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Simple Summary: The miR-148a has been shown to play an important role in preadipocyte differen-
tiation. Herein, we explored the role of miR-148a in ovine adipocyte development, using Oil Red O
staining, CCK-8, EdU, flow cytometry and RT-qPCR. The results showed that miR-148a suppressed
proliferation and facilitated the differentiation of preadipocytes. The dual fluorescent reporter vector
experiments showed that miR-148a directly targeted PTEN. Meanwhile, we demonstrated that PTEN
significantly inhibited the differentiation of preadipocytes. In conclusion, our research provides new
insights that miR-148a inhibits ovine preadipocyte proliferation and accelerates differentiation by the
negative regulation of PTEN.

Abstract: MicroRNAs (miRNAs) have been found to be involved in lipid deposition and metabolism.
However, there have been no reports on the roles of miR-148a in the proliferation and adipogenesis
of preadipocytes in sheep. In this study, the expression of miR-148a was profiled in the eight tissues
of Tibetan ewes and differentiated preadipocytes, and the role of miR-148a in differentiation and
proliferation of ovine preadipocytes was investigated using Oil Red O staining, CCK-8, EdU staining,
cell cycle detection, and RT-qPCR. The effect of PTEN on the differentiation of ovine preadipocytes
was also investigated. The miR-148a was widely expressed in the eight tissues investigated and had
significantly increased expression in liver, spleen and subcutaneous adipose tissues, and the heart.
The expression of miR-148a continued to increase with the differentiation of ovine preadipocytes.
The over-expression of miR-148a significantly promoted differentiation but inhibited the proliferation
of ovine preadipocytes. The inhibition of miR-148a had the opposite effect on the differentiation
and proliferation of ovine preadipocytes with over-expressed miR-148a. The results from the dual
luciferase reporter assays showed that miR-148a mimic significantly decreased the luciferase activity
of PTEN-3′UTR dual luciferase reporter vector, suggesting that PTEN is a target gene of miR-148a.
In over-expressed-PTEN preadipocytes, the number of lipid droplets remarkably decreased, and
the expression levels of adipogenesis marker genes PPARγ, FASN, FATP4, GLUT4, C/EBPβ and
LPL were also significantly down-regulated. These results suggest that miR-148a accelerated the
adipogenic differentiation of ovine preadipocytes by inhibiting PTEN expression, and also inhibited
the proliferation of ovine preadipocytes.

Keywords: miR-148a; proliferation; adipogenesis; ovine preadipocytes; PTEN

1. Introduction

Adipose tissue plays important roles in providing energy, maintaining body tempera-
ture, and protecting internal organs in animal bodies [1]. The fat deposition also affects
the production performance of livestock, especially meat quality [2]. It has been reported
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that moderate fat deposition improves the tenderness and flavor of mutton in sheep [3];
thus, an in-depth understanding of the molecular mechanisms that regulate fat tissue de-
velopment provides the opportunity to improve meat quality in sheep. The development
of adipose tissue has been found to be closely associated with the proliferation and differ-
entiation of preadipocytes [4]. It is well-known that the proliferation and differentiation of
preadipocytes are regulated by functional genes and non-coding RNAs [5,6].

MicroRNAs (miRNAs) are a class of evolutionarily conserved non-coding RNAs. They
are widely involved in the regulation of a series of biological processes and cell activities at
the post-transcriptional level through mRNA cleavage or translation inhibition, including
cell fate, proliferation, differentiation, apoptosis, and tumorigenesis [7,8]. It has been
found that miRNAs are involved in the proliferation and adipogenesis of preadipocytes.
For example, Li et al. [9] found that the over-expression of miRNA-223 suppressed the
differentiation of chicken intramuscular preadipocytes by decreasing the expression level
of GPAM. The up-regulation of miR-149-5p inhibited the proliferation and differentiation
of bovine preadipocytes by negatively regulating the expression of CRTCs [10]. The over-
expression of miRNA-125a-5p has been found to promote the proliferation of preadipocytes
but inhibit their differentiation in porcine preadipocytes [11]. The function of other miRNAs
has also been elucidated in adipogenesis, including miR-204-5p [12], miR-145 [13], miR-
20a-5p [14], miR-106a [15], and miR-127 [16].

