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The Mal de Debarquement syndrome (MdDS) generally follows sea voyages, but it can 
occur after turbulent flights or spontaneously. The primary features are objective or 
perceived continuous rocking, swaying, and/or bobbing at 0.2 Hz after sea voyages or 
0.3 Hz after flights. The oscillations can continue for months or years and are immensely 
disturbing. Associated symptoms appear to be secondary to the incessant sensation 
of movement. We previously suggested that the illness can be attributed to maladap-
tation of the velocity storage integrator in the vestibular system, but the actual neural 
mechanisms driving the MdDS are unknown. Here, based on experiments in subhuman 
primates, we propose a series of postulates through which the MdDS is generated:  
(1) The MdDS is produced in the velocity storage integrator by activation of vestibu-
lar-only (VO) neurons on either side of the brainstem that are oscillating back and forth 
at 0.2 or 0.3 Hz. (2) The groups of VO neurons are driven by signals that originate in 
Purkinje cells in the cerebellar nodulus. (3) Prolonged exposure to roll, either on the 
sea or in the air, conditions the roll-related neurons in the nodulus. (4) The prolonged 
exposure causes a shift of the pitch orientation vector from its original position aligned 
with gravity to a position tilted in roll. (5) Successful treatment involves exposure to a 
full-field optokinetic stimulus rotating around the spatial vertical countering the direction 
of the vestibular imbalance. This is done while rolling the head at the frequency of the 
perceived rocking, swaying, or bobbing. We also note experiments that could be used 
to verify these postulates, as well as considering potential flaws in the logic. Important 
unanswered questions: (1) Why does the MdDS predominantly affect women? (2) What 
aspect of roll causes the prolongation of the tilted orientation vector, and why is it so 
prolonged in some individuals? (3) What produces the increase in symptoms of some 
patients when returning home after treatment, and how can this be avoided? We also 
posit that the same mechanisms underlie the less troublesome and shorter duration Mal 
de Debarquement.

Keywords: vestibular-only neurons, nodulus, baclofen, rocking, swaying, bobbing, gravity, orientation vector

Abbreviations: G, gravity; GIA, gravitoinertial acceleration; GABA, gamma amino butyric acid; Hz, per second; MdD, Mal 
de Debarquement, also sometimes known as “Land sickness”; MdDS, Mal de Debarquement syndrome; OKN, optokinetic 
nystagmus; PAN, periodic alternating nystagmus; VO neurons, vestibular-only neurons; VPS neurons, velocity-pause-saccade 
neurons; VOR, vestibulo-ocular reflex.
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deFinitions

Brain fog disruption of ability to think clearly

Classic MdDS MdDS arising from travel on the sea or in the air

Spontaneous MdDS MdDS generally arising after exposure to motion, but 
without known exposure to sea or air travel

Dutch roll flutter of wings and fuselage of aircraft when banking in 
turbulent weather

Gravity pulling Sensation of being pulled in one particular direction 
MdDS

Pitch orientation vector Vector generally directed toward the spatial vertical that 
underlies balance

Rocking movement or sensation of movement forward and 
back, generally at 0.2 Hz

Swaying movement or sensation of movement from side-to-side, 
frequently with a rotary component

Bobbing sensation of vertical movement of the head and body, 
generally not associated with actual movement

Roll while rotating rotation of monkeys in darkness about a vertical axis at 
60°/s for several hours while oscillating ±20° at 0.1 Hz 
in roll

Pitch while rotating rotation of monkeys in darkness at 60°/s for several 
hours around a vertical axis while oscillating at 0.1 Hz at 
±20° in pitch at 0.1 Hz

introdUCtion

The Mal de Debarquement Syndrome (MdDS) is composed of 
primary and secondary symptoms. The major primary effects 
are the continuous rocking, swaying, bobbing, or continuous 
sensations of these phenomena at 0.2 Hz after being on the sea  
or 0.3 Hz after turbulent flight (1, 2). These symptoms cease briefly 
when riding in a car (1–8). The patients also frequently experience 
a sensation of “pulling” in specific directions (“gravity pulling”) 
(2). The MdDS pathology can be extended over months or years, 
giving a sense of continuous oscillatory motion that seriously 
affects the lives of the sufferers, who are predominantly middle-
aged women. The incessant rocking, swaying, and/or bobbing are 
frequently associated with a host of symptoms such as brain fog, 
sensitivity to sound and fluorescent lights, headaches, inability to 
work, depression, and suicidal tendencies (2, 4, 6, 9, 10).

