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Because of its ability to generate biological hypotheses, metabolomics offers an
innovative and promising approach in many fields, including clinical research. However,
collecting specimens in this setting can be difficult to standardize, especially when
groups of patients with different degrees of disease severity are considered. In
addition, despite major technological advances, it remains challenging to measure
all the compounds defining the metabolic network of a biological system. In this
context, the characterization of samples based on several analytical setups is now
recognized as an efficient strategy to improve the coverage of metabolic complexity. For
this purpose, chemometrics proposes efficient methods to reduce the dimensionality
of these complex datasets spread over several matrices, allowing the integration
of different sources or structures of metabolic information. Bioinformatics databases
and query tools designed to describe and explore metabolic network models offer
extremely useful solutions for the contextualization of potential biomarker subsets,
enabling mechanistic hypotheses to be considered rather than simple associations.
In this study, network principal component analysis was used to investigate samples
collected from three cohorts of patients including multiple stages of chronic kidney
disease. Metabolic profiles were measured using a combination of four analytical
setups involving different separation modes in liquid chromatography coupled to high
resolution mass spectrometry. Based on the chemometric model, specific patterns
of metabolites, such as N-acetyl amino acids, could be associated with the different
subgroups of patients. Further investigation of the metabolic signatures carried out
using genome-scale network modeling confirmed both tryptophan metabolism and
nucleotide interconversion as relevant pathways potentially associated with disease
severity. Metabolic modules composed of chemically adjacent or close compounds
of biological relevance were further investigated using carbon transfer reaction paths.
Overall, the proposed integrative data analysis strategy allowed deeper insights into the
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metabolic routes associated with different groups of patients to be gained. Because
of their complementary role in the knowledge discovery process, the association of
chemometrics and bioinformatics in a common workflow is therefore shown as an
efficient methodology to gain meaningful insights in a clinical context.

Keywords: metabolomics, chemometrics, bioinformatics, integrative data analysis, chronic kidney disease,
metabolic networks

INTRODUCTION

While efforts are still being made to improve both technological
and computational aspects, metabolomics is now recognized
as an essential approach to assess biochemical phenotypes
in many application fields, including clinical research. Mass
spectrometry (MS) has established itself as a major analytical
detection technique by offering high sensitivity and substantial
throughput (Zhang et al., 2020). Metabolomic experiments
often generate large amounts of high-dimensional and complex
biochemical data involving multiple signals measured from
thousands of low molecular weight compounds. Dedicated
strategies need thus to be applied to extract meaningful
biological knowledge from the collected MS data (Boccard
et al., 2010). Despite the considerable developments made
to improve the different steps of the workflow (Pezzatti
et al., 2020), assessing the metabolic diversity of a complex
sample still constitutes a challenging analytical endeavor.
The difficulty is mainly due to the large chemical space and
concentration ranges covered by metabolites characterizing
biological systems (Frainay et al., 2018). The integration of
data collected from different sample preparation protocols,
separation principles, ionization modes or analytical platforms
has been recognized as an efficient strategy to improve the
metabolome coverage of complex samples, thus potentially
offering better understanding of the underlying biological
mechanisms associated with a given phenotypic pattern
(Richards et al., 2010). Dedicated data mining tools accounting
adequately for metabolomic signals spread over multiple data
tables are therefore needed, and chemometrics offers potent
solutions for data integration based on dimensionality reduction
approaches. More specifically, multivariate models able to
handle multiple blocks of variables (multiblock) associated
with different groups of observations (multigroup) are now
established as effective methods for data integration in omics
disciplines (Boccard and Rudaz, 2014).

An additional complexity frequently encountered in clinical
research is due to a certain degree of heterogeneity in sample
collection among different groups of individuals. Classical case–
control studies usually involve a group of healthy volunteers
used as a reference and compared to one or various pathological
situations. On one hand, it could be difficult to collect
measurements obtained by a highly invasive technique for the
control group. On the other hand, a longitudinal follow-up of
critical patients involving repeated measures at different time
points may be required in standard protocols. This temporal
follow-up offers rich information, but these types of longitudinal
setups generate multiway data, i.e., three-dimensional tensors

in this case (individuals × variables × time) making the global
analysis of all available data more challenging.

In this context, Network Principal Component Analysis
(NetPCA) has been recently proposed as a novel and generic
approach to handle any type of structure composed of several
data matrices (Codesido et al., 2020). Relationships between
groups of observations or blocks of variables are translated
into a network structure, where the nodes are standard two-
dimensional data matrices. Two types of edges link the nodes
to connect data tables characterized by the same observations
or variables. This formalism translates any links between data
matrices into optimization constraints to find principal directions
of covariations by using the same model parameters (i.e.,
coefficients or loadings), that are then extracted using a set
of linear models.

