeted accumulation of administered therapeutic agents, thereby facilitating the 
clinical translation of immunotherapies based on ICD inducers in a safe and effective 
manner. In this review, we summarize the nanoparticle-based chemical and physical cues 
that induce effective tumor ICD and elicit an antitumor immune response. In particular, 
combination of ICD inducers with immune checkpoint inhibitors can further reverse immu-
nosuppression and prevent tumor metastasis and recurrence. An overview of the future 
challenges and prospects is also provided. 
Keywords: tumor immunotherapy, immunogenic cell death, nanoparticles, immune 
checkpoint inhibitors

Introduction
Cancer is one of the leading causes of death worldwide, and its treatment remains 
a formidable challenge.1 Traditional therapies such as surgery, chemotherapy, and 
radiotherapy are still standard treatment modalities and are used to achieve regres-
sion of the local tumor and improve patient survival in clinical practice. However, 
the poor prognosis, including cancer metastasis and recurrence, limits the applica-
tion of these therapies.2 In recent years, cancer immunotherapy has developed as an 
additional treatment regimen, particularly in the areas of chimeric antigen receptor 
T cell therapy3 and immune checkpoint blockade therapy,4 which increase the 
strength of immune responses against cancer by either stimulating activities of 
the immune system or blocking signals produced by cancer cells to suppress 
immune responses.5 Cancer immunotherapy is a revolutionary treatment that aims 
to eliminate both local and distant metastatic tumors, and further elicit long-term 
immune memory to resist cancer recurrence; thus, it has been considered the most 
promising treatment for cancer.6
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However, cancer cells are able to evade immune sur-
veillance by down-regulating surface antigens to reduce 
immunogenicity and by inducing expression of immuno-
suppressive molecules to inhibit effector T cell activity.7,8 

The low immunogenicity of tumor cells will interfere with 
the recognition and uptake by immune cells. Fortunately, 
some specific physical methods (eg, photodynamic therapy 
(PDT) and photothermal therapy (PTT)) and chemical 
drugs (eg, anthracyclines and oxaliplatin (OXA)) have 
been found to induce tumor cell death in an immunogenic 
manner. Immunogenic cell death (ICD) is characterized by 
release of tumor antigens, damage-associated molecular 
patterns (DAMPs), and pro-inflammatory cytokines, 
which facilitates the uptake and presentation of tumor 
antigens by immune cells, ultimately eliciting an antigen- 
specific antitumor immune response.9 Besides, the inhibi-
tion of effector T cells in tumor sites provides conditions 
for severe deterioration and spread of tumors. Importantly, 
immune checkpoint blockade immunotherapy has been 
applied to relieve immunosuppression and restore the anti-
tumor activity of immune cells, and has been demonstrated 
to be effective for a variety of cancers.10–12 The most used 
immune checkpoints include: programmed death-1/ 

programmed death ligand-1 (PD-1/PD-L1), cytotoxic 
T lymphocyte-associated antigen-4 (CTLA-4), indolea-
mine 2.3-dioxygenase (IDO), and CD47. The combined 
application of ICD inducers and immune checkpoint inhi-
bitors will be an effective strategy to suppress tumors and 
activate antitumor immune responses (Figure 1).

Despite advances in the development of combinations 
of ICD inducers and immune checkpoint inhibitors, there 
remain some challenges related to their clinical translation. 
ICD inducers lack tumor targeting ability; hence, their side 
effects and unsatisfactory efficacy tend to hinder their 
clinical applications. Nanoparticles have great potential 
for use in cancer treatments, with enhanced therapeutic 
efficacy and reduced side effects, mainly owing to their 
ability to modulate the systemic biodistribution and tar-
geted accumulation of the administered therapeutic 
agents.13–15 Significantly, a better tumor treatment effect 
can be achieved when nanoparticle-based ICD inducers 
are applied with immune checkpoint inhibitors.

In this review, we summarize the features of tumor 
ICD and recent progress in the development of nanoparti-
cle-based ICD inducers for combination cancer immu-
notherapy. Nanoparticle-based chemical or physical ICD 

Figure 1 Antitumor immunity elicited by the treatment strategy of ICD inducers combined with immune checkpoint inhibitors.
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inducers are superior to free drugs in terms of antitumor 
efficiency. In particular, we provide an overview of the 
combination of nanoparticle-based ICD inducers and 
immune checkpoint inhibitors, which shows great poten-
tial for relieving tumor immunosuppression, promoting 
antitumor response, and preventing tumor metastasis and 
recurrence. Finally, we give a brief summary and discus-
sion of future challenges and perspectives.