Neither the cause for nor the changes in neural activity pro-
ducing the MdDS are known (4, 6, 7), but there have been many 
hypotheses to explain the source of the MdDS. These include 
“vestibular adaptation” or “defective readaptation” (3–5, 11),  
although the specifics of the vestibular adaptation were not 
detailed. The MdDS has also been attributed to various cerebral 
processes that involve the vestibular projections to the cerebral 
cortex (7), overactivity of the hippocampus and entorhinal cortex 
(7), interaction of cerebral processes (7, 12), increased sensitivity 
of the cerebrospinal pathways (13), and modulation of general 
activity following loss of gray matter in the prefrontal cortex, 
entorhinal cortex, and cerebellum (14). These studies led to the 
use of transcranial magnetic stimulation that produced transient 
relief of symptoms (7, 13) but not to prolonged disappearance of 
the symptoms of the MdDS. It has also been proposed that the 
MdDS is a vestibular analog of the Charles Bonnet syndrome, 

with the recurrent oscillations reflecting a loss of vestibular input 
(15). However, the function of the semicircular canals is generally 
intact in these individuals. Thus, there is an inherent difference 
between the Charles Bonnet sufferers, in whom the loss of vision 
is the precipitating cause for the visual hallucinations (16, 17) and 
the MdDS where there is no loss of vestibular function.

There have also been attempts to quell the symptoms with 
medication. These medications include GABAa agonists like  
diazepam or clonazepam, nortriptyline, verapamil, and topira-
mate. Generally, these produced only mild or moderate reduction 
of symptoms (4, 12). Vestibular rehabilitation has generally been 
unsuccessful in stopping the sensed or actual movements of the 
MdDS, and extensive medical workups that include MRI’s, tests 
of vestibular function with video nystagmography, and tests of 
auditory and otolith function have all been normal. It has been 
estimated that the costs of these normal tests extend into the 
thousands of dollars. Until recently, there has been no successful 
treatment of the MdDS, nor is it clear how and where the process 
is generated in the central nervous system.

In 2014, Dai et al. (1) introduced the first successful treatment 
of the MdDS, and several hundred patients have been success-
fully treated since that time (2). However, the succession of the 
neural events that produce the MdDS is still relatively obscure. 
In this paper, we present a hypothesis composed of a number of 
postulates that presumably will explain the neural basis of the 
internal structure responsible for this condition. Other than the 
proposed maladaptation of the velocity storage integrator in the 
vestibulo-ocular reflex (VOR) (1), there is no theory detailing the 
neural pathways involved in generating the incessant rocking, 
swaying, and/or bobbing or a sense of these oscillations that are 
the main features of the illness (1). Though important questions 
remain, it is the first such analysis of the vestibular and cerebellar 
components that we believe are responsible for generating the 
MdDS.

The vestibular basis for the treatment came from experiments 
on the monkey (18). The monkeys were rotated for several hours 
in darkness while oscillating in roll. Afterward, the animals 
had horizontal spontaneous nystagmus and unusual vertical 
positional nystagmus when their heads were rolled to either side. 
The quick phases of the vertical nystagmus were upward when 
the head was rolled to one side and downward when the head 
was rolled to the other side (18), similar to the vertical positional 
nystagmus with head roll in the MdDS patients (1). These changes 
persisted for about 18 h and were never induced in monkeys that 
had very short VOR time constants, i.e., in animals that had 
appropriate vestibular responses to angular acceleration but no 
velocity storage. This was modeled, and it was concluded that 
the positional nystagmus had been produced by cross-coupling 
of the pitch orientation eigenvector that had been shifted in roll 
after exposure to roll while rotating. A similar shift in the pitch 
orientation vector was not produced by pitch while rotating.  
It was presumed that the pitch while rotating only strengthened 
the pitch orientation vector in its alignment along the spatial 
vertical (see Ref. (19–22) for a more complete description of 
the characteristics of velocity storage). The striking similarities 
between the reversal of vertical positional nystagmus with head 
roll to either side in the monkeys and in the MdDS patients 
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FigUre 1 | Frequencies of rocking (a) and swaying (B) in Mal de 
Debarquement Syndrome patients (2). The frequencies were determined on a 
Nintendo Wii board. The rocking frequencies were tightly centered around a 
maximum at 0.2 Hz, more for the rocking than the swaying. When there was 
no actual rocking or swaying, the perceived frequencies were determined 
with the elbow stabilized on a board, and the patient moved the forearm at 
the frequency of the perceived movement.
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suggested that a primate analog of the human disorder had been 
created in the monkey by the roll while rotating. This included 
vestibular imbalance, as shown by the tendency of the patients to 
march to one side on the Fukuda stepping test, and the occasional 
spontaneous nystagmus, which was observed consistently in 
monkeys. In these subjects, the direction of the slow phases of 
the nystagmus and the direction of the postural deviation in the 
Fukuda test in the MdDS patients were always congruent, indicat-
ing that a vestibular imbalance had been created.

