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Critical transitions in a game theoretic
model of tumour metabolism

Ardeshir Kianercy, Robert Veltri and Kenneth J. Pienta

Brady Urological Institute, Johns Hopkins Hospital, Baltimore, MD 21287, USA

Tumour proliferation is promoted by an intratumoral metabolic symbiosis in

which lactate from stromal cells fuels energy generation in the oxygenated

domain of the tumour. Furthermore, empirical data show that tumour cells

adopt an intermediate metabolic state between lactate respiration and

glycolysis. This study models the metabolic symbiosis in the tumour through

the formalism of evolutionary game theory. Our game model of metabolic

symbiosis in cancer considers two types of tumour cells, hypoxic and oxyge-

nated, while glucose and lactate are considered as the two main sources of

energy within the tumour. The model confirms the presence of multiple inter-

mediate stable states and hybrid energy strategies in the tumour. It predicts

that nonlinear interaction between two subpopulations leads to tumour meta-

bolic critical transitions and that tumours can obtain different intermediate

states between glycolysis and respiration which can be regulated by the geno-

mic mutation rate. The model can apply in the epithelial–stromal metabolic

decoupling therapy.

1. Introduction
Tumours are ecosystems that consist of different phenotypic cell populations.

Metabolic dynamics within a tumour build on these population interactions

[1–5]. Tumour cells reprogramme their metabolism and cooperate with each

other to meet the challenge of uncontrolled proliferation. Empirical observations

show that cancer cells and stromal fibroblasts dynamically co-evolve and become

metabolically coupled [6]. The co-evolving dynamics of this metabolic symbiosis

is the subject of this study.

Tumour cells alter their metabolic patterns compared with those of normal

cells and use both glycolysis and respiration [7]. This dynamic alteration in

tumour metabolism is regulated by intracellular mechanisms such as oncogenes,

tumour suppressor genes [7,8] and the genomic instability rate [9].

Furthermore, it has been suggested that separating intracellular pathways and

intercellular interaction fails to capture a realistic pattern of tumour metabolism.

Indeed, in most tumours both the cancer-producing pathways (e.g. p53, AKT,

NFkB, C-MYC and mTOR) and intercellular communication network evolve in

tandem. However, intercellular signalling such as lactate secretion in some

tumour microenvironments still needs more careful study and thus has attracted

significant interest in recent years [6,10–14]. Our game-driven model looks at

intercellular lactate-shuttle interaction between epithelial cancer cells and stromal

fibroblast cells and proposes an evolving tumour ecosystem based on the notion

of interacting adaptive cells.

Adenosine triphosphate (ATP) production pathways have been a subject of

game theoretical approaches [15–18], and cooperation in tumour metabolism can

be put in the framework of game theory [5,19,20]. Here, we extend these previous

studies by providing a model which is based on collective evolution of adapting

tumour cells while the selection pressure is regulated by both the amounts of

available energy (ATP) and the degree of the genomic instability rate of the tumour.

We use a framework defined by replicator dynamics equations [21,22]

which contain an exploration term to capture the genomic instability of

cancer. We study the behaviour of the dynamics and its fixed point stability

at different genomic mutation rates over energy generation pathways.
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Figure 1. Tumour metabolic symbiosis between oxygenated and hypoxic cells. Glucose and lactate are energy sources used in hypoxic and oxygenated cells,
respectively, which is the Nash equilibrium of the metabolic symbiosis game. In the Nash equilibrium hypoxic cells generate 2 mol of ATP and 2 mol of lactate
per mole of glucose, whereas aerobic cells generate 36 mol of ATP per 2 mol of lactate. (Online version in colour.)
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The model captures the relationship between the mutation

rate of the tumour and glycolysis–respiration transitions.