To date, the function of miR-148a has mainly focused on tumorigenesis [17–19]. In
some mammals, it has also been confirmed that miR-148a plays an important role in
adipogenesis. Shi et al. [20] reported that the expression of miR-148a was up-regulated
in hMSCs-Ad cells and promoted adipogenesis by inhibiting the expression of WNT1.
The promotion of miR-148a on preadipocytes has also been reported in rabbits [21]. The
over-expression of miR-148a promoted the synthesis of triglycerides by down-regulating
the expression of PPARGC1A and PPARA in goat mammary epithelial cells [22]. However,
there have been no reports on the effect of miR-148a on the proliferation, adipogenesis, and
lipid deposition of preadipocytes in sheep.

In this study, we investigated the expression profile of miR-148a and its effect on the
proliferation and adipogenesis of ovine preadipocytes. We also detected the target gene of
miR-148a and further evaluated the regulatory effect of miR-148a on the target gene.

2. Materials and Methods
2.1. Ethics Statement

The experimental work followed the guidelines for the care and use of laboratory
animals (approval number 2006-398; the Ministry of Science and Technology of China),
and also approved by the Gansu Agricultural University.

2.2. Collection of Ovine Tissue Samples

A total of four healthy, eighteen-month-old Tibetan ewes were selected for inves-
tigation. All these ewes were raised under the same environmental conditions in Gan-
nan Tibetan Autonomous Prefecture, China. The ewes were slaughtered to collect eight
tissue samples for subsequent reverse transcription quantitative PCR (RT-qPCR) anal-
ysis, including subcutaneous fat, longissimus dorsi muscle, testis, kidney, lung, spleen,
heart, and liver tissues. These samples were immediately frozen in liquid nitrogen and
then stored at −80 ◦C. Blood samples from these ewes were also collected and genomic
DNA was then extracted using an EasyPure® Blood genomic deoxyribonucleic acid Kit
(TransGen Biotech, Beijing, China). Meanwhile, a part of the subcutaneous fat tissue
was collected and then placed in PBS containing 10% penicillin/streptomycin antibiotics
(Hyclone, Logan, UT, USA) for culturing ovine preadipocytes.

2.3. Isolation of Ovine Primary Preadipocytes and Cell Culture

After removing visible blood vessels and connective tissues, the samples were cut
to 0.5 to 1.0 mm3 pieces and then digested using buffers with 0.75 U/mL collagenase
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D (Solarbio, Beijing, China) and 1.0 U/mL Dispase type II (Solarbio, Beijing, China) at
37 ◦C for 1 h. The digestive fluid was filtered and the preadipocytes were collected. After
being washed three times with PBS, the ovine preadipocytes were precipitated and then
resuspended using DMEM-F/12 medium (Hyclone, Logan, UT, USA) containing 10%
fetal bovine serum (Invigentech, Xi’an, China). Finally, the preadipocytes were uniformly
inoculated in the 60 mm plate and then cultured at 37 ◦C and 5% CO2 for 24 h.

2.4. RNA Isolation and RT-qPCR Analysis

TRIzol (Vazyme, Nanjing, China) was used to extract the total RNA of ovine adipocytes
and the eight tissues collected. The cDNAs were synthesized using a HiScript III 1st Strand
cDNA Synthesis Kit (Vazyme, Nanjing, China). U6 [23] and TBP [24] were chosen as
internal references to normalize the expression of miRNAs and mRNAs, respectively. The
RT-qPCR was performed in triplicate using the 2× ChamQ SYBR qPCR Master system
(Vazyme, Nanjing, China) on an Applied Biosystems QuantStudio 6 Flex Real-time PCR
System (Thermo Fisher Scientific, Waltham, MA, USA). The information of PCR primers
is listed in Table S1. The relative expression level of the RNA was calculated using a
2−∆∆Ct method.