Long-lasting changes were never produced in monkeys by 
pitch while rotating, specifically implicating the roll system in 
the MdDS. Similar vertical nystagmus had also been previously 
produced in humans by extended exposure to a slow rotating 
room for several days in which the subjects intermittently made 
roll head movements. This induced vertical positional nystagmus 
for several hours thereafter when they rolled their heads (23, 24). 
Since only roll while rotating caused the abnormal eye move-
ments in monkeys, not pitch while rotating, and similar vertical 
nystagmus with head roll was produced in humans (23), we pos-
tulated that the roll encountered during voyages was responsible 
for the generation of the MdDS (1).

It can be questioned whether there is a significant amount of 
roll especially on cruise ships that are the most common source 
of the MdDS patients. The stability of boats depends not only on 
the size of the vessel but also on the extent of the wind and waves 
as well as the direction of the boat’s progress. The sea is not always 
calm, and there are multiple reports of vessels being capsized in 
rough waters as reported by the Marine Accident Investigation 
Branch. A search of the literature revealed measurements of roll 
in the Bass Strait (between Australia and Tasmania) in a ship of 
11,000 t deadweight, 603.7 ft in length and 77.6 ft in width (25). 
The ship had an average roll of ±6.3°, an average pitch of ±1.9°, 
and an average heave of 7.2 ft. The Bass Straight is 190 miles wide 
and 120 miles long. This was likely to have been very rough condi-
tions, and the sea in cruises between Florida and the West Indies 
might generally be calmer. Additionally, there are roll stabilizers, 
i.e., planar strips of metal attached to the keel that can reduce roll. 
However, many although not all of the trips are in the Atlantic, 
and there can be strong weather that produces larger waves in any 
sea. Even large ships will roll if they encounter waves obliquely. 
Thus, there can be substantial roll, depending on the size of the 
waves despite the cruise ship’s roll stabilizers. While it is true that 
people walk around the deck in cruise ships, nevertheless, they 
are in stable positions for 6–8 h when they sleep at night or when 
they are sitting down for meals or in chairs to relax. Therefore, 
there can be adequate exposure to roll in cruise ships on the sea, 
particularly in heavy weather.

There have been no recent studies specifically on roll during 
flight in turbulent air, to our knowledge, although Dutch roll 
was described in light planes when banking in rough weather 
(26). Flutter of the wing tips and fuselage at 3–3.5 Hz has been 
generated in transport aircraft in turbulent conditions. See 
more details in the link provided (https://www.youtube.com/
watch?v=kOBbAFzXrRg). Similar oscillations could contribute 
to the 0.3  Hz body oscillations in some MdDS patients after 
extended flights in turbulent weather.

A striking finding was that there was a sharp peak in the aver-
age frequency of rocking and the perceived rocking in both our 
2014 and 2017 papers at 0.2  Hz (Figure  1A). There was more 
spread in swaying (Figure 1B), probably due to the variation in 
determining the period of swaying, i.e., pitching was easier to 
observe and sense than swaying. The significance of the relatively 
conserved 0.2 Hz frequency (1 cycle/5 s) is that it signifies that a 
similar process is likely to be producing the rocking in virtually 
all of the MdDS patients after sea voyages. This implies that the 
frequency is being internally generated and is sensitive to an 
external stimulus of 0.2 Hz. The 0.2 Hz frequency is too slow to be 
produced by lesions of the inferior olive, since frequencies of such 
phenomena like palatal myoclonus typically have frequencies of 
about 1  Hz (27). Therefore, there should be another, separate 
source for the 0.2 and 0.3 Hz signals in the brainstem and cerebel-
lum to account for the changes that are presumed to arise in the 
velocity storage integrator.