Immunogenic Cell Death
Features of ICD
Over the past few years, the concept of ICD has emerged. 
As the name suggests, ICD is a process by which apoptotic 
cells can increase their immunogenicity and be recognized 
by various immune cells.16,17 Not all cell death results in 
immune activation—normal tissue has a rapid rate of cell 
turnover that does not provoke an inflammatory response. 
However, the death of only a few cells with increased 
antigenicity, especially tumor cells, can trigger a robust 
antigen-specific immune response.18

Cancer cells treated with anthracyclines, OXA, γ- 
irradiation, PDT, or PTT usually undergo ICD, accompanied 
by the release or exposure of molecules that can function as 
either adjuvant or danger signals for the innate immune 
system.19,20 These signals were later called DAMPs.21 

Some DAMPs, including adenosine triphosphate (ATP) 
and high mobility group protein B1 (HMGB1), are secreted 
or released by cancer cells; others, including calreticulin 
(CRT) and heat shock protein 90, are exposed de novo or 
become enriched on the outer leaflet of the plasma mem-
brane. Most of these molecules have predominantly immu-
nological functions after their exposure on the cell surface or 
their secretion.20,22 Owing to interaction with phagocytosis 
receptors (purinergic receptors and pattern-recognition 
receptors, respectively), DAMPs are required for ICD, 
which ultimately leads to the activation of potent anticancer 
immunity.23–28 Moreover, the release of tumor-associated 
antigens and pro-inflammatory cytokines (such as IL-8, IL- 
6, IFN-β, and CXCL10)29 is also important during tumor 
ICD and can further facilitate the recognition of tumor cells 
by immune cells. Therefore, it is of great significance to 
study whether ICD occurs during tumor treatment.

Mechanisms of ICD
CRT Exposure
CRT is the most abundant protein of the endoplasmic 
reticulum (ER) lumen, yet it can be found in other 

subcellular compartments, including the cytosol.30,31 

When cancer cells are exposed to ICD inducers, 
a fraction of CRT will translocate from the ER lumen to 
the surfaces of stressed and dying cells.23,32 This phenom-
enon might be due to the ER stress response under the 
induction of specific chemotherapy agents, which involves 
the phosphorylation of eukaryotic translation initiation 
factor eIF2α by PKR-like ER kinase. This is followed by 
caspase-8-mediated proteolysis of the ER-sessile protein 
BAP31, activation of proapoptotic proteins BAX and 
BAK, anterograde transport of CRT from the ER to the 
Golgi apparatus, and the exocytosis of CRT-containing 
vesicles, eventually resulting in SNARE-dependent trans-
location of CRT to the plasma membrane surface.24,33 

However, when the ER undergoes a stress response 
under the action of other ICD inducers, such as the reac-
tive oxygen species (ROS) induced by PDT, the transport 
of CRT to the cell surface may not necessarily be com-
pletely achieved through the above pathways.24,34 These 
findings suggest that the exposure of CRT at the cell sur-
face may be the net result of heterogeneous signaling 
pathways that are elicited in a stimulus-dependent manner.

In the context of the immune system, the prominent 
function of CRT is as an “eat-me” signal. Exposed CRT 
has been shown to bind to CD91, a transmembrane recep-
tor. Thus, CRT-exposing cells can be recognized and 
engulfed by CD91-positive cells (mostly macrophages 
and dendritic cells (DCs), which are both antigen- 
presenting cells (APCs)).32 Then, the tumor antigens are 
processed and presented by APCs and prime a cognate 
immune response (Figure 2). Therefore, CRT exposure 
during ICD has great potential for eliciting antitumor 
immune responses.

HMGB1 Release
HMGB1 is a highly conserved nuclear protein widely 
distributed in mammalian cells, which can be actively 
secreted by cells of the innate immune system in response 
to pathogenic products and released by injured cells as 
they succumb to mechanical damage and necrosis.35 

Many classical inducers of apoptosis, including most anti-
neoplastic agents, can promote HMGB1 release.35 Most 
intracellular HMGB1 is normally bound to chromatin. In 
response to stress, HMGB1 will be released from cells 
owing to a loss of plasma membrane integrity.36

The released HMGB1 is considered to be a potent 
proinflammatory stimulus.35–37 It triggers proinflammatory 
responses by binding to the receptors on the surface of 
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immune cells. For instance, HMGB1 released from anthra-
cycline-treated cancer cells can bind to TLR4, thereby 
activating the release of proinflammatory cytokines by 
monocytes or macrophages.38 Moreover, HMGB1 can pro-
mote the recruitment of inflammatory cells to inflamma-
tory lesions by forming a complex with CXCL12 and 
signaling via CXCR4.39 Importantly, productive immune 
responses against cancer cells require TLR4 as well as its 
adaptor MYD88.38,40 Treatment with HMGB1 augments 
the expression of pro-IL-1β in TLR4-expressing DCs, 
while the lysosomal degradation of engulfed tumor anti-
gens is avoided, which is a major prerequisite for efficient 
cross-presentation.38 Therefore, the engagement of TLR4 
by HMGB1 is critical to the optimal presentation of dead 
cell antigens by DCs.