Handling data spread over multiple matrices constitutes a
crucial step toward insightful data integration, but biological
information is rarely obtained directly from statistical models,
e.g., based on variables coefficients, or selected subsets of
annotated metabolites. It is now well-recognized that a
contextualization of metabolomic results is mandatory
to go beyond simple associations and provide reliable
mechanistic hypotheses (Kell, 2004). Converting subsets of
up- or down-modulated biomarkers into biological processes
and functions plays thus another critical role to go toward a
functional description of the molecular events under study
(Booth et al., 2013).

A first approach to this aim is to derive a biological meaning
from a subset of relevant metabolites by retrieving metadata
associated with each compound, such as chemical classes or
known metabolic pathways. This can be done using a controlled
vocabulary, i.e., ontologies allowing functional annotations, and
bioinformatic tools that are designed to query this information
stored in dedicated databases, e.g., KEGG (Kanehisa and Goto,
2000) and HMDB (Wishart et al., 2018). Biological processes
and/or molecular functions can then be ranked using a statistical
test (e.g., Fisher exact test or hypergeometric test) according
to their probability to be represented more frequently than it
would occur by random chance (Kankainen et al., 2011). The
rationale behind this strategy is that the metabolites belonging
to a metabolic pathway involved in the manifestation of a
specific metabolic signature are expected to be modulated
simultaneously. This is a rather strong hypothesis that may not
be fulfilled in a real biological context and this type of analysis
has therefore some limitations (Marco-Ramell et al., 2018).

Alternatively, describing metabolic networks as graphs
constitutes a very efficient methodology to model biochemical
reactions defining the metabolism. A metabolite-centric
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representation can be gained using a compound graph defining
metabolites as nodes, which are connected if they are substrate
and product of the same reaction (Guimera and Amaral, 2005).
Metabolic pathways can then be defined as subgraphs involving
a series of metabolites belonging to the same metabolic process.
Such a strategy allows to go much further in the biological
interpretation of altered metabolic patterns, compared to
standard metabolic pathways over-representation analysis. As
enzymes drive most of these reactions, they can be related to
specific proteins, which are synthesized from their corresponding
genes. These biological links between genes and metabolites
constitute valuable information that can be used to infer
metabolic networks from genomes, following a systems biology
approach. Major improvements of the sequencing technology
and databases have indeed enabled the reconstruction of
genome-scale metabolic networks of several model organisms
(Yilmaz and Walhout, 2017). It is, however, to be noted that
network curation and validation remain mandatory to correct
for false positive or missing reactions, and guarantee an adequate
stoichiometric balance. Various metrics can then be applied to
highlight specific topological features of interest, such as path
lengths, degree centrality and clustering coefficient, which allow
hubs and modules of topological importance to be highlighted
(Lacroix et al., 2008). Moreover, subnetworks focusing on specific
sets of reactions related to modulated metabolites can be easily
extracted and visualized (Frainay and Jourdan, 2017). Such a
strategy is useful to reduce the complexity of large networks and
to gain a better mechanistic understanding of the phenomenon
under study, through the possibility to investigate a reduced
list of biochemical reactions characterizing particular metabolic
phenotypes. Resources for pathway mapping and/or network
analysis include KEGG (Kanehisa and Goto, 2000), MetaCyc
(Caspi et al., 2016), Recon (Thiele et al., 2013; Noronha et al.,
2017), and MetExplore (Cottret et al., 2010, 2018).

This work presents the integrative analysis of data collected
from several metabolomic studies designed to investigate the
effects of chronic kidney disease (CKD). The selected analytical
strategy was based on multiple chromatographic separation
setups, including reversed-phase liquid chromatography
(RPLC), hydrophilic interaction chromatography with amide
(aHILIC), and polymeric zwitterionic stationary phases
(ZICpHILIC) coupled to high-resolution mass spectrometry
(HRMS). The heterogeneous and complex data structure
generated was successfully handled using chemometrics for
multiblock and multiset data integration, and state-of-the-art
bioinformatic resources were implemented for an in-depth study
of metabolic events.

MATERIALS AND METHODS

Chronic Kidney Disease Dataset
Plasma samples collected during four prospective observational
monocentric CKD studies performed at a tertiary hospital
(Geneva University Hospitals, Geneva, Switzerland) were
considered. CKD severity stages were defined according to the
glomerular filtration rate (GFR) criterion KDIGO guidelines

(Levey et al., 2020). A first cohort of patients was recruited to
assess the impact of different stages of CKD severity (3b–5) on
plasma metabolites (Gagnebin et al., 2019). A second and third
one explored the benefits offered by kidney transplantation,
as well as the potential impact of kidney donation on healthy
living donors (LKD) (Gagnebin et al., 2020b). Finally, the last
one was designed to investigate plasmatic metabolites patterns
of patients with end-stage renal disease (ESRD) undergoing
regular hemodialysis (HD) (Gagnebin et al., 2020a). The latter
were under chronic HD for at least 3 months with three dialysis
per week. In addition, a control group of healthy volunteers
was also included.