Modulation of roll depends heavily on the integrity of the 
cerebellar nodulus (28–31). This suggests that the nodulus may 
play an important part in the generation of the MdDS. In normal 
monkeys and humans, the orientation of the axis of eye velocity 
is always aligned with the spatial vertical or the gravitoinertial 
acceleration (GIA) during rotation, regardless of the position of 
the head in space (20, 21, 30–35). The underlying postulate for 
the generation of the MdDS was that the pitch orientation vector 
of the system had been transformed from its original position 
along gravity to a tilted position in roll (1). The purpose of the 
treatment was to bring the orientation vector back to the spatial 
vertical by activating the velocity storage integrator with an opto-
kinetic stimulus that rotated around the spatial vertical. Thus, the 
proposed treatment was to roll the head of the affected subjects 
at the frequency of their perceived or actual rocking, swaying, or 
bobbing, while activating the velocity storage integrator with a 
low-frequency, constant velocity, full-field, optokinetic stimulus 
rotating around the spatial vertical against the direction of their 
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vestibular imbalance. Presumably, this reoriented the integrator 
back to gravity or the GIA. If the correct direction of the ves-
tibular imbalance was not chosen during the treatment, the body 
oscillations became worse, supporting the postulate that it was 
the conflict between the tilted orientation vector and the spatial 
vertical that had produced the MdDS.

As a result, it was possible to relieve the constant rocking, 
swaying, and/or bobbing in 70% of the original 24 patients after 
the second week of treatment, an improvement that was gener-
ally maintained in the original group when they returned home, 
and at follow-up after a year (1). In an additional 141 MdDS 
patients, the 2-week success rate was 80% (2); however, the rate 
of symptom reduction fell to 44% after 1  year, possibly due to 
stress experienced by these patients during long flights or rides 
home after treatment. This drop in efficacy must be addressed in 
future studies, but it should be emphasized that this was the first 
and only successful treatment for the MdDS.

The implication of these results is that the underlying cause 
for the MdDS is a disturbance in the control of roll at a specific 
direction and frequency, which is approximately 0.2 Hz after sea 
voyages and 0.3 Hz after turbulent flight. The fact that there was 
a difference in the sensed or actual oscillations implies that an 
external 0.2 or 0.3 Hz component of the roll on the sea or in the 
air was provoking the prolonged response to roll, but the highly 
specific oscillation frequencies across a wide range of MdDS 
patients strongly implies that those frequencies were recognized 
and perpetuated in the central nervous system. As will be shown 
below, we think that it is likely that the storage mechanism 
involves the nodulus of the vestibulocerebellum.

The treatment devised by Dai et al. (1) significantly reduced 
the symptoms by readapting the velocity storage mechanism to 
normality. This indicates that there had been no primary struc-
tural lesions in the vestibulocerebellar system that had caused 
the symptoms. This was essentially verified by the rapid return to 
normality, even after having suffered with the major symptoms 
for up to 20 years (2). However, the neural basis of the process 
that involved the velocity storage mechanism in the VOR has 
remained unclear. Here, a hypothesis composed of a number of 
postulates is proposed to explain how these findings are produced 
in the brainstem and cerebellum. First, however, we consider 
some of the requirements of such a proposal.

tHeoretiCaL deMands oF an Mdds 
generation HypotHesis

The recurrent direction-changing nystagmus in periodic alter-
nating nystagmus (PAN) after cerebellar lesions offers a potential 
scheme to explain the continuous sensations of rocking, swaying, 
and bobbing of the MdDS patients. PAN occurs after cerebellar 
lesions and causes a reversal of the direction of the slow and 
quick phases of nystagmus at frequencies of about once every 
2–3 min (36). This has been interpreted as recurrent activation 
of groups of neurons on each side of the brainstem, i.e., as an 
adaptive process that can continuously reverse the direction of 
the nystagmus (37, 38). We have also reproduced the continuous 
reversal of the direction of horizontal nystagmus in the monkey 

by ablation of the nodulus and uvula (31, 39). In both studies, 
the recurrent cycle was terminated by an IM injection of the 
GABAB agonist baclofen, similar to the effect of baclofen on the 
PAN (36). The PAN is, of course, considerably slower than the 
recurrent oscillations in the MdDS, but this analogy shows that 
there can be oscillation between neural groups on each side of 
the brainstem.

