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Abstract: Multi-person pose estimation has been gaining considerable interest due to its use in
several real-world applications, such as activity recognition, motion capture, and augmented reality.
Although the improvement of the accuracy and speed of multi-person pose estimation techniques
has been recently studied, limitations still exist in balancing these two aspects. In this paper, a novel
knowledge distilled lightweight top-down pose network (KDLPN) is proposed that balances compu-
tational complexity and accuracy. For the first time in multi-person pose estimation, a network that
reduces computational complexity by applying a “Pelee” structure and shuffles pixels in the dense
upsampling convolution layer to reduce the number of channels is presented. Furthermore, to prevent
performance degradation because of the reduced computational complexity, knowledge distillation
is applied to establish the pose estimation network as a teacher network. The method performance
is evaluated on the MSCOCO dataset. Experimental results demonstrate that our KDLPN network
significantly reduces 95% of the parameters required by state-of-the-art methods with minimal
performance degradation. Moreover, our method is compared with other pose estimation methods to
substantiate the importance of computational complexity reduction and its effectiveness.

Keywords: pose estimation; convolutional neural network; lightweight; knowledge distillation

1. Introduction

The demand for human pose estimation has increased over time as it is essential
for detecting human behaviors and for numerous applications such as human-computer
interaction [1], human action recognition [2], and human performance analysis [3]. Previ-
ously, human pose estimation has been studied as a close-up technique requiring a balance
between accuracy and low computational complexity. Traditional approaches such as his-
togram of oriented gradient (HOG) [4] and Edgelet [5] extract discriminative features from
images and assign a class to the feature vector. However, they cannot adequately determine
the accurate location of body parts in a human figure [6].

Recent advances in convolutional neural networks (CNNs) that enable robust feature
extraction have afforded significant improvements in pose estimation. Therefore, owing
to the feature extraction capabilities of CNNs, the research paradigm of human pose
estimation shifted from classic approaches to deep learning [7–9]. Two main approaches,
i.e., bottom-up and top-down approaches, of deep-learning-based methods, have been
employed to overcome the limitations of handcrafting-based methods during the transition.

Bottom-up approaches [10–16] first detect human body poses and then group them
using clustering algorithms. Compared to top-down approaches, they are faster in testing
and thus require lower computational complexities during model building. However, the
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bottom-up approaches are unable to amplify the details of each person, and subsequently,
they yield lower accuracies than top-down approaches.

In contrast, the keypoint prediction process in top-down approaches is a two-step
operation. Generally, top-down approaches [17–23] first detect all the people in an image
and crop the person region and then input the cropped image into a single-person pose
estimation model. Due to the two-step operation, they yield better results than bottom-
up approaches. To accurately estimate the keypoints of people in an image, top-down
approaches construct network layers deeper than bottom-up approaches. However, top-
down approaches are unable to solve the speed degradation issue that arises when deeply
constructing network layers for estimating keypoints.

Most previous multi-person estimation methods require high computational com-
plexity to accurately estimate the keypoints of people in an image. Additionally, to guar-
antee accuracy, the network layers need to be deeply designed, which decreases the es-
timation speed. Due to these limitations, the accuracy and speed need to be balanced in
multi-person estimations.

In this paper, we present a lightweight top-down human pose estimation network
that uses a knowledge distillation method to overcome the balance limitations. Inspired
by PeleeNet [24], we propose knowledge distilled lightweight top-down pose network
(KDLPN), a network that minimizes computational complexity while shuffling the pixels in
the decoder previously introduced in the dense upsampling convolution (DUC) layer [25]
to reduce the number of channels.

To effectively and efficiently resolve the performance degradation occurring in the
lightweight networks, the knowledge distillation approach [26] is applied in our model. To
satisfy the complexity and performance requirements of deploying state-of-the-art deep
neural models in our proposed system, compact and fast models are trained by transferring
knowledge from extremely deep and powerful teacher models. Additionally, experiments
are conducted on the MSCOCO dataset [27], a widely-used human pose estimation dataset
to verify the model effectiveness, and the balance between the estimation accuracy and the
speed of our approach is demonstrated.

The remainder of this paper is organized as follows. Section 2 presents a review of
the related work. In Section 3, the proposed two-dimensional (2D) human pose estimation
model is presented and the features of each part are formulated. Sections 3.1 and 3.2 discuss
the study motivations. Section 3.3 describes the building of a lightweight 2D human pose
estimation network and replacement of the decoder to reduce complexity. In Section 3.4,
to prevent performance degradation, the proposed method is adopted for knowledge
distillation in training. Section 4 presents the simulation results and discussion on the
MSCOCO dataset. Finally, Section 4.5 presents the conclusions.