ATP Release
ATP is the most abundant intracellular metabolite and 
plays an important part in purinergic 
neurotransmission.41 Besides, it can be released from 
cells under physical or chemical stresses, such as those 
caused by cytotoxic agents, hypoxia, mechanical distor-
tion, or plasma membrane damage. It is possible that 
stress-induced ATP release occurs through the following 
mechanisms: active exocytosis of ATP-containing vesicles 
as well as secretion of cytoplasmic ATP via gap junction 

hemichannels (which are built up by connexins); pannexin 
channels; transporters of the ATP-binding cassette family; 
the cystic fibrosis transmembrane conductance regulator; 
and even P2X7 receptors, which are abundantly expressed 
by immune cells including macrophages and DCs.42

Although not sufficient, autophagy is required for the 
optimal release of ATP from dying tumor cells treated by 
chemotherapy. Autophagy-deficient tumor cells exhibit 
reduced ATP release in vivo, and local injections of ecto-
nucleotidase inhibitors suffice to increase extracellular 
ATP levels in autophagy-deficient tumors.43 However, 
the exact molecular mechanisms through which autophagy 
contributes to ATP secretion remain elusive.44

Furthermore, ectonucleotidases including CD39 (which 
converts ATP into ADP and AMP) and CD73 (which 
converts AMP into the immunosuppressive metabolite 
adenosine) are important factors that reduce the local 
ATP concentration of tumors.45,46

ATP released from dying cells is one of the most 
prominent chemotactic “find-me” signals for recruitment 
of macrophages and DCs, probably owing to its binding to 
P2Y2 receptors (which are widely expressed on cells of 
the myeloid lineage).47,48 In response to specific che-
motherapy agents, ATP released by tumor cells is posi-
tively correlated with the recruitment of monocytes, 
macrophages and DCs, eliciting antitumor immune 
responses and promoting optimal chemotherapy 
responses.43 Beyond its role as a chemoattractant, extra-
cellular ATP may affect the function of immune effectors 
and has been shown to stimulate the maturation of murine 
bone marrow-derived DCs.49

ICD Inducers Based on 
Nanoparticle Drug Delivery System
Although cancer cells undergo ICD in response to che-
motherapy, radiation, or other physical cues, and the 
immune response is further activated, the applications of 
traditional ICD inducers are limited by challenges relevant 
to safety and efficacy. To address these problems, nano-
particles are used to protect the therapeutic agent from 
rapid clearance and enhance specific drug delivery to the 
tumor site, thereby improving the curative effect and redu-
cing adverse events. In general, nanoparticles are divided 
into categories based on their physical and chemical prop-
erties, such as material type, size, shape, charge, and sur-
face chemical modifications.50 For instance, various 
synthetic polymers, biomimetic materials, and inorganic 

Figure 2 Certain chemotherapies and physical cues can induce tumor ICD. The 
dying tumor cells expose CRT, secrete ATP, and release HMGB1, all of which favor 
the recruitment, activation, and maturation of DCs.
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materials, have been used for the construction of nanopar-
ticles. In particular, nanoparticles composed of synthetic 
polymers can be molded to create the desired structure, but 
their poor penetration ability and uptake by immune cells 
limits their applications.51 Nanoparticles composed of bio-
mimetic materials, such as coating with cell membrane, 
show improved biocompatibility and targeting ability with 
reduced immunologic rejection. However, the complexity 
of their preparation presents difficulties for their clinical 
applications.52 Inorganic nanoparticles have several advan-
tages, including being relatively stable and easy to synthe-
size; they also exhibit some special properties, such as 
photothermal conversion capability, photodynamic proper-
ties, and superparamagnetic properties. Nevertheless, com-
mon inorganic nanoparticles are difficult to degrade 
in vivo and are associated with potential safety concerns. 
In addition to the application of nanoparticles in drug 
delivery, controllable drug release at the lesion is impor-
tant. Therefore, smart nanoparticles, which can be trig-
gered to release a drug under specific conditions (light, 
hyperthermia, pH, enzymes, or redox),53 have also 
attracted much attention. In the field of cancer combina-
tion therapy, each type of nanoparticle mentioned above 
offers unique advantages and applications, especially for 
use in drug co-delivery systems, which can simultaneously 
deliver more than one drug to a tumor site, thereby facil-
itating cancer combination therapy. In this review, we 
summarize some nanoparticle-based ICD inducers that 
can increase the tumor accumulation of drugs and increase 
tumor ICD.

ICD Elicited by Nanoparticle-Based 
Chemotherapy
Chemotherapy is one of the most widely used treatment 
modalities for most advanced cancers in clinical settings. 
Several chemotherapy agents, including anthracyclines, 
cyclophosphamide, OXA, and microtubular inhibitors 
(such as taxanes and vinca-alkaloids), can successfully 
promote tumor ICD and further stimulate anticancer 
immune responses.16,44,54 Inspired by this property, nano-
particle-based chemotherapy has been developed to 
amplify the ICD induction of these drugs, while eliminat-
ing their systemic toxicity to normal tissues. Zhao et al17 

applied monomethoxy-poly(ethylene glycol)-poly(D, 
L-lactide-co-glycolide) (mPEG-PLGA) polymeric nano-
particles as model nanocarriers to encapsulate OXA (an 
ICD inducer) or gemcitabine (a non-ICD inducer), both of 