2.5. Preadipocytes Differentiation and the Staining of Lipid Droplets

According to the method suggested by Ma et al. [25], the inducers of adipogenic
differentiation (27.8 µg/mL 3-isobutyl-1-methylxanthine, 0.1 µg/mL dexamethasone, and
1 µg/mL insulin) were added to the original growth medium to induce the differentiation
of preadipocytes for 2 days. The induction medium was then replaced by a maintenance
medium (growth medium supplemented with 1 µg/mL insulin) and adipocytes were
further cultured for 2 days. The maintenance medium was substituted with original growth
medium, and the culture of adipocytes continued until the differentiation process was
finished. The whole differentiation process lasted for 8 days, and mature ovine adipocytes
were obtained. For investigating the expression profiles of miR-148a and the target gene
PTEN in the lipogenesis phase of ovine adipocytes, RNA was extracted from adipocytes on
day 0, 0.5, 1, 2, 4, 6, and 8 after differentiation began. The expression of adipogenic marker
gene fatty acid binding protein 4 (aP2) was also detected using RT-qPCR.

The miR-148a mimic, miR-148a inhibitor, and non-specific control (NC) for mimic
and inhibitor were synthesized by RiboBio Ltd. (Guangzhou, China). When the density of
preadipocytes attained approximately 90%, the preadipocytes were transiently transfected
with miR-148a mimic, miR-148a inhibitor and two groups of NC. The same inducers and
procedure described above were used to induce the differentiation of ovine preadipocytes.
On day 8 after differentiation, Oil Red O staining and RT-qPCR of lipogenesis markers
were performed.

For Oil Red O staining, the mature adipocytes were fixed in 4% paraformaldehyde for
30 min and then washed by PBS 3 times, followed by being stained with 1% filtered Oil
Red O staining solution for 20 min. An IX53 inverted fluorescence microscope (Olympus,
Tokyo, Japan) was used to observe the stained lipid droplets in the cytoplasm of adipocytes.
Meanwhile, the expression level of lipogenesis markers aP2, peroxisome proliferator acti-
vated receptor gamma (PPARγ), fatty acid synthase (FASN), solute carrier family 2 member
4 (GLUT4) and lipoprotein lipase (LPL) were detected.

2.6. Preadipocyte Proliferation Analysis

To investigate the effect of miR-148a on ovine preadipocyte proliferation, when the
density of preadipocytes achieved approximately 50%, ovine preadipocytes were plated
into 96-well plates and then transfected using miR-148a mimic, miR-148a inhibitor and
two groups of NC. First, the cell viability of preadipocytes was detected at 0, 6, 12, 24,
and 48 h after transfection using a CCK-8 Cell Counting Kit (Vazyme, Nanjing, China). To
each well was added 10 µL CCK-8 solution which was then cultured at 37 ◦C for 2 h. The
absorbance was measured at 450 nm wavelength using a Varioskan LUX Multimode Reader
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(Thermo Fisher Scientific, MA, USA). Secondly, the DNA synthesis rate was detected at 48
h after transfection to reflect the rate of preadipocyte proliferation using the BeyoClick™
EdU-488 kit (Beyotime, Shanghai, China). An IX53 inverted fluorescence microscope
(Olympus, Tokyo, Japan) was used to observe fluorescence from the stained nucleus. From
each group of preadipocytes, four images were randomly collected for statistical analysis.
Thirdly, the expression levels of proliferation marker genes cyclin-dependent kinase 2
(CDK2), cyclin-dependent kinase 4 (CDK4), CyclinB1, proliferating cell nuclear antigen
(PCNA) and p53 were detected using RT-qPCR to explore the effect of miR-148a on sheep
preadipocyte proliferation on day 2 after transfection. Finally, a cell cycle analysis kit
(Thermo Fisher Scientific, Waltham, MA, USA) and AccuriC6 flow cytometry system (BD
Biosciences, New Jersey, NJ, USA) were used to detect the content of DNA in each cell
cycle of preadipocytes.

2.7. The Prediction of Target Genes of miR-148a

The target genes of miR-148a were predicted using TargetScan and miRDB. The
predicted results from the two kinds of software were intersected. Of a total of four
hundred and thirty target genes predicted, PTEN was selected as a candidate gene to
verify the target relationship with miR-148a, according to the prediction score and previous
results in glomerular cell of mice [26].