2. Related Work
2.1. Multi-Person Pose Estimation

Recently, multi-person pose estimation has drawn increasing attention because of its
applicability in real-life applications, such as postural correction [28], action recognition [29],
and health care [30]. Multi-person pose estimation using neural networks can be deter-
mined via two main approaches. The first is the bottom-up approaches that obtain all
the pose keypoints in input images and assemble them as distinct people using methods
such as part affinity field (PAF) [11]. The other is the top-down approaches that employ
human detection to obtain bounding boxes and input the cropped image batch to the pose
estimation neural network.

Bottom-up approach: Bottom-up pose estimation methods [10–16] detect the identity-
free human joints of all people within an image and assemble the joints using an algorithm.
While traditional multi-person pose estimation models focus on human structural char-
acteristics, contemporary models focus more on measuring the body itself by adopting
strong CNN models.



Sensors 2021, 21, 7640 3 of 18

To accurately estimate multi-person poses, DeepCut [12] proposed the derivation
of a joint detection and pose estimation formulation that was casted as an integer linear
program problem and a new formulation that was casted as a joint subset partitioning
and labeling problem. Further, DeeperCut [13], an improved DeepCut employs a residual
network (ResNet) [31] to extract more robust body parts representations. Moreover, it
adopts image-conditioned pairwise terms to achieve better performance. Next, Associative
Embedding [14] detects heatmaps with pixelwise embedding and groups the keypoint
candidates by comparing the distance between the embeddings to generate the result. To
improve the estimation accuracy, Openpose [11] employed PAFs to learn to associate body
parts with individuals in an image. Openpose obtains a heatmap around the grouped joints
of people using a multi-stage CNN (initialized by the first ten layers of VGG-19 [32]) and
fine-tunes and then yields multi-person poses using PAFs (Figure 1a).

Current bottom-up pose estimation approaches have high estimation speeds, and
can be implemented in mobile devices without additional human detection networks.
However, their performances are significantly affected by complex backgrounds and human
outer walls.

Figure 1. Human Pose Estimation algorithm. Column (a): The example of a bottom-up approach.
Column (b): The example of a top-down approach.

Top-down approach: Top-down approaches [17–23] employ a two-step process to
estimate pose keypoints. They first detect all the people within an image using object
detection. Then, each cropped image is processed into a single-person pose estimation
network model. A Cascaded Pyramid Network (CPN) [20] has been proposed to robustly
detect “hard” keypoints and divide keypoints into simple levels. CPN comprises a pyramid
architecture as the backbone network, including GlobalNet and RefineNet. In RefineNet,
CPN selects the hard keypoints online based on the training L2 loss. George et al. [19]
predicted heatmaps and offsets using a fully convolutional ResNet and a faster RCNN
detector to detect bounding boxes, and they then predicted the final location output using
the heatmaps, offsets, and keypoint-based non maximum suppression. Regional multi-
person pose estimation (RMPE) [17] comprises a human detection model and a skeleton
registration model [33–37] for estimating the multi-person poses in the image. The detected
single human bounding boxes in batches from the detection model are input into the
skeleton registration model to detect the skeleton keypoints (Figure 1b).
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To utilize the characteristics of the superior performance of top-down approaches and
overcome its shortcomings, we propose a lightweight top-down pose estimation approach
to improve computational efficiency while improving the performance.

2.2. Lightweight Neural Network

The effectiveness of neural networks has significantly improved the performance
of applications that use various memory locations and operations. However, computing
power and memory have not kept up with the development of neural networks. Conse-
quently, lightweight networks with low computational complexity have been proposed to
meet the demand for mobile devices.

MobileNets [38–40] proposed the construction of a lightweight model that can run on
mobile devices by minimizing the number of network parameters. It minimizes the overall
computation using a depth-wise convolution to convert each channel into its respective
kernel and by applying a 1× 1 convolution to change the output channel to pointwise
convolution. MobileNetsV3 [40] proposed the platform-aware network architecture search
method, which automatically optimizes each network block. It utilizes a module based on
squeeze and excitation in the bottleneck structure to minimize the network parameters
while improving the performance. PeleeNet [24] is a network model that performs various
tunings based on DenseNet [41] for mobile devices. It utilizes the architecture of DenseNet
that concatenates the feature map of the layers. Additionally, it uses stemblock and two-way
dense layers to reduce the computational cost and adopts a structure with varying number
of layers on each stage. The computational complexity of PeleeNet is significantly low,
which allows its operation in mobile devices. It affords better accuracy and over 1.8 times
faster speed than MobileNet and MobileNetV2 on the ImageNet ILSVRC 2012 dataset [42].