Understanding the metabolic transitions in the tumour and

the role of lactate consumption in the oxygenated cancer

cell metabolism may suggest new non-toxic therapeu-

tic strategies based on uncoupling the stromal–epithelial

interactions in adenocarcinomas.
2. Tumour metabolic coupling
In 1926, Warburg et al. [23] addressed a metabolic abnor-

mality in cancer cells in which cancer cells under normal

oxygen concentrations switch from aerobic energy generation

through oxidative phosphorylation to anaerobic energy

generation through glycolysis, using glucose for energy pro-

duction without oxygen. This metabolic shift forms the

basis of the Warburg effect [24,25].

However, recent studies have demonstrated that the

Warburg effect only characterizes a portion of the tumour

metabolism happening in the hypoxic domain of the

tumour. Some hypoxic cells use glycolysis and produce lactate

as a metabolic product whereas oxygenated cells use the lac-

tate to generate ATP (figure 1). Thus, a tumour can use the

lactate from glycolysis as a source of energy through a lactate

shuttle between hypoxic and oxygenated cell populations

[10–13]. This phenomenon forms the reverse Warburg effect [6].

This metabolic symbiosis, which promotes tumour pro-

gression, is often observed between cancer cells and stroma

[26–32]. For example, in prostate cancer the presence of

metabolic symbiosis between epithelial cancer cells and

their associated fibroblasts promotes a high Gleason score

and tumour progression to metastasis [31,33]. Next, we

define a normal game for the metabolic coupling between

these two subpopulations in a tumour.
3. A metabolic symbiosis game
Evolutionary game theory provides a systematic explanation

for tumour structure as an outcome of the cellular decision

process [2,34]. Strategic decisions on the utilization of energy

resources is necessary for handling limitations based on

available nutrients and oxygen in the tumour. A cell can be

considered as an agent which responds to changing environ-

mental conditions by changing its strategy based on the

energy uptake sources. This decision process can be placed in

the framework of evolutionary game theory.

To apply this theory to tumour metabolism coupling

requires definition of a game that includes players and

actions in tumour metabolism. The metabolic symbiosis

between the two subpopulations can be put in the framework

of a two-player, two-action normal game. The tumour

microenvironment roughly consists of two main domains,

one domain is adjacent to the vascular system (the oxygenated

cell population) and the other domain has less available

oxygen (the hypoxic cell population). Hypoxic and oxygenated

cell populations are the two players in a normal game.

It is known that cells can use different sources of energy such

as fatty acids, glutamine [35], monocarboxylic acids (like lactate)

and glucose. But for simplicity, we considered only the two well-

studied cancer cell energy sources, glucose and lactate. Thus,

each cell (player) can select different energy metabolic pathways

(actions) which are suited to the use of glucose or lactate.

The reward matrix of the game is based on the ATP per

mole production, which reflects the cellular metabolic rate.

It is known that the oxygenated cells—not the hypoxic

cells—can use lactate for energy generation, the value of

which is defined as L. The energy production by oxygenated

or hypoxic cells using glucose is indicated by Go or as Gh,

respectively. If two oxygenated or hypoxic cells meet while

both are using glucose, then the glucose energy source

divides between each of them as Go/2 or Gh/2, respectively.
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Figure 2. The 2 � 2 reward (ATP generation) matrices for the tumour metabolic symbiosis as a two-player, two-action game. The left matrix represents hypoxic, and the
right one represents oxygenated cell energy generation values based on their collective actions. Empirical data show that L . Go/2. (Online version in colour.)
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It is also assumed that the only source of the lactate in the

tumour is provided by the hypoxic cells’ glycolysis process.

The general reward matrix for the two-player, two-action

tumour metabolism game is shown in figure 2.

The Nash equilibrium is a central concept in game theory.

A strategy profile forms a Nash equilibrium if no player

can increase its expected reward by unilaterally deviating

from the equilibrium. This means that neither of the two sub-

populations can gain more energy by cheating and changing

their strategy unilaterally.