2.8. Dual Luciferase Reporter Assay

For constructing the wild-type PTEN-3′UTR dual luciferase reporter vectors, the
primers were designed to amplify the PTEN-3′UTR sequences, which contained the seed
site of miR-148a.The 3′UTR sequence of PTEN was connected to the 3′-end of the Ranilla
luciferase reporter gene of the pmiR-RB-Report™ vector (RiboBio, Guangzhou, China)
and then the wild-type dual luciferase reporter vectors were obtained. Meanwhile, a
Mut Express II Fast Mutagenesis Kit (Vazyme, Nanjing, China) was applied to construct
PTEN-3′UTR mutant-type reporter vectors.

The wild-type or mutant-type PTEN-3′UTR dual luciferase reporter vectors (500 ng)
and miR-148a mimic (100 pmoL) or NC (100 pmoL) were co-transfected into HEK293 cells.
The HEK293 cells were collected after 48 h and the luciferase activity was detected by the
dual luciferase reporter assay system (Promega, Madison, WI, USA).

2.9. The Effect of PTEN on Differentiation of Ovine Preadipocytes

The small interfering RNA of PTEN (si-PTEN) was synthesized by GenePharma Ltd.
(Shanghai, China). The synthesized RNA was diluted to a final concentration of 50 nM.
The CDS region of PTEN was amplified using the cDNA template and then ligated into
the pcDNA3.1 vector (Invitrogen, Carlsbad, CA, USA) to construct an expression vector
(named pcDNA3.1-PTEN).

When the density of preadipocytes reached approximately 90%, si-PTEN, 2 µg pcDNA3.1-
PTEN plasmid, 4 µg pcDNA3.1-PTEN plasmid, and the empty pcDNA3.1 plasmid were
transfected into respective ovine preadipocytes using INVI DNA RNA Transfection ReagentTM
(Invigentech, Xi’an, China). The same inducers and procedure described above were used to
induce the differentiation of ovine preadipocytes. On day 8 after differentiation, the expression
levels of adipogenesis marker genes PPARγ, FASN, solute carrier family 27 member 4 (FATP4),
GLUT4, CCAAT/enhancer binding protein beta (C/EBPβ) and LPL were detected. The number
of lipid droplets was also analyzed using Oil Red O staining.

2.10. Statistical Analysis

All data were analyzed using SPSS 22.0 software and the data are presented as
mean ± SD for three replicates. Statistical significance was determined using one-way
analysis of variance. All p-values were considered statistically significant when p < 0.05.
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3. Results
3.1. The Expression Profile of miR-148a

It was deduced from the RT-qPCR analysis in the eight different tissues of Tibetan
ewes that miR-148a was robustly expressed in liver, spleen, and subcutaneous adipose
tissues and the heart, while it had a weak expression in kidney, lung, longissimus dorsi
muscle and testis (Figure 1A).

Animals 2021, 11, x FOR PEER REVIEW 5 of 20 
 

2.10. Statistical Analysis 
All data were analyzed using SPSS 22.0 software and the data are presented as mean 

± SD for three replicates. Statistical significance was determined using one-way analysis 
of variance. All p-values were considered statistically significant when p < 0.05. 

3. Results 
3.1. The Expression Profile of miR-148a 

It was deduced from the RT-qPCR analysis in the eight different tissues of Tibetan 
ewes that miR-148a was robustly expressed in liver, spleen, and subcutaneous adipose 
tissues and the heart, while it had a weak expression in kidney, lung, longissimus dorsi 
muscle and testis (Figure 1A). 

Fatty acid binding protein 4 (aP2) is a marker gene of adipogenic differentiation that 
reflects whether adipocytes normally differentiate. The expression level of aP2 was re-
markably increased on day 2 and reached the maximum on day 6 after preadipocyte dif-
ferentiation, and then significantly decreased in the late stage of differentiation (Figure 
1B). This confirmed that the preadipocytes were normally differentiated. The expression 
level of miR-148a continuously increased from 0 day to 8 day of adipogenic differentiation 
(Figure 1C). 