2.3. Knowledge Distillation

Deep learning models are basically wide and deep; thus, feature extension works
efficiently if the number of parameters and operations are high. Subsequently, the object
classification or detection performance, which is the purpose of the model, is improved.
However, deep learning cannot be configured using large and deep networks owing to
device limitations, such as computing resources (CPU and GPU) and memory. There-
fore, considering these device environments, a deep learning model with a small size
and improved performance is required. This demand has led to the development of vari-
ous algorithms that can afford similar performance to large networks, and among them,
knowledge distillation is attracting immense attention [26,43].

Knowledge distillation is the information transfer between different neural networks
with distinct capacities. Bucilua et al. [44] were the first to propose model compression
to use the information from a large model for the training of a small model without a
substantial drop in accuracy. This is mainly based on the idea that student models reflect
teacher models and afford similar performances. Hinton et al. [43] employed a well-trained
large and complex network to help train a small network. Yim et al. [45] compared an
original network and a network trained using the original network, as a teacher network.
They determined that the student network that learned the distilled knowledge is optimized
much quicker than the original model, and it outperforms the original network.

This is because the teacher model provides extra supervision in the form of class
probabilities, feature representations [46,47], or an inter-layer flow. Recently, this principle
has also been applied to accelerate the model training process of large-scale distributed
neural networks and transfer knowledge between multiple layers [48] or between multiple
training states [49]. In addition to the conventional two-stage training-based offline distilla-
tion, one-stage online knowledge distillation has been attempted, and advantageously, it
provides more efficient optimization and learning. Furthermore, knowledge distillation
has been used to distil easy-to-train large networks into harder-to-train small networks.
Alashkar et al. [50] presented a makeup recommendation and synthesis system wherein
the makeup art domain knowledge and makeup expert experience are both incorporated



Sensors 2021, 21, 7640 5 of 18

into a neural network to boost the performance of the makeup recommendation. Although
knowledge distillation in deep neural networks has been successfully applied to solve the
problems of visual relationship detection, sentence sentiment analysis and name entity
recognition, its application in the fashion domain has been limited.

In this work, we adopt a knowledge distillation method to advantageously employ
the complex teacher network knowledge to guide lightweight neural models.

3. Proposed Method
3.1. Overview

In this section, we propose a lightweight multi-person pose estimation network using
a top-down-based approach. The top-down method basically comprises a detector, which
detects people, and a single-person pose estimation (SPPE), which predicts a single pose
from the detected person. Although the speed reduces based on the number of people in
the top-down approach compared to the bottom-up approach, the top-down approach
affords better performance. Moreover, the speed problem can be alleviated by minimiz-
ing the number of network parameters. As several fast and accurate approaches [33–37]
exist for human detection, we mainly focus on making the SPPE of the pose estimation
model lightweight.

SPPE comprises an encoder model, which extracts features from the detected person
as input, and a decoder model, which acquires the heatmap to the keypoints of that person
by upsampling from the extracted features. As shown in Figure 2, we changed the encoder
model to the proposed optimal lightweight model. Concurrently, we reduced the number
of parameters by applying a new structure to the upsampling layer of the decoder model.
To avoid the performance degradation when reducing the number of parameters, we
employed knowledge distillation using a teacher network with high performance.

Figure 2. Overall lightweight human pose estimation network.

In the next section, we present the overview of our method. Then, we illustrate
the lightweight network corresponding to the top-down-based SPPE in Section 3.2 and
the decoder of the lightweight network in Section 3.3. Finally, we present the knowl-
edge distillation method that can minimize the performance reduction associated with
lightweightedness in Section 3.4.
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3.2. Preliminary Processing

Human pose estimation aims to localize the body joints of all the detected people in a
given image. In the top-down mode, the detector first yields the bounding box of detection
information about people in images.