which are used clinically as first-line chemotherapy regi-
mens for pancreatic cancer.55 Interestingly, tumor cells 
treated with nanoparticle-encapsulated OXA released 
more DAMPs and induced stronger immune responses of 
DCs and T lymphocytes than those treated with free OXA 
in vitro. Furthermore, the therapeutic efficacy in immuno-
competent mice showed the same improvement. Although 
nanoparticle encapsulation did not endow a non-ICD indu-
cer with ICD-mediated antitumor capacity, treatment with 
a nanoparticle-encapsulated ICD inducer led to signifi-
cantly enhanced ICD and consequently improved antitu-
mor effects compared with the free ICD inducer, 
corroborating the general trend of ICD enhancement with 
nanoparticle delivery. When nanoparticles are modified 
with tumor-targeting motifs, their tumor accumulation 
can be further facilitated. Qi et al56 developed an innova-
tive chemo-immunostrategy based on targeted delivery of 
mitoxantrone (MIT) and celastrol (CEL), two potent med-
icines screened and selected as having the best anticancer 
and antifibrosis potential. AEAA-polymer-disulfide-bond 
nanoparticles synthesized by Michael addition polymeriza-
tion were applied for drug delivery; AEAA is a molecule 
with tumor targeting ability. Importantly, CEL worked in 
synergy with MIT to induce ICD and recover tumor anti-
gen recognition by immune cells, thereby eliciting overall 
antitumor immunity. Furthermore, the strong synergy ben-
efitted the host in terms of reduced drug exposure and side 
effects. The nanoparticle-mediated chemo-immunotherapy 
successfully remodeled the fibrotic and immunosuppres-
sive tumor microenvironment, arrested cancer progression, 
and further inhibited tumor metastasis to major organs. 
The tumor targeting of nanoparticles can also be promoted 
by external factors, such as a magnetic field. Alev et al5 

developed an iron oxide nanoparticle-based system for the 
magnetically targeted delivery of MIT to tumors, which 
could induce ICD and concomitant maturation of DCs. 
Thus, the iron oxide nanoparticle-based system is 
a potential platform to deliver other ICD inducers to 
tumor regions, while avoiding toxic effects. Chen et al13 

designed tumor-targeting core-shell magnetic nanoparti-
cles (ETP-PtFeNP) to reinforce ICD induction of an OXA- 
loaded prodrug, leading to enhanced ICD-associated 
immunogenicity and specific antitumor immune responses 
to kill tumor cells synergistically (Figure 3).

In addition to traditional chemotherapy agents, some 
cationic anticancer peptides can also induce ICD and pro-
mote antitumor immunotherapy. Qi et al57 used pH and 
thermal dual-sensitive nanoparticles based on poly 
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(acrylamide-co-acrylonitrile)-PEG and hyaluronic acid to 
deliver bovine lactoferricin (LfcinB, one of the most widely 
studied cationic anticancer peptides) to tumor sites. The 
released LfcinB could induce tumor apoptosis with the 
release of DAMPs and further elicited a tumor-specific 
immune response. Consequently, tumor growth was inhibited 
significantly compared with treatment with free LfcinB.

Collectively, nanoparticle-based chemotherapy not 
only improves biodistribution and biocompatibility of 
drugs but also provides a highly effective approach for 
ICD induction, achieving activation of antitumor immune 
responses and outstanding therapeutic efficacy. 
Nanoparticle delivery systems are thus of great signifi-
cance in the field of tumor chemo-immunotherapy.

ICD Elicited by Nanoparticle-Based 
Chemotherapy Combined with Immune 
Checkpoint Inhibitors
The tumor immunosuppressive microenvironment is an 
important factor limiting the effect of tumor treatment, and 
immune checkpoint inhibitors are expected to be an effective 
means of alleviating this phenomenon. Therefore, the combi-
nation of targeted ICD inducers and immune checkpoint inhi-
bitors is a promising strategy to improve antitumor effects.

Kuai et al58 showed that high-density-lipoprotein- 
mimicking nanodiscs loaded with doxorubicin (DOX), 

a widely used chemotherapy agent, could trigger ICD of 
cancer cells and exert antitumor effects without any overt 
off-target side effects. Besides, the DOX could potentiate 
immune checkpoint blockade in murine tumor models. 
Thereafter, the combination of nanodiscs and anti-PD-1 
therapy induced complete regression of established CT26 
and MC38 colon carcinoma tumors in 80–88% of animals 
and protected survivors against tumor recurrence. This 
work provides a generalizable framework for using nano-
particle-based chemotherapy to initiate antitumor immu-
nity and sensitize tumors to immune checkpoint blockade. 
Lu et al59 constructed a liposome self-assembled from 
phospholipid-conjugated prodrug indoximod (IND), 
which inhibits the IDO-1 pathway, followed by remote 
loading of ICD-inducing chemotherapy drug DOX. They 
used this liposomal drug delivery system to simulta-
neously trigger ICD and relieve the immunosuppression 
caused by regional overexpression of IDO-1 at the tumor 
site. Not only did the DOX/IND-liposome provide 
a synergistic antitumor response superior to that achieved 
with a DOX-only liposome, it also demonstrated that the 
carrier could be effectively combined with PD-1-blocking 
antibodies to eradicate lung metastases. Moreover, nano-
particles sensitivities play an important part in controlled 
drug release. Feng et al60 demonstrated a tumor acidity 
and reduction microenvironment dual-activatable binary 