Empirical data demonstrate that L . Go/2 [11,36], and

therefore the symbiosis game has only one pure Nash equili-

brium, with a corresponding energy production of L for

oxygenated cells and Gh for hypoxic cells (figure 2). In

other words, the Nash equilibrium of the game corresponds

to the observed tumour metabolic symbiosis.

The prediction of the game model is that tumour cells con-

verge to the Nash equilibrium where hypoxic cells only use

glycolysis for energy generation. In reality, hypoxic cells do

not fully transform their energy metabolism to the glycolytic

state, but change to a range of glycolysis metabolism levels

[36,37]. To address this deviation from complete symbiosis,

we propose a dynamic schema that can obtain different

intermediate stable fixed points to represent the hybrid

metabolism of glycolysis and lactate-fuelled respiration.
4. Evolutionary dynamics
The crosstalk between cell proliferation signal transduction

and cellular energy metabolism is critical for cell survival in

a changing environment. Cell energy metabolism alterations

usually come with changes in cellular proliferation and vice

versa [36,38]. To capture this dependency in a simple math-

ematical formula, it is assumed that the replication capacity

of a cell is a Boltzmann function of the cell energy generation.

It is assumed that the Boltzmann function can capture

the nonlinear relation between energy production and cellu-

lar proliferation [39,40]. We assumed that the probability xi

of selecting metabolic pathway i with metabolic rate ri is

given by

xi ¼
eri=TP
j erj=T : (4:1)

T is a positive parameter1 which controls the trade-off

between exploration and exploitation in the space of cellular

energy pathway options: for T! 0 tumour cells choose the

strategy corresponding to the maximum energetic value

(pure exploitation), whereas for T!1 the cell’s strategy is

completely random (pure exploration). The tumour cells

demonstrate a wide range of exploration in phenotypic

states. The T-value changes during different stages of

cancer development or at different stages of therapy. Genetic
and epigenetic mutations are among the possible cellular

biological factors which can determine the T-value.

Applying the genomic mutation rate in the evolutionary modelling.
Tumorigenesis can promote by abnormality in mutation rates

within the genome. For example, in hereditary cancers genomic

instability is already present in precancerous tissues [9], which

leads to tumour development by increasing the mutation rate,

thus increasing the value of the cellular exploration rate T.

To address this cancer hallmark, our model assumes that

the T-value reflects the rate of function-altering mutations

and genomic instability during tumour progression. There

is usually an increase in the genetic/epigenetic mutation

rate during the progression of carcinomas [9]. Many of the

tumorigenesis mutations target the DNA-maintenance

machinery. As a result of failure in the DNA maintenance

the tumour microsatellite instability (MSI) increases. Thus,

one possible way to evaluate T is to assess tumour MSI and

length distribution of the microsatellite.
4.1. Dynamic modelling
Here, we are specifically focused on the temporal evolution of

tumour states. Let i be the phenotype with the energy path-

way that uses energy source i where i ¼ 1,2, . . . ,n, and ri is

the observed metabolic rate that has a direct proportional

relation with ATP production through pathway i and fre-

quency of population or strategy i is xi, then it has been

proved [22] that the following dynamics fixed points are in

the form of the Boltzmann distribution (equation (4.1)):

_xi

xi
¼ ri �

Xn

k¼1
xkrk

h i
þ T

Xn

k¼1
xk ln

xk

xi
: (4:2)

The dynamics explains how strategic optimization is

reached in an ecosystem through cell proliferation success.

The first term in equation (4.2) demonstrates that the prob-

ability of selecting energy metabolism i increases with a

rate proportional to the overall efficiency of that strategy,

whereas the second term describes the cells’ tendency to

explore across possible energy pathways.

Now assume there are two types of populations X and Y
that are adapting concurrently. Let A and B be the two

reward matrices: aij and bij are the rewards of the X and Y popu-

lation when one selects i and the other population selects j. This

reward can be in the form of biological pay-off, such as the

cellular metabolic rate. Furthermore, let x ¼ (x1, . . . ,xn),Pn
i¼1 xi ¼ 1 and y ¼ (y1, . . . ,yn),

Pn
i¼1 yi ¼ 1 be the strategy

of the first and the second population, respectively.