We use YOLOV3 [37] to quickly and efficiently detect people. The detected images
are passed through a spatial transformer network [51], which is a parametric network
that automatically selects areas of interest and appears prior to the SPPE input, and the
detected information about the human region is converted into high quality information
of the same size. Then, using the converted detection information, the SPPE extracts the
heatmap, which represents the location information of the human body joints. The original
resolution and size of the extracted heatmap (H) is determined by the inverse conversion of
the spatial de-transformer network. Finally, we estimate the posture of every person in the
image by connecting the body joints based on the heat maps extracted from each person.

3.3. Network Architecture
3.3.1. Lightweight Network Encoder

Top-down methods, which detect people from images and estimate poses from within
bounding boxes, are more accurate than bottom-up methods, which estimate all the key-
points in an image and correlate them. However, disadvantageously, in top-down methods,
the detected bounding boxes need to be cropped and the estimation speed reduces if
multiple people are present in the images.

Although many studies have been conducted on top-down methods [17–23], the limi-
tations of heavy and slow models have not yet been overcome. As a representative example,
Alpha-pose based on RMPE [17,18] utilizes a very heavy encoder structure with SE-ResNet.
Therefore, after conducting multiple experiments to determine a suitable encoder structure
that lightens the multi-person pose estimation network, we selected PeleeNet as the op-
timal encoder structure. PeleeNet is a lightweight model of DenseNet [41] and has been
widely used as a feature extractor that reduces the size of the input image by four times the
width and length, which makes the entire architecture cost-effective. Additionally, it can
increase the feature expression ability with a small amount of computation. Moreover, to
obtain the receptive fields at various scales, PeleeNet utilizes a two-way dense layer, where
DenseNet only comprises a combination of 1 × 1 convolution and a 3 × 3 convolutions in
the bottleneck layer. Instead of a depth-wise convolution layer, it utilizes a simple convo-
lution layer to improve its implementation efficiency. Owing to its efficient methods and
small number of calculations, its speed and performance are superior to those of typical
methods, such as MobileNetV1 [38], V2 [39], and ShuffleNet [52]. Furthermore, because of
its simple convolution, the use of additional techniques could likely afford a much more
efficient detector. Various types of network decoders can be added via simple convolutions
of the encoder while applying various training methods.

3.3.2. Lightweight Network Decoder

To speed up the computation in the decoder, we designed a novel network structure
using the DUC proposed in Figure 3. Table 1 summarizes the structure of the entire decoder
comprising the proposed DUC layer. The DUC layer contains pixel shuffle operations,
which increase the resolution and reduce the number of channels, and 3 × 3 convolution
operations. When the input feature map is set to (H) × width (W) × channel (C), pixel
shuffle reduces the number of channels to C/d2 and increases the resolution to dH × dW as
shown in Figure 3. Here, d denotes the upsampling coefficient and is set as 2, i.e., the same
as that in the standard deconvolution-based upsampling method. This helps substantially
reduce the number of parameters to C/d2 during upsampling. The feature that reduces the
channel to C/d2 size using the pixel shuffle layer again expands the number of channels to
C/d through the convolution layer. This minimizes performance degradation by embedding
the same amount of information into the feature as that before the reduction of the number
of input channels. The entire decoder structure includes three DUC layers and outputs
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heatmaps showing the positions of each keypoint in the last layer. The proposed decoder
network substantially reduces the number of parameters and speeds up the computation
compared to the standard deconvolution-based decoder.

Figure 3. Specifications of the decoder of our proposed algorithm. (a): Block diagram of proposed algorithm. (b): The
process of decoding. (c): The example operation of PixelShuffle.

Table 1. Decoder architecture.

Stage Layer Output Shape

Input 12× 8× 704

DUC Stage 0

PixelShuffle PixelShuffle 24× 16× 176

Convolutional Block
conv2d 3× 3

24× 16× 352BatchNorm2d
ReLU

DUC Stage 1

PixelShuffle PixelShuffle 48× 32× 88

Convolutional Block
conv2d 3× 3

48× 32× 176BatchNorm2d
ReLU

DUC Stage 2
PixelShuffle PixelShuffle 96× 64× 44

Convolutional layer conv2d 3× 3 96× 64× 17

3.4. Knowledge Distillation Method

Accuracy and speed must both be considered in multi-person pose estimation. How-
ever, most existing methods only focus on accuracy and thus consume considerable com-
puting resources and memory. However, lightweight networks exhibit performance degra-
dation because of the reduced computing resources.

To overcome these shortcomings, we applied knowledge distillation to alleviate the
performance degradation of the lightweight multi-person pose estimation network.