Figure 3 The tumor-targeting core-shell magnetic nanoparticles (ETP-PtFeNP) could kill tumor cells, accompanied by enhanced ICD, the DAMPs exposure could promote 
the maturation of DCs and further facilitate the specific antitumor immune responses. Adapted from Chen Q, Liu L, Lu Y, et al. Tumor microenvironment-triggered 
aggregated magnetic nanoparticles for reinforced image-guidedimmunogenic chemotherapy. Adv Sci (Weinh). 2019;6:1802134. © 2019 The Authors. Published by WILEY- 
VCH Verlag GmbH & Co. KGaA, Weinheim. Creative Commons CC BY license.13
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cooperative prodrug nanoparticle (BCPN) to deliver OXA 
and NLG919 (an IDO-1 inhibitor) for chemo- 
immunotherapy. The exposed OXA promoted tumor infil-
tration of cytotoxic T lymphocytes by triggering ICD of 
cancer cells, while the NLG919 downregulated IDO- 
1-mediated immunosuppression and suppressed regulatory 
T cells. Given its merits of high drug loading efficacy, 
tumor-specific accumulation and deep penetration, and 
burst drug release inside tumor cells, as well as its robust 
formulation procedure, this prodrug nanoparticle has 
potent potential for improving immunotherapy (Figure 4). 
Recent research on the cancer combination therapy of 
nanoparticle-based chemical ICD inducers and immune 
checkpoint inhibitors is summarized in Table 1.

In conclusion, nanoparticle-based chemotherapy can 
effectively improve tumor immunogenicity, while immune 
checkpoint inhibitors can alleviate tumor immunosuppres-
sion; therefore, the combination strategy will achieve 
remarkable antitumor effects.

ICD Activated by Nanoparticle-Based 
Physical Cues
In addition to chemotherapy, some physical stimuli can 
cause ICD in tumor sites; these include radiotherapy such 

as X-rays, γ-rays, protons, or electron beams; and photother-
apy including PTT and PDT. In radiotherapy, the ionizing 
radiation can directly break the DNA structure or generate 
ROS that further damage the DNA, resulting the activation 
of tumor ICD and an immune response.66,67 Regarding 
phototherapy, the new emerging cancer treatments usually 
employ phototherapeutic agents to selectively kill tumor 
cells under certain light irradiation.68,69 PTT usually 
leverages optical absorbing agents to generate hyperthermia 
under light irradiation to “burn” cancer cells.70 PDT relies on 
photosensitizers that convert the surrounding oxygen mole-
cules to ROS or cytotoxic singlet oxygen (1O2) to kill cancer 
cells under the appropriate light irradiation.71 Both PTT and 
PDT can directly kill tumor cells, accompanied by release of 
DAMPs, which can further induce a strong antitumor 
immune response. Importantly, when nanoparticle delivery 
systems are combined with these physical therapies, the area, 
time, and efficacy of treatment can be precisely controlled by 
changing the site, duration, and power of irradiation. As 
a result, it is easy to adjust the treatment strategy to induce 
effective tumor ICD in a timely manner according to clinical 
needs.72,73

There have been many studies of tumor ICD activated 
by physical cues based on nanoparticle drug delivery 

Figure 4 Schematic illustration of the BCPN for improved immunotherapy by cooperatively modulating the immune tumor microenvironment. (A) Self-assembly procedure 
of BCPN nanoparticles, and chemical structure of DiNLG919 and prodrugs. (B) Schematic illustration of BCPN to elicit antitumor immunity and suppress regulatory T cells 
for improved immunotherapy. Adapted with permission from Feng B, Zhou F, Hou B, et al. Binary cooperative prodrug nanoparticlesimprove immunotherapy by 
synergistically modulatingimmune tumor microenvironment. Adv Mater. 2018;30:1803001. Copyright © 2018 John Wiley and Sons.60
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systems. Vanpouille-Box et al74 reported a lipid nanocap-
sule loaded with rhenium-188 (LNC188Re-SSS) to achieve 
local radiotherapy for tumors with reduced systemic toxi-
city. The danger signals released by irradiated tumor cells 
could recruit and activate immune cells, further enhancing 
the effect of this treatment strategy. Zhang et al75 con-
structed a magnetic delivery system for effective cancer 
treatment via PTT. This delivery system was composed of 
Fe3O4 magnetic nanoparticles as the core to load indocya-
nine green (ICG), and polyethylene glycol polyphenols as 
the coating layer to load R837, a Toll-like-receptor-7 ago-
nist that serves as an immune adjuvant. When the nano-
particles were targeted to the tumor site and irradiated by 
near-infrared light, tumor-associated antigens were 
released under the PTT and the antitumor immunological 
response was further promoted by R837. There are also 
some instances of PDT; Chen et al76 presented a protein 
hybridization approach to develop a bioinspired hybrid 
protein oxygen nanocarrier with chlorin e6 (Ce6, 
a photosensitizer) loaded via intermolecular disulfide con-
jugation for oxygen-augmented immunogenic PDT. The 
nanocarrier could co-deliver the photosensitizer and oxy-
gen to tumor sites, which markedly relieved tumor 
hypoxia. The PDT efficiency was enhanced and ICD of 
cancer cells was induced. Notably, immunogenic PDT 
mediated by the fabricated nanocarrier could destroy pri-
mary tumors and effectively suppress distant tumors and 
lung metastasis in a metastatic triple-negative breast can-
cer model by evoking systemic antitumor immunity. This 
study provides a paradigm of oxygen-augmented immuno-
genic PDT for metastatic cancer treatment. Besides, Wang 
et al77 designed a ultrasmall nanoagent fabricated from 
polyethylene-glycol-modified Cu2-xSe nanoparticles, β- 
cyclodextrin, and Ce6. The resultant nanoplatform could 
be passively accumulated into the tumor and exhibited 
dramatic antitumor efficacy owing to an excellent PDT 
effect under near-infrared irradiation. Subsequently, the 
vast amounts of ROS generated not only killed primary 
tumor cells but also elicited ICD to release DAMPs and 
induced polarization of proinflammatory M1- 
macrophages. Thereby, robust antitumor immune 
responses against the metastasis of breast cancer were 
evoked. In addition, the combination of PTT and PDT 
has been investigated. Based on the fact that ICD can be 
evoked through ROS produced via ER stress, Li et al78 