 
Figure 1. The tissue expression profiles of miR-148a and aP2. (A) The expression level of miR-148a in the eight different 
tissues of Tibetan ewes. The expression levels of aP2 (B) and miR-148a (C) during differentiation of ovine preadipocytes 
using RT-qPCR. The results are depicted as the mean ± SD (n = 3). Means with a lower-case letter are significantly different 
(p < 0.05). 

Figure 1. The tissue expression profiles of miR-148a and aP2. (A) The expression level of miR-148a in the eight different tissues
of Tibetan ewes. The expression levels of aP2 (B) and miR-148a (C) during differentiation of ovine preadipocytes using RT-qPCR.
The results are depicted as the mean± SD (n = 3). Means with a lower-case letter are significantly different (p < 0.05).

Fatty acid binding protein 4 (aP2) is a marker gene of adipogenic differentiation that re-
flects whether adipocytes normally differentiate. The expression level of aP2 was remarkably
increased on day 2 and reached the maximum on day 6 after preadipocyte differentiation,
and then significantly decreased in the late stage of differentiation (Figure 1B). This con-
firmed that the preadipocytes were normally differentiated. The expression level of miR-148a
continuously increased from 0 day to 8 day of adipogenic differentiation (Figure 1C).

3.2. The Positive Regulation of miR-148a in the Differentiation of Ovine Preadipocytes

To evaluate the biological role of miR-148a in the adipogenesis of ovine preadipocytes,
miR-148a mimic, miR-148a inhibitor, and two groups of NC were transfected into
preadipocytes. The content of lipid droplets and the expression levels of lipogenesis
marker genes were then detected in adipocytes on day 8 after adipogenic differentiation
using Oil Red O staining and RT-qPCR, respectively. Compared to the miR-148a mimic NC
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group, the expression level of miR-148a remarkably increased when preadipocytes were
transfected with miR-148a mimic (Figure 2A,B). On the contrary, compared to the miR-148a
inhibitor NC group, the expression level of miR-148a remarkably decreased when the
miR-148a inhibitor was transfected into preadipocytes (Figure 2A,B). This suggests that
the miR-148a mimic, miR-148a inhibitor and NC were successfully transfected into ovine
preadipocytes.
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control (NC) were transfected into preadipocytes at 50 nM. (A,B) The over-expression efficiency of miR-148a in adipocytes
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inhibitor and NC. (D,F) The areas of Oil Red O staining were counted using the ImageJ software. The results are depicted as
the mean ± SD (n = 3), * p < 0.05, ** p < 0.01.
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The over-expression of miR-148a significantly increased the accumulation of lipid
droplets in the adipocyte cytoplasm (Figure 2C), while inhibited miR-148a decreased the
accumulation of lipid droplets using Oil Red O staining (Figure 2E). The number of lipid
droplets in the image was counted and the results were also consistent with Oil Red O
staining (Figure 2D,F).

The RT-qPCR results of lipogenesis marker genes in adipocytes on day 8 after adi-
pogenic differentiation showed that the transfection of miR-148a mimic significantly en-
hanced the expression levels of adipogenic marker genes aP2, PPARγ, FASN, GLUT4 and
LPL, while the expression levels of the genes were all decreased when the miR-148a in-
hibitor was transfected into ovine preadipocytes (Figure 3). These results suggest that
miR-148a promoted the adipogenic ability of ovine preadipocytes.
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3.3. MiR-148a Inhibited Ovine Preadipocyte Proliferation