(1). We trained a large pose model of the teacher network. Then, we selected SE-
ResNet-101 as the teacher network because it utilizes squeeze-and-excitation blocks to
perform channel-wise feature extraction.

(2). Thereafter, we trained a target student model using the knowledge learned by the
teacher model. The training model is capable of handling wrong pose joint annotations,
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e.g., when the pretrained teacher predicts more accurate joints than the manually assigned
wrong and missing labels.

As stated by [26], knowledge distillation mainly aims to designs an appropriate
mimicry loss function that can effectively extract a teachers’ knowledge and transfer it
to student model training. The previous distillation functions were designed for single-
label based softmax cross-entropy loss in the context of object categorization and are thus
unsuitable for transferring the structured pose knowledge in a 2D image space.

To address this problem, we employed a joint confidence map dedicated pose distilla-
tion loss function, as given below:

Ltotal = αKD(
1
N

N

∑
n=0

(mn
S −mn

GT)
2
) + (1− αKD)(

1
N

N

∑
n=0

(mn
S −mn

T)2) (1)

Here, αKD is the knowledge distillation balancing parameter. Additionally, N denotes
the number of joints, and mn

S, mn
T , and mn

GT denote the heatmaps for the n-th joint
predicted by the in-training student target model, pretrained teacher model, and corre-
sponding ground truth of the prediction, respectively. Then, to maximize the comparability
with the pose supervised learning loss, we set the mean squared error as the distillation
quantity to measure the divergence between the estimation and its label. By employing
these knowledge distillation techniques, learning was performed using superior and com-
plex networks rather than the existing ground truth alone, which boosted the performance
of lightweight networks to match that of the superior networks.

4. Experiments and Results
4.1. Dataset and Evaluation Matrix

We used the MSCOCO dataset [27] to train and evaluate our method. The dataset
comprises more than 200 k images including 250 k person instances with 17 keypoints per
instance. We trained our method on the training set of the MSCOCO dataset, comprising
56 k images including 150 k person instances. We used the official evaluation metric of
the MSCOCO keypoints challenge dataset, i.e., average precision (AP) based on object
keypoint similarity (OKS). OKS is a measure of how close a predicted keypoint is to the
ground truth, and is defined as follows:

OKS =
∑i exp(−d2

i /2s2k2
i )δ(vi > 0)

∑i δ(vi > 0)
, (2)

where di is the Euclidean distance between a detected keypoint and its corresponding
ground truth, vi is the visibility flag of the ground truth, s is the object scale, and ki is a
per-keypoint constant that controls fall off. We report the standard AP and recall scores
from MSCOCO dataset: AP50 (AP at OKS = 0.50), AP75, AP (the mean of AP scores at OKS
= 0.50, 0.55, . . . , 0.90, and 0.95), APM for medium objects, APL for large objects, and AR
(the mean of recalls at OKS = 0.50, 0.55, . . . , 0.90 and 0.95).

4.2. Training Details

A YOLOV3 detector that was pretrained on the MSCOCO dataset was utilized to
detect humans in images. Each detected image was resized to 384× 256 and was randomly
flipped horizontally to augment the data. PeleeNet was used as the encoder of the proposed
method, and it was pretrained using ImageNet. The model was trained for 120 epochs, and
the initial learning rate was set to 0.0001, which decreased by 10% at both the 60th and 90th
epochs. Then, the model was optimized using an Adam optimizer [53] and the batch size
was set as 8. An SE-ResNet-based RMPE that was pretrained on the MSCOCO dataset was
used as the teacher network, and the knowledge distillation parameter alpha was set as 0.8.
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4.3. Ablation Study
4.3.1. Lightweight Network Structure

Additional experiments were conducted to evaluate the effectiveness of employing
PeleeNet as the backbone for human pose estimation. The number of parameters (M) and
FLOPS (G) and AP were measured using various encode models and compared PeleeNet,
the encoder of our model, was compared with popular lightweight networks such as
MobileNetV1, V2, and V3 [38–40], ShuffleNetV2 [54], MnasNet [55], and Hourglass [56]
with 1, 2, and 4 stacks. The knowledge distillation parameter αKD was set as 0.8. The results
are summarized in Table 2.

Table 2. Results for the MSCOCO validation sets in a lightweight network with αKD = 0.8.