The learning dynamics in a two-player scenario case is

obtained from equation (4.2) by replacing ri with the expected

pay-off using the reward matrix, which yields

_xi

xi
¼ ðAyÞi � x � Ayþ Tx

X
j

xj lnðxj=xiÞ (4:3)
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Figure 3. Transitions in the stability of hypoxic cells’ metabolic states. From left to right, the value of Ty increases. (a) Bistability in the hypoxic cells population and
(b) high glycolysis as a globally stable state in the hypoxic cells. The stable (solid blue line) and unstable (dashed red line) outcomes of the tumour metabolic
symbiosis game change as T values cross over critical values. The arrows indicate the direction of change from the dashed unstable state to the two alternative stable
states on the upper and lower branches. The dashed red line marks the border of the two stable state basins of attraction. (Online version in colour.)
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and

_yi

yi
¼ ðBxÞi � y � Bxþ Ty

X
j

yj lnðyj=yiÞ, (4:4)

where (Ay)i and (Bx)i are the i element of the vectors Ay

and Bx that determine the expected rewards of the popu-

lation X and Y, respectively. Tx and Ty represent the

exploration rates in the metabolic pathways of population X
and Y, respectively.

It is important to note that the stable rest points for replica-

tor system equations (4.3) and (4.4) at Tx ¼ Ty ¼ 0 are also the

Nash equilibrium of a game [41]. One can speculate that

higher genetic and epigenetic mutation rates lead to a higher

T-value. We study the outcomes of the dynamical system

equations (4.3) and (4.4) when Tx and Ty are not zero.

To examine a typical metabolic environment, empirical

data were used from studies that report typical values of

ATP production in the tumour oxygenated and hypoxic

cells, using either lactate or glucose for energy metabolism

[10,36,37].

Substituting these empirical values in the reward matrix

in figure 2 provides a typical example of the tumour meta-

bolic symbiosis game reward matrices. A typical reward

matrix for the hypoxic cells A is

A ¼ 1 2
0 0

� �
, (4:5)

and for the oxygenated cells B is

B ¼ 18 36
36 0

� �
: (4:6)

In both matrices, the first and the second action is choosing

glucose and lactate, respectively, as the energy source.
5. Critical transitions in tumour metabolism
Critical transitions describe sudden changes in the outcome of

dynamical systems when an underlying process parameter
slightly changes. Many natural ecosystems may suddenly

switch to different stable states [42] as a result of critical tran-

sitions. Here, we consider the tumour microenvironment as

an evolving ecosystem and investigate the role of genomic

instability and tumour metabolic symbiosis in leading the

tumour to intermediate states between lactate respiration and

glycolysis. This can be a sign of metabolic critical transitions

in the tumour’s evolving ecosystem. Nonlinearities in the inter-

actions between hypoxic and oxygenated cells, together with

the intrinsic sensitivity of cell proliferation to the energy vari-

ation, provide rich dynamics, which can lead to alternative

stable states in tumour energy metabolism.

Equations (4.3) and (4.4) show critical transitions with

regard to Tx and Ty values. The bifurcation graphs in figures 3

and 4 represent the tumour glycolytic and lactate-fuel respir-

ation level at equilibrium with regard to the cellular

exploration rates.

There is a critical range of Tx and Ty where there are two

stable equilibrium states, separated by an unstable equilibrium

that marks the border of the basin of attractions between the two

stable states. Outside of the critical range the tumour ecosystem

is in a global stable equilibrium state. Bifurcation graphs in

figures 3 and 4 illustrate this critical transition of the dynamics

for both hypoxic and oxygenated populations.