It was shown that the preadipocytes were successfully transfected with miR-148a
mimic, miR-148a inhibitor and NC (Figure 4A). The results of cell viability detections
demonstrated that miR-148a had no significant effect on the proliferation activity of ovine
preadipocytes at 0–24 h when miR-148a was over-expressed in preadipocytes. However,
the over-expression of miR-148a markedly impaired the proliferation ability of ovine
preadipocytes at 48 h after transfection. On the contrary, the inhibition of miR-148a
increased the proliferation activity of ovine preadipocytes (Figure 4B).
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in ovine preadipocytes after being transfected miR-148a mimic, miR-148a inhibitor and negative control (NC). (B) Effects of
the miR-148a mimic, miR-148a inhibitor and NC on preadipocyte proliferation using CCK-8. (C) EdU was used to detect
the effect of the miR-148a mimic, miR-148a inhibitor and NC on preadipocyte proliferation. The images of DAPI, EdU, and
Merged groups reflect the total number of preadipocytes, the number of EdU-positive preadipocytes and the proportion
of EdU-positive preadipocytes in the total preadipocytes, respectively. (D) The statistics of the number of EdU-positive
preadipocytes. The results are depicted as the mean ± SD (n = 3), ** p < 0.01.
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EdU staining analysis was used to detect the efficiency of DNA synthesis in ovine
preadipocytes during mitosis. The results revealed that the over-expression of miR-148a
inhibited the birth of new preadipocytes, and the miR-148a inhibitor presented the opposite
effect with the miR-148a mimic (Figure 4C,D).

The RT-qPCR results of proliferation marker genes showed that the expression levels
of CDK2, CDK4, CyclinB1 and PCNA were down-regulated, while p53 was up-regulated in
the over-expressed miR-148a preadipocytes when compared to the NC group (Figure 5).
The transfection of miR-148a mimic decreased the proportion of preadipocytes in the S
phase (Figure 6A,B). On the contrary, miR-148a inhibitor promoted the cell cycle moving of
preadipocytes from G1/G0 phase to S phase (Figure 6C,D). The results were also supported
by the statistical results of flow cytometry data (Figure 6E,F).
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Figure 6. The miR-148a suppressed ovine preadipocyte proliferation. (A,B) The percentage of preadipocytes in different
stages of mitosis was detected by flow cytometry after the preadipocytes were transfected with miR-148a mimic and NC.
(C,D) The percentage of preadipocytes in each mitosis stage was detected by flow cytometry after the preadipocytes were
transfected with the miR-148a inhibitor and NC. (E,F) The statistics of flow cytometry results. The results are depicted as
the mean ± SD (n = 3), * p < 0.05.

3.4. MiR-148a Targets the 3′UTR Region of PTEN

Dual luciferase reporter assays were used to verify the target relationship between
miR-148a and PTEN. The structures of PTEN-3′UTR wild-type and mutant-type reporter
vectors are shown in Figure 7A. When the miR-148a mimic and wild-type PTEN-3′UTR
reporter vector were co-transfected into the HEK293 cells, the luciferase activity was
significantly lower than in the HEK293 cells which were co-transfected with the mimic-
NC and wild-type PTEN-3′UTR reporter vector. Meanwhile, when miR-148a mimic or
mimic-NC and mutant-type PTEN-3′UTR reporter vectors were co-transfected into the
HEK293 cells, there was no significant difference in luciferase activity between the group of
miR-148a and mimic-NC (Figure 7B). This suggests that PTEN is a target gene of miR-148a.
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the miR-148a mimic, miR-148a inhibitor, and NC. (D) The expression profile of PTEN was detected during adipogenic
differentiation. The results are depicted as the mean ± SD (n = 3), * p < 0.05, ** p < 0.01.

The further results showed that the miR-148a mimic significantly decreased the expression
level of PTEN, while the expression level of PTEN remarkably increased when the miR-148a
inhibitor was transfected into preadipocytes (Figure 7C). In addition, the expression of PTEN
gradually decreased with the differentiation of ovine preadipocytes (Figure 7D).