Mdds generation HypotHesis

Based on new findings from a three-dimensional study of the 
characteristics of vestibular-only (VO) neurons in the medial 
and superior vestibular nuclei (40), it is proposed that there is 
a similar situation that produces the MdDS, namely, oscillation 
between the VO neuronal groups on each side of the brainstem 
at frequencies of 0.2 or 0.3  Hz, controlled by output from the 
cerebellar nodulus that produces the MdDS.

reLeVant QUestions

Previous studies of velocity storage have primarily been done on 
oculomotor aspects of vestibular activation, while the current 
interest is in head, neck, body, and leg movements or the per-
ception of such movements. Therefore, there should be specific 
activation of the neural elements that would cause excitation of 
the body and limbs rather than the eyes. There should also be 
neurons that control different neural groups on either side of 
the brainstem to activate different parts of the body and limbs. 
If such an arrangement exists, these neural groups should have 
substantial connections between them that could monitor and 
maintain the oscillations. The VO neurons characteristically  
have a time constant during rotation of 15–25 s (40, 41), but these 
neurons are capable of responding at a much faster rate, i.e., up 
to 450 impulses/s (42, 43). As suggested earlier, there should be 
adaptable elements in these structures to account for the pro-
posed shift in the pitch orientation vector that drives them into 
oscillation when confronted with exposure to head roll on the sea 
or in the air. Finally, there should be access to a 0.2 or 0.3 Hz signal 
from a structure that directly connects to these neural groups and 
sequentially drives them.

The VO neurons in the medial and superior vestibular nuclei 
meet these criteria. They are the neural structures that convert the 
time constant of the hair cells in the cupula of 4–4.5 s (42) into 
the VOR time constants of 15–25  s or longer (19–22, 44). The 
VO neurons receive direct input from the semicircular canals and 
output to the neck, body, and limbs through vestibulo- and retic-
ulo-collic and vestibulo- and reticulospinal pathways (45–48).  
They have little direct output to the oculomotor system, and pre-
sumably contact the oculomotor system primarily through the 
VPS neurons (48), although there are also some direct vestibulo-
oculomotor projections. As shown by Boyle and McCrea et al., 
the VO neurons reflect the imposed accelerations on the head and 
body, but do not go into action during volitional turns of the head 
(45–47). There are other vestibular neurons related to eye veloc-
ity that are activated during volitional head or head and body 
oscillations (49–51). Thus, there is a clear separation between the 
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vestibular neurons that respond to passive head or head and body 
oscillations, as against a complex set of neurons in the vestibular 
nuclei that respond to visual input, volitional turns of the head or 
efference copy (45).

The VO neurons, however, are out of volitional control, and 
we postulate that the rocking, swaying and bobbing during the 
MdDS is generated by the VO neurons that similarly are not 
subject to efference copy, volitional control, or response of corti-
cal or visual input. This is consistent with the finding during the 
MdDS that the patients have little or no active control of imposed 
rocking, swaying, and/or bobbing, or of the sensations associated 
with these movements. Of interest, drowsiness does not affect the 
rocking, swaying, or bobbing of the MdDS patients, and these 
oscillations or the perception of these oscillations persist even 
when the MdDS patients are not alert (Yakushin, Cohen, persoal 
communication).

The mixture of neurons that respond to passive head move-
ment, voluntary head movement, and efference copy demonstrate 
that activity generated in the vestibular system can be overt or 
silent when viewed in terms of muscular activity. Thus, we 
assume that perceived rocking, swaying, and bobbing that is not 
observable in many of the MdDS patients does not mean that 
vestibulospinal and reticulospinal tracts are not active, but simply 
that the activity is not always manifest.

The VO neurons have extensive axonal connections to VO 
neurons on the other side of the brainstem and use GABAB as 
the primary inhibitory agonist (52–54). Injections of baclofen 
caused a dramatic reduction in activity of VO neurons (22, 40, 
55), and when the crossing axons were severed, velocity storage 
permanently disappeared (54, 56). Since we propose velocity 
storage is intimately involved in production of the MdDS (1), 
the disappearance of velocity storage when the connecting VO 
neurons in the brainstem were inhibited or severed supports our 
hypothesis that the VO neurons are involved in the production 
of the MdDS.