Encoder AP AP50 AP75 APM APL Param (M) FLOPS (G)

Hourglass (4-stack) 64.8 82.1 71.3 60.6 71.6 26.0 46.6
Hourglass (2-stack) 62.6 81.1 69.0 58.2 69.4 13.5 23.3
Hourglass (1-stack) 55.4 78.8 60.9 51.0 62.4 7.17 11.7
ShufflenetV2 [54] 52.5 76.9 57.5 48.2 59.1 2.73 1.26
MobileNetV3 [40] 60.8 81.1 67.9 56.2 68.0 3.94 1.36
MobileNetV2 [39] 56.1 79.0 62.0 52.1 63.0 4.54 2.12
MobileNetV1 [38] 54.8 77.9 59.9 50.1 61.7 4.69 2.11
MnasNet [55] 57.7 79.4 63.8 53.9 64.5 5.42 2.14

PeleeNet 61.9 82.0 68.5 57.6 68.7 2.80 1.49

As shown in Table 2, from the perspective of AP, PeleeNet affords better performance
than the other encoders. Moreover, PeleeNet achieves significantly better accuracy and
lower complexity than MobileNetV1, V2, and V3 and MnasNet. Compared to ShuffleNetV2,
PeleeNet exhibits better AP by 7.1. Although models with Hourglass with 2 stacks and
Hourglass with 4 stacks exhibited better accuracy than our KDLPN, the number of their
network parameters was significantly higher. The table also shows that when PeleeNet
is used as the encoder, stable performance can be obtained even with a small number of
parameters. Figure 4 shows a schematic diagram of Table 2.

2 2.5 3 3.5 4 4.5 5 5.5 6

Param (M)

50

52

54

56

58

60

62

64

66

A
P

: ShuffleNetV2

: MobileNetV3

: MobileNetV2

: MobileNetV1

: MnasNet

: PeleePose

Figure 4. Comparison of the parameters and accuracies of lightweight networks for MSCOCO
validation Sets.
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4.3.2. Decoder Structure

To select the best decoder for KDLPN, we performed experiments to evaluate the
performance of decoder approaches using the knowledge distillation method with overall
loss alpha αKD = 0.8. In comparison, we also attempted to implement a three-step de-
convolution layer decoder. For the three-step deconvolution layer decoder, experiments
were performed by changing the number of channels from 352 to 44 for each decoder layer
condition. To evaluate the accuracy and efficiency, Table 3 shows comparison of the number
of parameters in the networks.

In Table 3, the parameters in the proposed decoder are reduced as compared to the
parameters of the deconvolution decoder. From the computational complexity perspective,
KDLPN with DUC exhibits the best performance. It uses only 38% of the parameters but
affords a competitive performance to the deconvolution decoder with an AP difference of
1.5. The parameter and FLOPS of this decoder model were reduced to nearly seven and ten
times that of deconvolution decoder, respectively, with competitive performance.

Table 3. Comparison of the network parameters with αKD = 0.8.

Encoder Decoder Decoder Decoder APParam (M) FLOPS (G)

PeleeNet

Deconv (512 512 512) 14.11 34.49 62.8
Deconv (256 256 256) 4.98 9.19 63.5
Deconv (128 128 128) 1.98 2.58 62.8
Deconv (64 64 64) 0.86 0.79 43.3
Half-step deconv 5.21 4.58 63.4
Ours 0.71 0.47 61.9

To demonstrate the effectiveness of our method, we performed various experiments
such as simplifying the number of channels, and simply reducing the parameters of the
proposed DUC model, and measured the corresponding performance and complexity.
First, we constructed a baseline model by combining the encoder of the PeleeNet and
a decoder comprising three deconvolution layers. Then the number of deconvolution
channels in the lightweight model was modified from (256, 256, 256) (baseline model) to
(512, 512, 512), (128, 128, 128), (64, 64, 64) and half-step channel. The half-step channel has
the same output channel size as the DUC decoder model proposed as (176, 88, 44). The
resultant performance, memory size, and FLOPS obtained by lightweighting the model in
the aforementioned manner are presented in Table 3. In the experiment on reducing the
number of channels, highest performance was afforded when the output channel size was
reduced and modified to (256, 256, 256). Models with reduced output channel size of (128,
128, 128) and (64, 64, 64) exhibited performance degradation of 1.1% and 31.8%, respectively.
The performance of the proposed DUC layer reduced by 2% on average compared to the
existing model; however, the FLOPS and memory size considerably reduced to 85.4% and
60.5%, respectively, compared to those of the baseline model with the output channel size
of (256, 256, 256). Moreover, compared to the model with the smallest output channel size
of (64, 64, 64), FLOPS and memory size decreased further to 41.0% and 17.2%, respectively.
Moreover, in comparison with the half-step deconv model with the same channel standard
as the DUC decoder, FLOPS and memory size decreased to 86.4% and 89.7%, respectively.
This indicates that the proposed DUC method is more efficient in lightweighting than
the simple reduction of the number of channels. Considering the computational cost and
performance of these methods presented in Table 3, KDLPN with DUC is the optimal
model that can balance accuracy and efficient performance.