generated a double ER-targeting strategy to realize PDT/ 
PTT/immunotherapy. ER-targeting pardaxin (FAL)- 
peptide-modified, ICG-conjugated-hollow gold 

nanospheres (FAL-ICG-HAuNS), together with an oxy-
gen-delivering hemoglobin liposome (FAL-Hb lipo), 
were designed to induce robust ER stress and ICD. This 
strategy successfully promoted the exposure of CRT and 
activated a series of immunological responses, resulting in 
enhanced antitumor efficacy (Figure 5).

Moreover, core-shell-structured nanoparticles have 
been applied widely. He et al79 developed a core-shell 
gold nanocage coated with manganese dioxide (MnO2) 
and hyaluronic acid for targeted delivery to colorectal 
tumors and oxygenation-boosted immunogenic photother-
apy in situ. In this nanoplatform, the gold nanocage core 
was employed for near-infrared light (NIR)-triggered PDT, 
while the MnO2 shell was degraded in the tumor micro-
environment containing acidic H2O2, and generated suffi-
cient oxygen to ameliorate tumor hypoxia and to increase 
ROS production and PDT efficacy. This strategy enhanced 
tumor ICD and facilitated DC maturation, which effec-
tively inhibited the growth and recurrence of colorectal 
tumors. Cell-membrane-coated nanoparticles have also 
attracted much attention. Yu et al80 developed a myeloid- 
derived suppressor cell (MDSC) membrane-coated iron 
oxide magnetic nanoparticle (MNP@MDSC) for active 
tumor targeting and PTT-induced tumor killing. 
MNP@MDSC could act as a PTT agent to achieve an 
enhanced antitumor response by inducing ICD, reprogram-
ming tumor-infiltrating macrophages, and reducing the 
tumor’s metabolic activity, making it a promising agent 
for cancer therapy.

Tumor ICD induced by nanoparticle-based physical 
means can effectively stimulate an antitumor immune 
response, and has great potential in the field of tumor 
treatment. Nanoparticle drug delivery systems contribute 
significantly to improvements in tumor targeting and the 
antitumor efficacy of physical cues.

ICD Activated by Nanoparticle-Based 
Physical Cues Combined with Immune 
Checkpoint Inhibitors
Similarly, the antitumor efficacy of these nanoparticle- 
based physical cues is limited by tumor immunosuppres-
sion, even though the tumor ICD has been activated. 
Therefore, the combined application of immune check-
point inhibitors will be an effective way to solve this 
problem.81

Regarding the application of radiotherapy, Choi et al82 

synthesized a splintery snowflake-like Au nanocarrier 
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(S-AuNC) that could increase the selectivity of radiation 
and showed radiation-responsive structural deformation, 
resulting in the triggered release of the cargo, αPD-L1. 
The combination of radiotherapy and αPD-L1-loaded 
S-AuNC significantly enhanced the ICD for tumor micro-
environment conversion, resulting in a synergistic antic-
ancer adaptive immune response with minimized systemic 
immune-related adverse effects. Yu et al83 prepared elec-
tric pulse responsive iron-oxide-nanocube clusters 
(IONCs) loaded with IDO inhibitors (IDOi) to enhance 
cell killing by irreversible electroporation (IRE) and mod-
ulate the tumor immunosuppressive microenvironment. 
The IDOi-loaded IONCs showed highly responsive move-
ment upon application of IRE electric pulses that induced 
local magnetic fields, further enhancing tumor-killing effi-
ciency accompanied by ICD, and the released IDOi could 
overturn the tumor immunosuppressive phenomenon. 
Yang et al84 designed pH-responsive nanovesicles to 

encapsulate a photosensitizer (HPPH) and an IDO inhibi-
tor (IND) via hydrophobic interactions. The obtained 
nanoparticles (pRNVs/HPPH/IND) could directly kill can-
cer cells by PDT under laser irradiation and induce ICD. 
On the other hand, IND could restore the mTOR pathway, 
with phosphorylation of P-S6K for tumor microenviron-
ment modulation, which eventually stimulated CD8+ 

T cells. This strategy provides huge potential for design 
of nanomaterials for cancer immunotherapy. Liu et al85 

reported a serum-albumin (SA)-coated boehmite organic- 
inorganic scaffold loaded with Ce6 and a honeybee venom 
melittin (MLT) peptide, denoted Ce6/MLT@SAB. With 
the assistance of MLT, Ce6/MLT@SAB could more easily 
accumulate in tumor cells, permitting greater intercellular 
ROS production by PDT and further enhancing the ICD 
effect. It is worth noting that when the Ce6/MLT@SAB 
was used in combination with a PD-1 inhibitor, the num-
bers of CD4+ and CD8+ T cells in tumors further 