When examined in three dimensions, a majority of VO 
neurons on each side of the brainstem are primarily activated 
by rotation to the contralateral side and fail to respond to ipsi-
lateral rotation (40). They also receive vertical canal and otolith 
inputs. Since these neurons project to the head, neck, body, and 
limbs through different components of the reticulospinal and 
vestibulospinal pathways, they each can activate a different set 
of head, neck, body, and limb movements, which could result in 
the rocking, swaying, and bobbing as well as the “gravity pull-
ing” of the MdDS. Exactly how this is done is still not known, 
however.

eVidenCe tHat tHe orientation 
VeCtor Can Be ModiFied By 
eXposUre to roLL

The experiments in monkeys using roll while rotating pro-
duced modification of the pitch orientation vector for up to 
18 h (18). In other experiments, Eron et al. (57, 58) also have 
demonstrated that it is possible to condition the polarization 
vector of VO neurons by putting monkeys on their sides (in 

roll) for 30–60 min. This shifts the otolith polarization vector 
toward gravity in the side-down or rolled position. The shift in 
the habituated orientation of the neuron persisted for periods 
of several hours. Thus, the orientation of the VO neurons can 
be altered for substantial periods by exposure to roll. Changes 
in their polarization vectors, while not as profound, were also 
found in canal-related neurons that were located in the direct 
pathway of the VOR (59). Such changes could also be involved 
in the “gravity pulling” by altering the vertical canal and otolith 
inputs to the VO neurons.

a potentiaL CereBeLLar soUrCe oF 
tHe 0.2 or 0.3 Hz Body osCiLLations

A large body of experimental data indicates that the nodulus 
and part of the uvula exert powerful control of the VO neurons 
and the velocity storage integrator. The VO neurons receive 
substantial input from the nodulus (31, 60–63). Pathways from 
the lateral portions of the nodulus cause disappearance of veloc-
ity storage and electrical stimulation of the nodulus, presumably 
activating these pathways, also causes a loss of velocity storage 
(64). This region of the nodulus is likely to discharge activity 
in velocity storage during visual suppression (19, 65) as well as 
loss of stored activity in velocity storage during “tilt-dumps”  
(20, 33, 39). In contrast, pathways from the central portions of the 
nodulus provide activity responsible for orienting the axis of eye 
velocity to the spatial vertical (20, 66). These functions are lost 
after nodulus lesions (30, 31). Habituation of the dominant time 
constant of the VOR is also controlled by the nodulus and is lost 
after nodulus lesions (67, 68). Therefore, there is extensive neural 
control of the VO neurons and of the velocity storage integrator 
through this structure (30, 31). Lesions of the nodulus also result 
in alternating nystagmus every 5 min (31, 39). Thus, the nodulus 
has a role in maintaining temporal adaptation of processes in the 
vestibular nuclei, that presumably can identify the source of the 
drive on neuronal groups in the brainstem that produce the PAN. 
Of note, this alternating nystagmus is eliminated by the action of 
baclofen, similar to the elimination of activity in VO neurons by 
the IM injection of baclofen (40, 55).

Nodulus lesions also cause a loss of roll eye movements and 
torsional nystagmus (28, 29), confirming the close association of 
the nodulus to roll. Thus, the tilted state of the pitch orientation 
vector in roll during the MdDS would be a natural function of the 
neural structure of the nodulus, as would the ability of the roll 
component of the nodulus to be modified by extensive exposure 
to roll on water or in the air.