4.3.3. Knowledge Distillation Method

To demonstrate and optimize the effect of the knowledge distillation (Section 3.4) on
the proposed network, experiments were performed on the proposed model with respect
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to αKD. Table 4 shows the results of the experiments with varying αKD using the teacher
network. The table also shows the APs for each overall function αKD in the same backbone
network and DUC decoder. The αKD values were varied from 0.3 to 1.0 for each dataset.
The knowledge distillation method afforded better performances across all intervals than
the PeleeNet network with DUC (57.4 AP). Furthermore, αKD = 0.8 afforded the best
performance in this experiment; thus, we selected αKD = 0.8 for model training.

Table 4. Comparison of experiments on knowledge distillation.

Encoder Decoder αKD AP

PeleeNet DUC

0.3 59.6
0.4 59.6
0.5 60.4
0.6 60.6
0.7 61.5
0.8 61.9
0.9 61.6
1.0 60.9

During training through knowledge distillation, the knowledge of a teacher network
can be advantageously learned, which is relatively accessible compared to the ground
truth, which is difficult to learn. Accordingly, we first prepared a large and deep pretrained
network using the teacher network and then trained a student network to apply knowledge
distillation using the teacher network. If the teacher and student networks are simulta-
neously trained, the performance decreases since the teacher network is not converged.
Similarly, when training a teacher network that has already converged, the test performance
of the student network deteriorates as the optimally trained teacher network is overfitted to
the training set. Regarding the above case, we conducted additional experiments, and the
graph below displays the performance comparison between the model where the teacher
and student network are simultaneously trained and the original training scheme. As
shown in Figure 5, the performance of the simultaneously trained model, indicated in
orange color, is decreased than that of the existing model, indicated in blue color. The
reason why the performance difference between the two experiments is small is that both
models used the same pretrained teacher model. However, since the teacher model is
already pretrained, it can be overfitted to the training set during simultaneous learning,
and the performance may degrade due to the probability of deviating from the optimal
point. For this reason, the proposed original training scheme shows higher performance.

Figure 5. A graph comparing performance according to epoch of simultaneous training method and
existing training method on MSCOCO validation dataset.
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4.4. Results and Analysis
4.4.1. Overall Results

We compared our methods to other current state-of-the-art top-down-based human
pose estimation methods such as RMPE, Mask-RCNN [57], and G-RMI [19]. For fair
comparison, we used the same human detector for the top-down approach, to evaluate the
pose estimation network performance of these methods based on a uniform criterion.

To further clarify the effectiveness of our scheme, we conducted additional experi-
ments and modified only for the top-down algorithms using the same approach as the
proposed method and fairly and accurately compared the amount of parameters. Table 5
below illustrates the validation results comparison of AP values, total parameters used,
and FLOPS values. Our proposed model exhibits similar performance as the existing
top-down-approach-based pose estimation networks and requires very few parameters in
comparison as shown in Figure 6. We achieved an AP of 61.9 with only 2.80 M parame-
ters and 1.49 FLOPS. Particularly, the amount of parameter used can be reduced by 90%
compared to G-RMI with significantly lower computational complexity.

0 5 10 15 20 25 30 35 40 45 50
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0

10

20

30

40

50

60

70
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: RMPE

: 8-stack Hourglass

: G-RMI

: Ours (DUC)

Figure 6. Parameter and accuracy comparison of top-down pose networks.

Table 5. Validation results comparison of AP values, total parameters used, and FLOPS values on
MSCOCO dataset Params and FLOPS are calculated for the pose estimation network, and those for
human detection and keypoint grouping are not included.