Plasma from all cohorts were collected for an integrative
analysis of these different renal conditions. All samples were
collected in the morning after an overnight fast and several
times points were considered for individuals undergoing HD or
transplantation, as well as LKD. Samples were directly thawed,
aliquoted and stored at –80◦C. More details about the inclusion
criteria, GFR, HD characteristics and ethical concerns can be
found in the specific reference of each study.

Sample Preparation and Analysis
Sample Preparation
Pipetting and liquid handling was carried out using a Tecan
Freedom Evo-2 (Tecan, Switzerland) to ensure sample
preparation repeatability. First, solvent protein precipitation
was performed using cold methanol spiked with isotopically
labeled standards [(d5-indole)-L-tryptophan, 1,2-13C2-taurine
and 2,2,4-d3-DL-glutamic acid)], all from Cambridge Isotope
Laboratories Inc. (Andover, United States) at 1.25 µg mL-1.
A volume of 960 µL cold methanol containing the standards was
added to 240 µL of thawed plasma. Samples were then vortexed
for 20 s, mixed at 1,200 rpm for 30 min at 4◦C and centrifuged
at 15,000 × g for 20 min at 4◦C. Supernatants were divided into
300 µL aliquots and dispatched on 96-well plates. Each extract
was then dried for 8 h in a Thermo Fisher Scientific Savant
210A SpeedVac (Thermo Electron LED GmbH, Langenselbold,
Germany) and stored at –80◦C. Before analysis, samples were
reconstituted in 60 µL of H2O/MeCN (95:5, v/v) for RPLC and
in 60 µL of H2O:MeCN (25:75, v/v) for aHILIC and ZICpHILIC.
Quality control (QC) and diluted QC (dQC) samples were
prepared to assess and correct analytical variations using the
same sample preparation procedures as the individual samples.

LC-MS Analysis
Liquid chromatography was carried out on a Waters H-Class
Acquity UPLC system (Waters Corporation, Milford, MA,
United States) using different separation modes. RPLC analysis
was performed using a Phenomenex Kinetex C18 column
(150 × 2.1 mm, 1.7 µm), and a SecurityGuard ULTRA pre-
column. A gradient of mobile phase A (0.1% FA in water) and
mobile phase B (0.1% FA in MeCN) was applied as follows:
2% B for 1 min, increased to 100% B over 14 min, held for
3 min, and then returned to 2% B to re-equilibrate the column
for 7 min (total run time of 25 min) at a flow rate of 300
µL min-1 and a column temperature of 30◦C. Separation using
aHILIC was achieved on a Waters Acquity BEH Amide column
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(150 × 2.1 mm, 1.7 µm), and a VanGuardTM pre-column.
A gradient of mobile phase A (H2O:MeCN; 5:95 v/v) and mobile
phase B (10 mM ammonium formate in H2O:MeCN, 70:30 v/v
adjusted at pH 6.50 in the aqueous part) was applied as follows:
0% B for 2 min, increased to 70% B over 18 min, held for 3 min,
and then returned to 0% B to re-equilibrate the column for 7 min
(total run time of 31 min) at a flow rate of 500 µL min-1 and a
column temperature of 40◦C.

ZICpHILIC analysis was carried out on a Merck SeQuant Zic-
pHILIC column (150 × 2.1 mm, 5 µm) and the appropriate
guard kit was applied. A gradient of mobile phase A (MeCN)
and mobile phase B (2.8 mM ammonium formate adjusted to
pH 9.00) was applied as follows: 5% B for 1 min, increased to
51% B over 9 min, held for 3 min at 51% B and then returned to
5% B in 0.1 min before re-equilibrating the column for 6.9 min
(total run time of 20 min) at a flow rate of 300 µL min-1 and a
column temperature of 40◦C. For all separation modes, a volume
of 5 µL of the 393 samples was analyzed in eight batches using
constrained randomization (Jonsson et al., 2015). QC samples
were injected for system conditioning (15 first injections in each
batch), while QCs and dQCs were analyzed regularly during the
sequence (every 6 samples).

The UPLC system was coupled to a maXis 3G Q-TOF high-
resolution MS from Bruker (Bruker Daltonik GmbH, Bremen,
Germany) with an electrospray ionization source working in
positive (ESI+) mode for RPLC and aHILIC, or negative (ESI−)
mode for RPLC and ZICpHILIC. The instrument was operated
using the following parameters: capillary voltage of –4.7 kV
for ESI+ and 2.8 kV for ESI-, nebulizing gas pressure of 2.0
bar, drying gas temperature of 225◦C for RPLC and 200◦C
for aHILIC and ZICpHILIC and a flow rate of 8.0 L min−1.
Data acquisition between 50 and 1,000 m/z was performed in
profile mode at a rate of 2 Hz. In-run automatic calibration
was achieved using formate adducts in the 90–1,247 m/z range
and the quadratic plus high-precision calibration algorithm
(Bruker Daltonics). The detailed analytical protocol can be found
elsewhere (Gagnebin et al., 2019).