Although the origin of the 0.2 and 0.3 Hz signal driving the 
VO neurons has yet to be discovered in monkeys or humans, this 
signal is present in the nodulus of the rabbit. In a comprehen-
sive series of experiments, Barmack and Shojaku et al. (69–74) 
showed that there was a massive input from the vestibular nerve 
to the nodulus (73). A striking aspect of this is that about 70% 
of vestibular fibers in Scarpa’s ganglion project directly to the 
nodulus through the inferior olives, bypassing the vestibular 
nuclei. This input arises predominantly in the anterior and 
posterior canals that sense active or passive roll movements of 
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FigUre 2 | (a) Site of recording of the neuron of the nodulus shown in (B). 
(B) Climbing Fiber-driven Purkinje cell activity from the site shown in (B). The 
Purkinje cell fired three to five times. Each time, the animal was rolled into the 
left side-down position. The oscillation in roll is shown by the bottom trace. 
The oscillation amplitude is shown by the bar on the right, and the time base 
by the lowest trace. This figure is reprinted with permission. For further 
details, see the article by Barmack and Shojaku (70).
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the head and/or of the head and body. This activity is also trans-
mitted through the medial and inferior vestibular nuclei to the 
inferior olives, where the individual planes of one anterior and 
the contralateral posterior semicircular canals are represented 
in individual neurons. The combined anterior and posterior 
canal activation in roll is also separately represented in another 
inferior olive nucleus (69). The combined activity that represents 
roll head and/or head and body in space is then transmitted by 
climbing fiber and mossy fiber inputs to the Purkinje cells in 
the contralateral nodulus. Thus, there is a powerful input to the 
nodulus continuously detailing the passive and active head and/
or head and body movements in roll. Otolith neurons also sense 
the roll position of the head and/or the head and body relative 
to gravity and the GIA, and transmit this activity to the inferior 
olives and thence to the nodulus. The nodulus also receives a 
mossy fiber input from the dorsal cap of Kooy in the inferior olive 
that originates in the subcortical visual system in the nucleus of 
the optic track that carries optokinetic-generated activity to the 
vestibular nuclei and the nodulus.

In their experiments, coordinated firing of the nodular and 
uvular Purkinje cells (Figure  2A) was produced by rolling the 
head and body statically and dynamically around the long axis 
at 0.2 Hz (Figure 2B). The 0.2 Hz oscillation in roll was chosen 
because it was the frequency that gave the best coordinated 
responses in the Purkinje cells on repeated testing at different fre-
quencies of oscillation (Barmack, personal communication). The 

coordinated firing of the Purkinje cells at 0.2 Hz ceased in most 
cells, when the roll stimulus ended, and the cells returned to their 
irregular spontaneous activity. In about 15% of the Purkinje cells, 
however, the 0.2 Hz firing frequency faded and then returned for  
300–400 s. Thus, it was possible to induce after-activity in some 
neurons at the preceding 0.2  Hz frequency that considerably 
outlasted the exciting 0.2 Hz roll oscillation (70). If such activity 
were present in the human nodulus, and if it were sufficiently 
prolonged, presumably it could supply activation of the output 
pathways to the VO neurons, and initiate the sense of swaying, 
rocking, and/or bobbing. Moreover, in a small number of Purkinje 
cells, it was possible to change the frequency of the after-activity 
to 0.3 Hz, as experienced in the MdDS after turbulent flight. A 
0.1 Hz frequency was also induced that could be related to the 
spread in frequencies shown in Figure 1. They also encountered 
Purkinje cells that had a continuous 0.2 Hz firing rate that could 
maintain the preference of the Purkinje cells to oscillate at 0.2 Hz. 
Thus, there was activity in the rabbit nodulus and uvula that could 
have potentially caused activation of VO neurons that outlasted 
the roll stimulus that had induced the original activity. If this 
activity existed in humans, it could explain the frequency of the 
body rocking (Figure 1).

This work provides a potential neural basis for the 0.2 and 
0.3 Hz oscillations in Purkinje cell firing that could be respon-
sible for the 0.2 and 0.3 Hz oscillations in rocking, swaying, and  
bobbing of the MdDS patients. One may question whether results 
in rabbit as well as in monkey can be appropriately applied to 
humans. The rabbit’s eyes are centered ±85° from the midline of 
the head; whereas, the monkey and human have the fovea centered 
±7° from the midline. Of course, there are many other differences 
between rabbits and humans. However, the vestibular system does 
not follow this rule. Baker and Straka and other colleagues have 
done extensive studies of the vestibular and oculomotor systems 
in fish and frogs (75–80). They note that “although the projec-
tions of the neurons vary among species, similar subgroups of 
major vestibular projection neurons originate from homologous 
segmental positions in the hindbrain of mammals, birds, and 
amphibians.”