Figure 5 The antitumor mechanism of FAL-ICG-HAuNS plus FAL-Hb-lipo. Schematic illustration of enhanced immunogenic cancer cell death and anticancer effect induced 
by endoplasmic reticulum-targeting photothermal/photodynamic therapy. Adapted from .78
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increased, whereas numbers of MDSCs were reduced, 
indicating that the addition of anti-PD-1 immunotherapy 
could strengthen the antitumor ability of Ce6/MLT@SAB 
phototreatment to achieve the desired therapeutic effect 
(Figure 6). Recent research on combination cancer thera-
pies using nanoparticle-based physical ICD inducers and 
immune checkpoint inhibitors is summarized in Table 2.

In conclusion, these studies present unique nanomedi-
cine approaches representing a next-generation tumor ther-
apy strategy that can activate synergistic whole-body 
therapeutic responses and overturn tumor immunosuppres-
sion when combined with immune checkpoint inhibitors, 
holding great promise for clinical translation.

Multipronged Approaches
In order to evoke a significant ICD at the tumor site, immu-
nogenic chemotherapy has also been combined with other 
physical cues, such as PTT and PDT, to achieve a synergistic 
effect. Importantly, when the synergistic strategy of chemi-
cal and physical cues is combined with immune checkpoint 
inhibitors, a remarkable antitumor immune response is eli-
cited, further improving the antitumor efficacy.

The combination of chemotherapy and PTT has 
a significant role in promoting tumor ICD. Wen et al89 pro-
posed a new therapeutic strategy to effectively trigger ICD by 
combining chemotherapy and PTT. A nanosystem (Pd-DOX 
@TGMs nanoparticles) was fabricated by integrating DOX 
and photothermal reagent palladium nanoparticles (Pd NPs) 
into amphiphile triglycerol monostearates (TGMs). It was 
proved that codelivery of DOX and Pd NPs could effectively 
kill tumor cells, accompanied by the release of DAMPs to 
improve the immunogenicity of dead tumor cells. The 

effective ICD induction mediated by the nanosystem boosted 
the PD-L1 checkpoint blockade effect, which efficiently 
improved the infiltration of toxic T lymphocytes at the tumor 
site, resulting in excellent tumor treatment effects on both 
primary and abscopal tumors. Besides, Sun et al90 prepared 
a novel polypyrrole nanoparticle using the near-infrared dye 
IRDye800CW with a camptothecin (CPT)-conjugated hya-
luronic acid (HA) shell (PPy@CPT-HA-IRDye800CW) for 
synergistic chemotherapy and PTT, which could induce tumor 
ICD and consequently evoke a systemic immune response. 
The antitumor therapeutic effects were synergistically 
enhanced when it was used in combination with anti-PD-L1 
therapy, eliminating the primary tumor and preventing metas-
tases and recurrences in tumor-bearing mice.

In addition, the combination of chemotherapy and PDT 
has also attracted attention. He et al91 demonstrated the 
synergistic ability of chemotherapy and PDT to elicit anti-
tumor immunity. A nanoscale coordination polymer (NCP) 
core-shell nanoparticle was constructed, carrying OXA in the 
core and photosensitizer pyropheophorbide-lipid conjugate 
(pyrolipid) in the shell (NCP@pyrolipid). The synergy 
between OXA and the pyrolipid-induced PDT could induce 
tumor ICD and evoke an immune response. Importantly, 
NCP@pyrolipid treatment in combination with PD-L1 
checkpoint blockade therapy not only led to the regression 
of primary tumors (treated locally with light irradiation) but 
also resulted in the regression of distant tumors in bilateral 
syngeneic tumor-bearing mice by generating a systemic 
tumor-specific T-cell response with infiltration of CD8+ 

T cells and CD4+ T cells into distant tumors. Yang et al92 

developed an intelligent PEG-modified, biodegradable hol-
low MnO2 (H-MnO2-PEG) nanoplatform for co-loading 
a photodynamic agent Ce6 and a chemotherapy drug DOX. 
The obtained H-MnO2-PEG/C&D could be dissociated 
under reduced pH within tumor microenvironment to release 
loaded therapeutic drugs, while simultaneously decomposing 
tumor endogenous H2O2 to relieve tumor hypoxia. As 
a result, a remarkable in vivo synergistic therapeutic effect 
was achieved through combined chemo-photodynamic ther-
apy, which simultaneously triggered a series of antitumor 
immune responses due to the ICD effect. The further combi-
nation of this platform with PD-L1 checkpoint blockade 
therapy would lead to inhibition of tumors at distant sites, 
as a potential treatment for tumor metastasis. Zhou et al93 

reported a tumor-microenvironment-activatable prodrug 
vesicle, engineered by integrating an OXA prodrug and 
PEGylated photosensitizer (PPa) into a single nanoplatform. 
When the prodrug vesicle accumulated at the tumor site and 