Critical transitions in hypoxic tumour cells. Figure 3 illustrates

that hypoxic cells mainly use glycolysis, regardless of T-values.

Above a critical value of Ty, the hypoxic cells always stay in the

upper branch of the bifurcation (figure 3b), which corresponds

to high glycolysis.

Critical transitions in oxygenated tumour cells. Figure 4

demonstrates that the oxygenated cell population in the

tumour ecosystem can shift between two levels of lactate-

fuel respiration. At very low Tx (figure 4a), oxygenated

cancer cells are in the lower branch with high lactate respir-

ation. In a certain range of Tx the dynamics have bistable

equilibrium (figure 4b,c).

Finally, in figure 4d, oxygenated cancer cells mainly use

glucose respiration. In this case, the hypoxic cells might

lose their survival advantage in the tumour.
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5.1. Different levels in tumour metabolic
symbiosis

The model shows that metabolic transitions lead to different

classes of tumour with possibly different therapeutic plans.

The critical values of Tx and Ty are not independent.

A domain of parameters (Tx and Ty) demonstrate bistability

in the dynamics equilibrium. This leads to different zones

in the parameter space of Tx and Ty. Figure 5 demonstrates

different categories of tumour cells based on their exploration

rates in the energy production strategy space, i.e. Tx and Ty.

We consider a tumour metabolic state as a strong metabolic
coupling, if at least half of the tumour cells participate in meta-

bolic symbiosis, and we consider it a weak metabolic coupling if

less than half of the tumour cells participate in metabolic

symbiosis. In the bistable domain of figure 5, the state of

the tumour metabolic coupling can shift to different levels

based on the tumour ecosystem population history (initial

tumour population structure).

There is a domain of (Tx, Ty) in figure 5 which represents

strong metabolic symbiosis. This indicates a strong coupling

between tumour cells where cancer cells gain the advantage

of growth and survival in the limiting nutrient resources.
5.2. Epithelial – stromal metabolic decoupling
Different types of cancer cells, including breast, ovarian and

prostate, can secrete hydrogen peroxide, generating free rad-

icals that then trigger oxidative stress in their neighbouring

stromal fibroblasts cells [43]. Therefore, epithelial cancer cells

activate stromal fibroblasts to secrete high levels of lactate

and pyruvate that are used by tumour cells for ATP production

via respiration. A metabolic stroma-specific therapeutic is

suggested to target the metabolic coupling between these

two type of subpopulations in the tumour microenvironment

[44,45]. Here, we examine potential hints from our model for

a stromal-specific therapeutic [44] in adenocarcinomas.
5.2.1. The effect of genomic instability rate
The model shows that stromal and epithelial cancer cells

explorations rate in the metabolic pathways, Tx and Ty,

respectively, are important for a therapeutic intervention plan.
Figure 6a shows that in that stage of the tumour there is

only one theoretical state of the tumour where stromal cells

provide the main source of energy for epithelium cancer

cells. In figure 6d, the tumour has again only one theoretical

state where stromal cells gradually show less secretion of lac-

tate. However, the tumour metabolic dynamical behaviour is

more complex in the intermediate cases such as those in

figure 6b,c.

In the case in figure 6b, the cancer epithelial cells can

obtain two stable states. The cancer cells with high glucose

uptake can go through a sudden critical transition to a high

lactate uptake state. However, a small perturbation in the

stromal metabolism is enough to shift those cases such as

figure 6b to a completely opposite tumour metabolic state

such as figure 6c. In the case of figure 6c, targeting the lactate

shuttle can push the cancer cell population structure to a

higher glucose uptake state, thus resulting in a weak

tumour metabolic symbiosis.
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5.2.2. Targeting the lactate shuttle
Increased expression of lactate monocarboxylate transporters

(MCTs) and activation of the lactate respiration pathway are

common aberrations in adenocarcinomas. Epithelial cancer

cells induce the surrounding stroma to express MCT4 for lac-

tate efflux. The level of metabolic cooperation can be tested

by measuring the lactate transportation between cells that is

mediated by MCTs, especially MCT1 and MCT4, which are

highly expressed in cancer cells. For example, in both oestro-

gen receptor-positive and oestrogen receptor-negative breast

cancer tumours, the high MCT4 expression is associated

with more aggressive tumours. Furthermore, cancer epi-

thelial cells upregulate the expression of MCT1 as a

transporter for lactate uptake [28].