Data Processing and Analysis
Raw data processing was performed using Progenesis QI
2.3 (Non-linear Dynamics, Waters, Newcastle upon Tyne,
United Kingdom). QCs and dQCs were used to monitor and
control data acquisition quality, remove unreliable signals,
and correct for within-batch drifts and between-batch effects.
A filtering procedure was carried out to remove unreliable signals
by applying a threshold of 50% for the dQC/QC ratio relative
standard deviation (RSD) and a dQC/QC ratio between 0.2
and 0.8. LOESS regression was used for intra- and inter-batch
normalization based on QC samples. Finally, the position of the
QCs was assessed separately for each data block using Principal
Component Analysis (data not shown).

Metabolite annotation was achieved using an in-house
database containing experimental data from more than
900 authentic standard compounds measured in different
chromatographic conditions. Briefly, level 1 annotation was
achieved by matching m/z values, retention times, and isotopic
patterns, while MS/MS spectra and collisional cross-section

values were considered for confirmatory purpose. Cytoscape
3.8.2 was used to generate circular layout graphs. NetPCA was
computed after unit variance scaling using the NetPCA Python
package (Codesido et al., 2020).

Clustering was computed under the MATLAB 9.5
environment (The MathWorks, Natick, United States).
MetExplore (Cottret et al., 2010) and MetExploreViz (Chazalviel
et al., 2018) were used with the Recon3D human metabolic
reconstruction (Brunk et al., 2018) for mapping identified
metabolites, pathway over-representation analysis, network
visualization and evaluation of carbon transfer reaction
paths. A more detailed description of the data processing
and analysis workflow, as well as the dataset, are available as
Supplementary Material.

RESULTS

Metabolomic Dataset Structure
In total, 393 blood samples were collected from the pre-
defined cohorts of patients grouped into different categories
according to their renal status: 56 healthy control volunteers
(CTRL), 69 CKD patients at intermediate stage (ICKD), 35
patients with ESRD undergoing HD (HD), 42 ESRD undergoing
kidney graft (KG) and 24 healthy LKD (DV). Repeated
measures were carried out for three groups: (i) HD: before
(preHD) and after (postHD) blood dialysis on the mid-
week session, (ii) KG: before (preKG), 1 week (postKG1),
and 1 month (postKG2) after the graft, (iii) DV: before
(preDV), 1 week (postDV1) and 1 year (postDV2) after the
transplantation procedure.

All samples went through our standard analytical workflow
already presented elsewhere (Pezzatti et al., 2020). Briefly,
generic sample preparation was first carried out to cover a
large chemical diversity of compounds and each sample was
analyzed using four LC-HRMS setups, i.e., RPLC+, RPLC−,
aHILIC+, and ZICpHILIC-. Raw data processing involving
baseline correction, peak picking, adduct deconvolution and
retention time alignment was carried out with Progenesis QI,
while subsequent filtering and normalization based on QC
samples (Broadhurst et al., 2018; Pezzatti et al., 2020) was
performed using in house scripts. Metabolite annotation was
then performed by matching reference values measured with
standards in the same analytical conditions, and a scoring
strategy was implemented to remove compounds annotated
in more than one LC-MS setup. For that purpose, a peak
quality score based on intensity, shape, and retention time
was used to select the best analytical information (Pezzatti
et al., 2019). In the present work, annotation was restricted
to metabolites matching entries from our in-house database.
This strategy led to a set of 218 compounds annotated at level
1 for each sample. These identified metabolites were spread
over four blocks of variables corresponding to the different
LC-MS setups as follows: 88 in RPLC+, 38 in RPLC−, 27 in
aHILIC+, and 65 in ZICpHILIC-. A schematic diagram of the
dataset structure composed of 40 data matrices involving the
five different groups of individuals, the four blocks of variables,
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FIGURE 1 | Schematic diagram of the dataset structure composed of 40 data matrices involving the five different groups of individuals, the four blocks of variables,
and repeated measurements. CTRL, control group; ICKD, intermediate chronic kidney disease; HD, hemodialysis; KG, kidney graft; DV, living kidney donors. Sharps
indicate the numbering of the tables.

and repeated measurements for HD, KT, and KD is provided
in Figure 1.

Network Principal Component Analysis
Modeling
This type of complex data structure involving multiple groups
of observations and blocks of variables, together with repeated
measures for certain individuals, is not straightforward to
handle efficiently, i.e., without breaking connections between
data matrices linking their rows and/or columns. NetPCA
was performed after unit variance scaling using connection
links between data matrices to define the constraints of the
model. For that purpose, a network incidence matrix was
used to define the topology of the data structure. By these
means, matchings between the same sets of observations (rows),
variables (columns), or both (rows and columns) could be
explicitly included in the optimization process, thus leading to
global components accounting for these links. Circular layout
graphs corresponding to the connections between (A) groups of
observations and (B) blocks of variables are presented in Figure 2.
Using this representation, blocks of data associated with the same
individuals appear clearly (data matrices #1–4 for CTRL and #5–
8 for ICKD), while tensorial substructures generated by repeated
measures during the longitudinal follow-ups form larger clusters
(data matrices #9–16 for HD, #17–28 for KG, and #29–40 for
DV). Moreover, the four subsets of metabolites measured using
the different LC-MS setups were also clearly visible.