Method Encoder Decoder AP Param
(M)

FLOPS
(G)

RMPE 4-stack hourglass Deconv 62.3 14.8 -
8-Stage Hourglass Hourglass (dev) 66.9 25.6 26.2
G-RMI ResNet-101 (dev) 65.8 42.6 57.0

Ours PeleeNet DUC 61.9 2.80 1.49

We further conducted experiments on the MPII dataset [58] to demonstrate the gener-
alization of our model. The MPII dataset is a popular open dataset on human pose that
contains 25 k images with over 40 k people with annotated pose points acquired from
YouTube. We conducted knowledge distillation learning on the same teacher network and
validated the performance for 16 keypoints that are different from the MSCOCO dataset.
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Table 6 describes the performance results of the experiment conducted on the MPII dataset.
As illustrated in the table, the proposed method affords a mean of 86.9 (mean@0.5) via
PCKh evaluation. We achieved a PCKh of 86.9 with 2.80 M parameters and 1.48 FLOPS.
Compared to DU-Net (8), our model performed better 2.2 PCKh, and memory size de-
creased further to 64.6%, respectively. Moreover, in comparison with a state-of-the-art
algorithm, our model achieved a balance between complexity and accuracy. Thus, the
proposed pose network affords better performance than other methods.

Table 6. Comparison results on the MPII validation dataset (PCKh@0.5).

Method PCKh(@0.5) Param (M) FLOPS (G)

DU-Net (8) [59] 84.7 7.90 -
Tang et al. [60] 87.5 15.5 33.6
Yang et al. [61] 88.5 7.30 16.2
Bulat et al. [61] 89.5 8.50 9.9
EfficientPoseIV [62] 89.75 6.56 72.9

Ours 86.9 2.8 1.48

Figure 7 illustrates the effectiveness of applying knowledge distillation to our method.
Figure 7b–d display the pose heat map visualizations of the input image (a). (1) to (4) of
Figure 7, the proposed algorithm is close to the ground-truth according to the teaching
network for the moving and standing sequences. (6) of Figure 7 shows the example results
when a person is occluded by an object. In fact, the ground-truth heatmap has missing
keypoint labels due to occlusion object, but the teacher model identifies the missing ground-
truth keypoint labels. Accordingly, the teacher model labels extra poses that assists the
student network to learn as shown in 5, 6 (b) of Figure 7. Figure 8 visualizes the example
image results from the validation set of the MSCOCO dataset. Therefore, our method
achieved robust and stabilized pose estimation, even for difficult cases when joints are
occluded by objects.

4.4.2. Discussions

We focused on introducing an approach to address the imbalance between perfor-
mance and computational complexity, which is a fundamental problem of pose estimation.
We introduced a method that reduces complexity using a fast lightweight network with
few parameters and that compensates for the insufficient performance using the knowl-
edge distillation method. Our proposed approach does not require the designing of a new
network to ensure performance or speed. Furthermore, our approach is not limited to the
network capacity of the network, as well as it advantageously complements performance
by combining networks in various ways.

The proposed model has a limitation: its performance is relatively lower than that of
existing deep and heavy networks such as [17–23]. However, our lightweighting scheme
has demonstrated that its performance is high even when the resources are limited, such as
low memory and computing power. Furthermore, a highly efficient learning method using
the DUC layer is expected for pose estimation in mobile devices or embedded devices
requiring low memory size with real time.
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Figure 7. Pose estimation results of our model on the MSCOCO validation set. Column (a): The input images. Column (b):
the keypoint heatmaps of Propoesd algorithm. Column (c): the keypoint heatmaps by the teacher model. Column (d): the
ground-truth keypoint heatmaps. Row (1,2): Moving sequence on MSCOCO dataset. Row (3,4): Standing sequence on the
MSCOCO dataset. Row (5,6): Body sequence hidden by objects in the MSCOCO dataset.

4.5. Conclusions

In this paper, we propose a new lightweight top-down multi-person pose estimation
approach. The main challenge of a top-down approach is the achievement of a balance
between the complexity and accuracy. Traditional top-down pose estimation approaches
afford high performances, but the high complexity and high computing load make them
time consuming. To resolve this dilemma, we introduced KDLPN, which operates efficiently
and has low computational complexity. Moreover, the pixel shuffling operation in the
decoder allows the reduction of the number of parameters. We applied the knowledge
distillation method to prevent performance degradation and improve accuracy. Overall, our
proposed algorithm achieved a balance between complexity and accuracy, as demonstrated
by the qualitative and quantitative evaluation on the MSCOCO and MPII datasets.



Sensors 2021, 21, 7640 15 of 18

Figure 8. Qualitative results of our model in MSCOCO. Column (a): Images that contain single person. Column (b): Images
that contain two people. Column (c): Images that contain three & four people. Column (d): Images of group of people.
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