3.5. PTEN Inhibits Differentiation of Ovine Preadipocytes

When 2 µg or 4 µg pcDNA3.1-PTEN expression plasmid were transfected into ovine
preadipocytes, the number of lipid droplets remarkably decreased (Figure 8A,B). The
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RT-qPCR results revealed that the expression level of PTEN was significantly enhanced in
adipocytes transfected with pcDNA3.1-PTEN expression plasmid (Figure 8C). In addition,
the expression levels of adipogenesis marker genes PPARγ, FASN and FATP4 were signifi-
cantly down-regulated, while the expression levels of GLUT4, C/EBPβ and LPL were not
significantly changed when 2 µg pcDNA3.1-PTEN expression plasmid were transfected
into preadipocytes (Figure 8D). However, when 4 µg pcDNA3.1-PTEN expression plasmid
were transfected into preadipocytes, the expression level of adipogenesis marker genes
was all significantly down-regulated (Figure 8D).
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On the contrary, when PTEN was silenced in ovine adipocytes using siRNA, the
accumulation of lipid droplets in adipocytes significantly increased (Figure 9A,B) and
the expression level of PTEN was significantly decreased (Figure 9C). In addition, the
expression levels of PPARγ, FASN, GLUT4, C/EBPβ, FATP4, and LPL were all significantly
up-regulated when PTEN was silenced in ovine adipocytes (Figure 9D).
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Figure 9. PTEN inhibited preadipocyte differentiation. si-PTEN or negative control (NC) were transfected into ovine
preadipocytes. (A) Oil Red O staining was performed in differentiated ovine preadipocytes after PTEN silence. (B) The
areas of Oil Red O staining were counted using the ImageJ software. (C,D) The expression levels of PTEN and adipogenesis
marker genes were detected after transfection of PTEN siRNA in preadipocytes. The results are depicted as the mean ± SD
(n = 3), ** p < 0.01.
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4. Discussion

In the last few years, many studies have confirmed that miRNAs play essential roles in
the proliferation and adipogenesis of preadipocytes [10,23]. However, this is the first study
to investigate the expression profiles of miR-148a, and roles of miR-148a in the proliferation
and differentiation of ovine preadipocytes.

In this study, miR-148a was not only expressed in the eight tissues studied, but also
had a higher expression level in liver, spleen, and subcutaneous adipose tissues and the
heart than in the kidney, lung, longissimus dorsi muscle, and testis. This was consistent
with findings in buffalo, in which the expression of miR-148a was significantly higher in
subcutaneous adipose tissue than in longissimus dorsi muscle [27]. The higher expression
of miR-148a in adipose tissue suggests that the miRNA may play an important role in
regulating adipogenesis. Meanwhile, the expression of miR-148a gradually increased with
the differentiation and maturation of ovine adipocytes. Londono et al. [28] also found
similar results in human adipose-derived mesenchymal stem cells. This indicates that
miR-148a may promote adipocyte differentiation and lipid accumulation in sheep. The con-
clusion was further confirmed by Oil Red O staining and RT-qPCR analysis of adipogenic
differentiation marker genes. The over-expression of miR-148a promoted the accumulation
of lipid droplets and increased the expression levels of aP2, PPARγ, FASN, GLUT4 and LPL.
aP2 is mainly expressed in adipose tissue and mature adipocytes and regulates fatty acid
uptake and intracellular transport in adipocytes [29]. The loss-of-function studies have
demonstrated that PPARγ is necessary for the adipogenic differentiation of adipocytes.
Rosen et al. [30] found that the knock-out of PPARγ significantly inhibited the development
of adipose tissue in mice. Embryonic fibroblasts derived from PPARγ-deficient fetuses
were unable to differentiate into adipocytes [31]. FASN encodes a rate-limiting enzyme for
the de novo synthesis of long-chain fatty acids in the adipocytes of mammals. In mouse
adipocytes, up-regulation of FASN expression significantly promoted the accumulation of
intracellular triglycerides [32]. Increased expression of CLUT4 improved insulin resistance
and lipid accumulation in mouse adipose tissue [33]. LPL is an important gene for fat tissue
and adipocytes to metabolize fatty acids, which promotes fatty acids in the blood to enter
adipocytes to participate in the synthesis of triglycerides [34,35]. Cho et al. [36] also found
that the over-expressed miR-148a increased the expression level of PPARγ and accelerated
adipogenesis in mouse 3T3-L1 cells.