FIGURE 2 | Circular layout graphs describing network connections between
(A) groups of samples and (B) blocks of variables. The numbering of the data
matrices corresponds to that given in Figure 1.

A two-component NetPCA model was considered to
investigate the main metabolic variations in the dataset. From
the distribution of the groups on the score plot (Figure 3), it
appeared that the first component, summarizing 27.0% of the
total variability, strongly followed the severity of CKD. The
CTRL and preDV groups of healthy individuals were located
on the left (negative scores), ICKD transitional situation in
the middle, while preHD and preKG patients characterized by
ESRD requiring specific treatment were distributed on the right
(positive scores). This important part of explained variance
is consistent with prior knowledge regarding the massive
kidney dysfunction associated with CKD status characterized by
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FIGURE 3 | NetPCA score plot of the two first global components. CTRL, dark green crosses; ICKD, filled orange triangles; preHD, filled red squares; postHD,
empty red squares; preKG, filled violet diamonds; postKG1, light violet diamonds; postKG2, empty violet diamonds; preDV, filled brown circles; postDV1, light brown
circles; postDV2, empty brown circles.

markedly decreased glomerular filtration. These characteristics
are indeed shared by the preKG and preHD groups with the
most severe kidney damage. It should also be noted that postHD
samples are associated with a return to a situation similar to
ICKD along this first component, compared to the preHD group.
A similar observation can be made by comparing the samples of
the KG group before (preKG) and after (postKG1 and postKG2)
transplantation. As patients seem to recover (at least partially) a
metabolic profile similar to less severe stages of renal disease, this
suggests marked beneficial effects offered by hemodialysis and
graft on many metabolite levels. In addition, kidney donation
does not appear to affect the metabolomic profile of LKD over
the long term, as postDV1 and postDV2 groups of samples
were located close to healthy individuals on the left, with only
slightly higher metabolites levels possibly resulting from reduced
filtration capacity with a single kidney.

Finally, samples from the postHD group, i.e., metabolic
profiles measured after dialytic therapy, are characterized by
negative scores on the second component on which they appear
separated from the other sample groups, revealing thus another
pattern of metabolic profiles that was not observed in the case
of endogenous renal alteration. It is to be noted that the second
component summarized a trend driven only by a subset of
samples with 5.9% of the total variability, thus more specific to
the impact of hemodialysis. The NetPCA score plot of the two
first global components is depicted in Figure 3.

Relative block influences were computed for both
components, thus offering an objective way to evaluate
the relative contributions of each data matrix to the global

decomposition. Prior observations were confirmed, as the first
component was mainly associated with variations from data
blocks related to the preHD and preKG groups, while the second
component summarized the trend associated with postHD
samples. Interestingly, balanced contributions from the four
LC-MS setups could be highlighted, underlining their overall
agreement in terms of biochemical information. Relative blocks
influences are summarized in Table 1.

Metabolite-Centric Analysis
The contributions of the variables to the components (or
loadings) are helpful to investigate the trends associated with
meaningful observations groupings and interpret multivariate
models. Because NetPCA accounts explicitly for multigroup
structures, these influences of the variables can be computed
by taking only specific subsets of observations into account,
i.e., subsets of metabolites associated with a specific renal
status in this case. This provides also an objective basis to
highlight specific differences between two groups, e.g., CTRL
and postHD, by assessing potentially dissimilar patterns of
compounds summarizing the variability of the two metabolic
phenotypes. Based on this information, it is also possible to adopt
another way of interpreting the model through a variable-centric
approach. In this case, the contribution of each metabolite to
the explained variability can be summarized using the different
components of the model. A cumulative contribution for each
component, according to its relative part of variability explained
can be expressed as a percentage of the total variance of the
metabolite. Ranking the variables according to their percentage
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TABLE 1 | Relative block influences for the two first NetPCA components.