Figure 6 Depiction of an organic-inorganic hybrid nanocarrier coloaded with bee 
venom MLT and a photosensitizer for combinational photodynamic therapy and 
immunotherapy. Adapted with permission from . Copyright © 2019 American 
Chemical Society.85
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was exposed to the acidic and enzymatic tumor microenvir-
onment, the encapsulated drugs were released. The codeliv-
ery of the OXA prodrug and PPa could trigger ICD of tumor 
cells when irradiated with laser. The combination of prodrug- 
vesicle-induced ICD and antibody-mediated CD47 blockade 
further facilitated DC maturation, promoted antigen presen-
tation by DCs, and eventually propagated antitumor 

immunity. This multipronged approach of chemotherapy, 
PDT, and immunotherapy was demonstrated to efficiently 
inhibit the growth of both primary and abscopal tumors, 
suppress tumor metastasis, and prevent tumor recurrence 
(Figure 7). Recent research on combination cancer therapies 
using nanoparticle-based multipronged ICD inducers and 
immune checkpoint inhibitors is summarized in Table 3.

Figure 7 Schematic illustration of the prodrug vesicles for cancer immunotherapy by ICD induction and CD47 blockade. (A) Schematic design of the acidity and MMP-2 
dual-responsive prodrug vesicles. (B) Simplified mechanism of prodrug vesicle -mediated chemo-immunotherapy and CD47 blockade to inhibit tumor growth, recurrence, 
and distant metastasis. Adapted with permission from . Copyright © 2019 John Wiley and Sons.93
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Conclusions and Future Challenges
Immunotherapy has achieved exciting clinical responses 
and become a promising strategy to completely cure can-
cer. However, low response rates and potential side effects 
remain significant hurdles to its widespread clinical appli-
cation. Importantly, the formation of an immunosuppres-
sive tumor microenvironment is one of the most serious 
challenges with respect to anticancer efficacy, which is 
mainly induced by low tumor immunogenicity and the 
inactivation of tumor-killing immune cells. Therefore, 
ICD inducers were proposed to increase tumor immuno-
genicity, while immune checkpoint inhibitors were applied 
to relieve the suppression of immune cells. These 
approaches for tumor treatment have been demonstrated 
by various studies, especially combination strategies invol-
ving ICD inducers and immune checkpoint inhibitors. 
Unfortunately, the common chemical and physical meth-
ods of inducing tumor ICD may be limited by toxicity and 
low efficiency. As a result, nanoparticle-based chemical 
and physical ICD inducers are emerging, which offer an 
opportunity to eliminate side effects and improve the effi-
ciency of therapeutic agents. Further combination with 
immune checkpoint blockade can amplify the tumor kill-
ing and immune activation effects.

Nevertheless, there are still some limitations to the use of 
nanoparticles in drug delivery. The most important of these 
is cytotoxicity, which is primarily caused by the material, 
size, surface charge, and concentration of nanoparticles.97 

Artificial nanoparticles may be immunogenic and easily 
engulfed and eliminated by immune cells.51 Besides, some 
non-degradable nanoparticles of a specific size may be 
retained in the lung, liver, kidney, or other sites and cause 
severe damage.98 Moreover, the complexity and difficulty of 
the preparation of nanoparticles has also hindered their 
commercial and clinical applications. Emerging two- 
dimensional nanomaterials, such as black phosphorus 
nanosheets,99–103 tellurium-selenium nanomaterials,104 

boron nanosheets,105 antimonene nanosheets,106,107 and 
MXene (Ti3C2)-integrated cellulose hydrogels,108 as metal- 
free photothermal agents, have attracted increased attention 
in biomedical applications because they are easily biode-
gradable and biocompatible, in contrast to conventional 
inorganic nanoparticles, and provide more opportunities for 
use of nanoparticles in drug delivery. It worth noting that, 
although nanoparticle-based immunotherapy has shown 
excellent and promising results in preclinical studies, sup-
porting the idea that it has enormous potential for fighting 

cancer, to date, few strategies have been tested in clinical 
trials and none of them has yet been approved for clinical 
use.50 However, if all these limitations are considered and 
addressed, the practical application of nanoparticle drug 
delivery systems will eventually become a reality.

In addition, tumor immunotherapy faces the challenge of 
low patient response rates owing to tumor immunosuppres-
sion, tumor heterogeneity, variability in cancer types and 
stages, and adaptive resistance. Although the emergence of 
immune checkpoint inhibitors is promising, the low expres-
sion of related ligands in tumors reduces the therapeutic 
response. Therefore, the discovery of immune checkpoint 
inhibitors with general applicability is of great importance. 
Moreover, the evaluation of immune responses after treat-
ment is limited by the current static and invasive methods. To 
facilitate the discovery of immunotherapeutic agents and 
longitudinal evaluation of immunotherapeutic outcomes, 
real-time imaging of immune response is highly desirable.109

Besides, the potencies of different nanoparticle platforms 
or applications cannot be easily compared as each experi-
ment was independently performed. Specifically, it is impor-
tant to understand the impact of each combinatorial approach 
on the tumor immunosuppression microenvironment; this 
will be beneficial for the achievement of potent antitumor 
effects. As only a few stimuli have been demonstrated to 
induce ICD, there is an urgent need to identify more com-
pounds or modalities that can render cell death immuno-
genic. New nanoparticles with appropriate properties for 
targeted delivery of ICD inducers are also critically needed.
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