This is the first study to report that miR-148a inhibits the proliferation of ovine
preadipocytes in sheep using CCK-8 and EdU staining. The inhibition of miR-148a on the
proliferation of other types of cells was also reported. For example, Xu et al. [37] found
that miR-148a suppressed human glioblastoma cells proliferation by targeting integrin
subunit alpha 9 (ITGA9). The miR-148a inhibited the proliferation of skeletal muscle cells
by down-regulating the expression level of KLF6 [38]. Lv et al. [39] have also reported
the inhibition of miR-148a on the proliferation of dermal papilla cells in Hu sheep. The
percentage of preadipocytes in each cell cycle stage can also reflect the proliferation activity
of the preadipocytes. It was found that the number of cells in the S phase is positively
correlated with the proliferation activity of the cells [40]. Our results indicated that the
number of preadipocytes in the S phase significantly decreased when miR-148a mimic was
transfected into preadipocytes. Song et al. [38] found that miR-148a inhibited cells moving
from mitotic G1 to the S phase in bovine skeletal muscle cells. The effect of miR-148a on the
proliferation of preadipocytes was also reflected by the expression levels of proliferation
marker genes. The over-expression of miR-148a inhibited the expression of CDK2, CDK4,
cyclinB1 and PCNA in preadipocytes, but promoted the expression of p53. CDK2, CDK4,
cyclinB1 and PCNA positively regulated cell proliferation by promoting the cell cycle from
G1 to the S phase [41], while p53 negatively regulated cell proliferation by inhibiting the
expression of CDK2 [42].

It was confirmed in the study that miR-148a directly targeted PTEN and then inhibited
the expression of PTEN in ovine preadipocytes. Zhang et al. [43] also found that miR-148a
can target PTEN in MG63 cells and inhibit the expression of PTEN. In addition, there was
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an opposite tendency in the study between the expression levels of miRNA-148a and PTEN
during the differentiation of ovine preadipocytes. Specifically, the expression of miR-148a
continuously increased, but the expression of PTEN gradually decreased. This result also
supported the target relationship between miR-148a with PTEN. Zhang et al. [23] also
found that the expression profile of miR-143a-3p was opposed to its target gene MAPK7
during the adipogenic differentiation of 3T3-L1 cells.

In this study, we over-expressed and silenced PTEN in ovine preadipocytes using the
pcDNA3.1 expression plasmid and siRNA, respectively. It was found that PTEN inhibited
the differentiation of ovine preadipocytes, using Oil Red O staining and RT-qPCR for
adipogenic marker genes (PPARγ, FASN, GLUT4, C/EBPβ, FATP4 and LPL). These genes
have been reported to be related with the differentiation of adipogenesis. For example,
C/EBPβ has been considered as the first induced transcription factors during adipogenesis
and plays an important role in initiating the adipogenesis of preadipocytes. Adipogenesis
was impaired when C/EBPβ was knocked out in mouse adipose tissue [44]. The absorption
of fatty acids and the accumulation of intracellular lipids were significantly enhanced
in mouse 3T3-L1 cells when the expression level of FATP4 was up-regulated [45]. Xu
et al. [46] found that silenced PTEN increased the number of Oil Red O-stained amniotic
fluid mesenchymal stem cells and accelerated the adipogenic differentiation of AF-MSCs.
Lee et al. [47] also found that the inhibition of PTEN expression by RNAi potentiated the
phosphorylation of Akt and then accelerated adipogenesis of the 3T3-L1 cells. Given the
studies described above and our findings, it was inferred that miR-148a promoted the
adipogenic differentiation of ovine preadipocytes by targeting PTEN.

For all the above-mentioned reasons, identification of molecular factors responsible
for adipogenic differentiation and proliferation of ovine preadipocytes could increase the
practical usefulness and suitability of these cells for somatic cell cloning in sheep and other
mammalian species as an alternative source of nuclear donors [48,49] in relation to fetal
fibroblast cells [50,51], adult dermal fibroblast cells [52,53], and adult mesenchymal stem
cells [54,55].

5. Conclusions

In summary, up-regulation of miR-148a expression accelerated the adipogenic differen-
tiation of ovine preadipocytes through targeting PTEN. Additionally, miR-148a resulted in
cell cycle arrest and proliferation suppression in ovine preadipocytes. Therefore, miR-148a
was able to serve as a key regulator of adipogenesis in ovine preadipocytes.
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