NetPCA Component 1 NetPCA Component 2

Group RPLC+ RPLC− aHILIC+ ZICpHILIC− RPLC+ RPLC− aHILIC+ ZICpHILIC−

CTRL 2.6% 2.6% 2.4% 2.3% 1.4% 1.5% 1.0% 1.6%

ICKD 0.3% 0.3% 0.3% 0.1% 0.1% 0.1% 0.1% 0.3%

preHD 13.3% 13.7% 13.1% 15.1% 0.1% 0.1% 0.0% 0.0%

postHD 0.0% 0.1% 0.1% 0.1% 11.2% 12.0% 14.0% 15.7%

preKG 4.6% 6.4% 2.2% 7.6% 2.3% 1.7% 0.7% 3.3%

postKG1 0.8% 0.8% 0.7% 0.4% 3.8% 4.1% 4.2% 4.0%

postKG2 0.5% 0.5% 0.4% 0.4% 3.8% 3.6% 3.5% 4.7%

preDV 0.7% 0.8% 0.7% 0.6% 0.1% 0.1% 0.1% 0.0%

postDV1 0.9% 0.9% 0.9% 0.8% 0.2% 0.2% 0.2% 0.1%

of variance explained for a given component of interest allows a
straightforward extraction of the biological variability of interest.
Explicitly accounting for the data structure provides thus a better
understanding of the role of each variable in the decomposition.
The percentage of explained variance for the 218 metabolites is
summarized in Supplementary Table 1. A threshold of 20% was
applied in order to underline relevant metabolites accounting
for at least this proportion of their total variability on the
different axes. This led to a large subset of 106 compounds
markedly modulated according to disease severity on the first
component, while a smaller pattern composed of 14 metabolites
was associated with the second axis. From these results, it can
be observed that a massive increase of the abundance of a large
number of metabolites is associated with first component. This
general accumulation of blood metabolites is in line with prior
knowledge of the pathology (Zhao, 2013).

Levels of known uremic retention solutes, such as creatinine,
adipate, allantoin, or hippuric acid were observed as positively
correlated with the first component, i.e., levels that were
increased according to disease severity (Boelaert et al.,
2013). Moreover, numerous N-acetyl amino acids were
also in the subset of metabolites with markedly augmented
abundances, including N-acetylmethionine, N-acetyltryptophan,
N-acetylphenylalanine, N-acetylleucine, N-acetylproline,
N-acetyllysine, N-asparagine. These may be the hallmark of
N-acetylation as an altered detoxification mechanism in CKD
(Sekula et al., 2016). Other noticeably increased metabolites
were kynurenic acid, formylmethionine, anthranilic acid,
5’-methylthioadenosine, myo-inositol and indoxyl sulfate.
Tryptophan and guanidinoacetic acid (a precursor of creatine,
creatinine and urea) were characterized by a decrease level
when compared to healthy volunteers with fully efficient kidney
function. Overall, these results were in agreement with previous
studies (Hocher and Adamski, 2017; Kalim and Rhee, 2017).

Additionally, a subset of metabolites was highlighted as
characteristic of the dialyzed patients (postHD), on the second
component, involving various amino acids, such as lysine,
arginine, methionine, proline, threonine, cysteine, valine and
norvaline. Interpretation remains, however, challenging, as
this observation could result from lower overall metabolite
concentration and reduced ion suppression that may increase
signal (Gagnebin et al., 2017). Moreover, HD patients were

under chronic hemodialysis for at least 3 months with standard
three dialysis per week, and this effect could be due to
a cyclic equilibria of metabolite levels, as discussed with
the medical team. An evaluation of the net balance would
require quantitative plasmatic measurements as well as proper
assessment of clearance.

Bioinformatics
In order to go beyond simple lists of potential biomarkers
and propose biological hypotheses, further analysis of metabolic
pathways was carried out using MetExplore (Cottret et al.,
2010). The latter uses biosources, i.e., curated metabolic networks
obtained from genome-scale reconstructions, to offer deeper
insights into metabolic modulations and a better understanding
of potential mechanisms leading to a specific metabolic
phenotype. The Recon3D (Brunk et al., 2018) biosource of
Homo sapiens derived from 2,990 genes was used as the
most accurate reconstruction of the human metabolic network
to date. Recon3D topology includes the cellular localization
of metabolites (e.g., mitochondria, cytoplasm, etc.) but this
description of biological compartments is not relevant for
biological matrices such as plasma. A simplified version of the
network was obtained by removing this information, and a
single node was considered for each metabolite in the case of
multiple occurrences in different compartments. This network
was composed of 109 pathways involving 4,095 metabolites,
5,389 reactions and 3,099 enzymatic complexes. A subset of
134 metabolites were successfully mapped on Recon3D using
MetExplore Metabolite Identifier Matcher module, corresponding
to 61% of the pool of compounds identified in the samples.

Over-Representation Analysis
Potential biomarker metabolites related to the first components
were investigated using over-representation analysis. The latter
aims to highlight pathways the more likely associated with
a subset of metabolites by assessing whether they contain
significantly more differentially expressed compounds than
expected by chance. Because hemodialysis cannot be considered
as a biological process, differences between preHD and postHD
conditions summarized by the second component should indeed
not be associated with specific biological pathways. Therefore,
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FIGURE 4 | Over-representation analysis (–log10 of the right-tailed Fisher test p-value corrected using the Benjamini-Hochberg False Discovery Rate procedure).
The –log10 value of the 5% significance threshold is 1.301.

it was not relevant to further investigate potentially impacted
metabolic pathways.