The lactate dehydrogenase-A (LDH-A) enzyme catalyses

the conversion of pyruvate and lactate, and its upregulation is

associated with aggressive tumour outcomes. Emperical results

show that tumour cells are susceptible to LDH-A inhibition [46].

Thus, LDH-A can be a viable therapeutic target for disturbing

the lactate shuttle. Moreover, it is suggested that it may be

unwise to use lactate-containing intravenous solutions such as

lactated Ringer’s or Hartmann’s solution in cancer patients [47].

Any method of lactate downregulation such as MCT1,4 or

LDH-A inhibition therapies can be designed for the tumour

state similar to the case in figure 6c, where the cancer cell popu-

lation can alter from a high lactate uptake state to a high glucose

respiration state, thus the therapeutic outcome would be a

sudden decrease in tumour cancer cell metabolic coupling

which can lead to decreased tumorigenesis. Using the bifur-

cation graphs in figure 6, the therapy can be designed for an

effective intervention plan and proper dosage of adjuvant

radio/chemotherapy.
6. Conclusion
This study applied the mathematical formalism of evolutionary

game theory to demonstrate that cancer metabolism might

show critical transitions over certain ranges of biological con-

ditions. We used the Warburg effect and reverse Warburg

effect to define a tumour metabolic game between oxygenated

and hypoxic tumour cells. Dynamic modelling results show the

coexistence of two stable states (bistability) in tumour ecology.

Our model shows that a simple intercellular signal such as lactate

secretion in some tumour microenvironments can induce a

critical transition between high and low levels of tumour

glucose consumption. Our co-evolving dynamics also can clas-

sify different tumour cells, which provides useful hints during

stromal–epithelial cancer cell metabolic decoupling therapy.

We acknowledge that a Boltzmann-like mechanism is a sim-

plified version of the cell behaviour, but it can be incorporated

into experimental designs for future studies on the interaction

between cellular energy and proliferation pathways. One of

our model limitations is the assumption of the ecosystem with

two different phenotypic cells—hypoxic and oxygenated—

as a priori. In addition, we assumed that the glucose level,

lactose level and blood vasculature remain constant and the

hypoxic–oxygenated population changes only by intramural

interactions. Therefore, one can extend this work by investiga-

ting the metabolic changes as a result of glucose/lactate level

variations, considering lipid metabolism and also blood

vasculature development—angiogenesis—in the tumour.

In addition, lactic acid can also be detrimental to the

cancer cells. In this study, we consider the lactate acid contri-

bution to the oxygenated cells as an energy fuel. One can also

consider the detrimental role of the lactate, as the lactate acid
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concentration passes a threshold value and becomes toxic for

the neighbouring cells. On the other hand, a threshold pro-

portion of lactate secretion might be needed before the

emergence of functional symbiosis.

This study shows that tumour cells in certain ranges of

metabolic exploration rate can obtain alternative stable states.

Our model prediction is consistent with empirical data on the

mixed energy metabolism of cancer cells. Breaking the meta-

bolic coupling in tumours may have therapeutic benefits.
However, one of the major challenges is to find a therapeutic
window for sensitive tumour cells [29,48]. To this end, this

study distinguishes certain types of cancer cells that are more

vulnerable to a metabolic uncoupling anti-cancer therapy.
Endnote
1It resonates with Robert H. Austin’s [49] mechanistic relation between
proliferation and fitness of a population in an evolving ecology.
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