Metabolite mapping allowed 55 compounds associated
with the first NetPCA component to be localized on the
Recon3D network and over-representation analysis was
therefore performed based on this subset. By these means, two
pathways were reported as over-represented, namely tryptophan
metabolism and nucleotide interconversion. The latter were thus
objectively confirmed as metabolic pathways associated with
CKD with 7 and 6 metabolites present in the subset of potential
biomarkers, respectively. Moreover, urea cycle and purine
catabolism were close to the significance threshold. A summary
of the results of the over-representation analysis is proposed
in Figure 4.

Network Analysis
Investigating metabolic pathways characterizing specific
phenotypes provide valuable information about biological
processes but are, however, limited to offer a global overview of
the metabolism and its potential alterations. As many metabolites
are involved in multiple interconnected pathways, the specificity
of a metabolic signature is often difficult to guarantee. This is
particularly crucial in a case such as CKD, because relevant
phenotypic features of the disease may be spread over several
pathways. As a consequence, it could be challenging to gain an
overall understanding of the molecular events based only on
pathway analysis.

Metabolic networks connecting all the pathways as a
single object constitute therefore a very interesting alternative
strategy. Subnetwork extraction was carried out based on
significantly over-represented metabolic pathways associated
with the first NetPCA component, namely tryptophan metabolism
and nucleotide interconversion. By these means, it was then
possible to highlight hubs, modules and bridges from the
topology of the graph. This was done by investigating paths
between pairs of metabolites, as a sequence of edges (i.e.,
reactions) connecting the starting node to the ending node. Due
to the high number of edges composing a metabolic network,
a very large amount of paths is possible, but by far not all
of them are biologically relevant. Following the parsimony

principle, the shortest path between two compounds might
seem to be a suitable answer to make a choice among this
multiplicity of alternatives. However, in many situations this
solution is biochemically not optimal. Therefore, path search
algorithms have been developed by incorporating biochemical
rules to find the most relevant metabolic routes. Investigating
lightest paths constitutes an efficient strategy, and it was
performed based on the evaluation of the minimal squared
degree sum of the nodes in the path, thus avoiding to give
too much emphasis to uninformative ubiquitous compounds
(Croes et al., 2006).

As a result, the two pathways highlighted as the most
relevant using over-representation analysis, namely tryptophan
metabolism and nucleotide interconversion could be efficiently
displayed and linked in the subnetwork related to the first
NetPCA component. Interestingly, the central role played
by nucleotides and their derivatives could be highlighted,
as metabolic hubs involved in a large number of reactions.
Moreover, the reaction paths between tryptophan, kynurenic
acid and indole-3-acetate are in line with prior studies reporting
the link between renal dysfunction and the enzymatic activity
of indoleamine 2,3-dioxygenase. The latter is responsible
for tryptophan catabolism, the initial molecular event of
the kynurenin pathway (Schefold et al., 2009). A decreased
tryptophan plasmatic level is associated with CKD, while
increased abundances of downstream products such as kynurenic
acid have been reported (Kalim and Rhee, 2017). Related to
these findings, a protein-bound uremic toxin from gut microbial
origin, namely indoxyl sulfate was also highlighted as a metabolite
of tryptophan associated with kidney failure (Niwa et al., 1994).
Alterations in nucleotide interconversion may involve disturbed
purine and pyrimidine metabolism. These have already been
linked to both an increase in the prevalence and progression
of the disease (Sekula et al., 2016; Shen et al., 2016). The
degradation of purine derivatives generates hypoxanthine, which
is further converted to xanthine and finally to uric acid, which
is in accordance with known associations with CKD and uremic
solutes. The subnetwork associated with these two pathways and
the subset of altered metabolites related to the first NetPCA
component is presented in Figure 5.
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FIGURE 5 | Pink pathway: Tryptophan metabolism. Blue pathway: Nucleotide interconversion (purine and pyrimidine metabolism). Metabolites related to the first
NetPCA component and the corresponding subnetwork are shown in bold.

Carbon Transfer Reaction Paths
Investigating the importance of individual nodes in a metabolic
network is often challenging because these parameters are
correlated with high degrees, therefore giving preference to
highly connected pathways in terms of global topological
properties. A node having many connections may therefore
lack specificity in terms of metabolic information and not be
a key determinant for a given process. Ubiquitous compounds
playing an auxiliary role in metabolic reactions, e.g., H2O,

CO2, or NAD, often constitute shortcuts in the graph and
this also includes compounds associated with the nucleotide
interconversion pathway, i.e., AMP, ADP, and ATP, as well as
their deoxy counterparts. As it makes the investigation of local
connectivity and bridges between modules challenging, a list
of such side compounds was excluded from further topological
investigations. Based on this, atom mapping was used for each
reaction to evaluate the transfer between substrate and product
atoms (Rahman et al., 2016), and edges not supporting any
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FIGURE 6 | HCA dendrogram and heatmap of the metabolic fingerprint distance matrix, with the five clusters highlighted as relevant biological modules. The darker,
the shorter reaction path.

carbon atom transfer were removed from the compound graph.
Conversely, those meeting this criterion were further considered
as relevant for topological analysis (Frainay and Jourdan, 2017).
Metabolic modules were then evaluated based on their reaction
path in this graph using a distance matrix computed to
summarize the different reaction paths between the compounds
of the selected metabolic subset. Hierarchical clustering was
then carried out on the distance matrix using complete-linkage
to highlight potential biologically meaningful groupings. This
agglomeration strategy helps to find compact clusters and avoid
the chaining effect that would make the detection of biological
modules more difficult. The HCA dendrogram and heatmap are
presented in Figure 6.

A visual inspection of the dendrogram revealed five main
clusters: (1) a small cluster composed of 3 amino acids of the urea
cycle (N.N-dimethyl-L-arginine, L-citrulline and allantoin), that
was connected with (2) a group of 8 metabolites associated with
creatine metabolism (creatine, creatinine, guanidoacetic acid,
hippuric acid, homovanillic acid, methyl indole-3-acetic acid,
indole-3-acetic acid, 5-methylthioadenosine). It is well-known
that creatinine blood levels reflect glomerular filtration efficiency
and the urea to creatinine ratio can be used to characterize kidney
function impairment (Duarte and Preuss, 1993). It constitutes
therefore a clear positive control biomarker, reinforcing the
biological validity of the findings.

A third cluster (3) composed of 10 metabolites included small
carboxylic acids that could be potentially linked to disorders
of fatty acid oxidation (adipic acid, sebacic acid, suberic acid,

caprylic acid, deoxycarnitine, acetylcholine, choline, citric acid,
ethylmalonic acid, 4-acetamidobutanoic acid) (Kang et al.,
2015). Moreover, carnitine is necessary to transfer fatty acids
for their oxidation in the mitochondria, and it also plays an
important role in acetylcholine metabolism (Hoppel, 2003).
The fourth (4) subset of 5 metabolites involving L-tryptophan,
3-(4-hydroxyphenyl)lactic acid, N-carbamoyl-beta-alanine,
L-aspartate, and 3-methyl-2-oxovaleric acid, could be linked
to aromatic amino acids metabolism and related compounds.
Finally, (5) a cluster of sugar derivatives formed the last group
(myo-inositol, N-acetyl-D-mannosamine, galactitol, D-xylose,
and sucrose). Sugars are associated with the pathogenesis of
diabetic nephropathy, but the underlying mechanisms involved
are still unclear. Detrimental effects of advanced glycation
end products constitute an interesting hypothesis (Dronavalli
et al., 2008), but it remains, however, to be explored to better
understand the progression of CKD. Box-plots of metabolites
with representative alteration patterns from altered pathways are
presented in Figure 7.

DISCUSSION

The association of chemometrics and bioinformatics in a
common workflow was shown to be an effective approach
for the integrative analysis of samples collected from several
groups of patients suffering from multiple stages of CKD
and/or undergoing different treatments. Despite heterogeneous
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FIGURE 7 | Box-plots showing nine metabolites with representative alteration patterns from altered pathways.

sample collection, NetPCA allowed all groups of individuals
to be included in a global model for an overall evaluation of
their metabolic phenotypes. This integrative strategy underlined
similar subsets of compounds describing the beneficial metabolic
effects provided by hemodialysis and kidney graft, but also, for
the first time, to compare the different alteration patterns on
a common scale. The latter could be related to pathological
modifications due to CKD and showed that kidney donors
were only moderately affected by the decline in kidney function
following organ donation. Notably, N-acetylation detoxification
was reported to be altered in CKD, while tryptophan metabolism
and nucleotide interconversion were highlighted using over-
representation analysis. Further investigation using network
reconstruction allowed deeper insights into their link to be
gained. Tryptophan metabolism was already reported as an
altered metabolic route in CKD, with decreased tryptophan
plasmatic concentration and increased levels of downstream
products such as kynurenic acid. Nucleotide interconversion
can be considered as a generic biological process covering both
purine and pyrimidine metabolism, both known to be affected
during CKD. Further information about meaningful metabolic
modules was finally obtained using hierarchical clustering based
on reliable reaction paths. By these means, additional hypotheses
involving creatine metabolism and urea cycle, carnitine and
disorders of fatty acid oxidation, as well as aromatic amino acids
metabolism and sugar derivatives could be drawn.

Although the coverage of some parts of metabolic networks
or chemical families still needs to be improved and/or refined
(e.g., lipids), the current databases already allow a fine assessment
of the interconnectivity of the different metabolic pathways and
their topology. This allows to put into perspective the differences
observed between samples characterizing specific clinical or
experimental situations, and to go further in the biological
interpretation of the regulatory networks governing phenomena
of interest. In addition, the annotation of metabolic networks is
being actively carried out thus offering continuous improvements
to grasp the complexity of the metabolism. With this aim in
sight, the association of chemometrics and bioinformatics in a
common workflow will certainly play a central role in the future
of metabolomics.
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