Thus, it is striking that the semicircular canal to vestibular 
nuclei and inferior olive connections are very similar across 
mammalian species. For example, the angles of the planes of the 
semicircular canals and the insertions of the eye muscles driven 
by the semicircular canals lie in the same planes in humans, mon-
keys, goldfish, and sharks (81–83). Moreover, the eye movements 
induced by the canals are also the same across species in rabbits, 
dogs, cats, and monkeys (81, 82, 84). A striking example of the 
similar morphology of the end organs is that the planes of the 
semicircular canals are the same in monkeys and humans as in 
a brachiosaurus dinosaur that has been extinct for 155 million 
years (85). Of course, the dinosaur labyrinth is magnitudes bigger 
than the monkey labyrinth, but the planes of the canals are the 
same.

Baker and Straka conclude: “these comparative attributes 
among vertebrates suggest that, from basic wiring through func-
tion, the vestibular blueprint was established quite early during 
vertebrate evolution and, from the viewpoint of structure more 
than function, has been largely conserved throughout ~400 
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million years of vertebrate phylogeny (75).” From this, we pos-
tulate that the findings in the rabbit can be applied to monkeys 
and humans and that the driving frequency established in the 
nodular Purkinje cells are manifest in the VO neurons to produce 
the rocking, swaying, and bobbing of the MdDS in humans.

disCUssion

In this paper, we posit that the MdDS is produced by a devia-
tion of the pitch orientation vector from the spatial vertical to 
one side in roll. Further, the deviation of the pitch orientation 
vector occurs as a function of contextual learning after prolonged 
exposure to roll on the sea or in the air. If the pitch orientation 
vector is displaced in roll, it should cause positional nystagmus. 
Consistent with this, many of the MdDS patients had a unique 
type of vertical positional nystagmus when their heads were put 
in roll on either side; the quick phases were up when the head 
was on one side and down when the head was on the other side 
(1). Most patients also had a vestibular imbalance, manifested by 
marching to one side in the Fukuda stepping test. The unusual 
vertical positional nystagmus was also produced in monkeys 
after extensive exposure to roll while rotating. This occurred in 
association with a vestibular imbalance manifested by sponta-
neous nystagmus in darkness (18). This provided the basis for 
recognizing that a similar process had produced the MdDS in 
monkeys as in humans. Such vertical positional nystagmus was 
also produced in humans after long exposure to a slow rotating 
room when they rolled their heads to the side (23, 24). The experi-
ments in monkeys also demonstrated that such responses to roll 
while rotating only occurred in monkeys with a long VOR time 
constant, that considerably outlasted the 4.5–5.0 s input from the 
hair cells in the semicircular canals to steps of rotational velocity 
(42). Such time constants are produced in the velocity storage 
integrator, providing evidence that the MdDS was generated in 
velocity storage.

From this, it was postulated that the pitch orientation vector 
had been transformed from its original position along gravity to  
a lateral position in roll. It was further postulated that this shift 
had been produced by cross-coupling that had altered the position 
of the pitch orientation vector. The failure of pitch while rotating 
to cause a shift in the pitch orientation vector was interpreted as 
having strengthened, not modified, the pitch orientation vector. 
Model predictions were consistent with this hypothesis.

The finding that modification of the pitch orientation vector, 
i.e., its return to the spatial vertical, was produced by viewing 
low velocity, full-field optokinetic stimulation oriented around 
the spatial vertical confirmed this hypothesis. Thus, there was 
internal consistency between the conditions in both the MdDS 
patients and the response to roll while rotating. The ability to 
reverse the MdDS symptoms with a low velocity, full-field, 
optokinetic stimulus rotating against the direction of the 
vestibular imbalance, further strengthened the hypothesis that 
the optokinetic nystagmus (OKN) stimulus had countered the 
lateral tilt of the pitch orientation vector in roll. This conclu-
sion was also supported by the disappearance of the rocking, 
swaying, and bobbing and the subjective symptoms after such 
treatment (1, 2).

eVaLUation oF speCiFiC aspeCts  
oF tHe HypotHesis

The mechanics of the basis for oscillation were also considered: 
namely, it was proposed that the MdDS is produced by repetitive 
oscillation of groups of VO neurons on either side of the medial 
and superior vestibular nuclei. These neurons project excitatory 
activity to muscles in the head, neck, body, and limbs that could 
produce the repetitive rocking, swaying, and/or bobbing or the 
sensation that these motions have occurred (40). This could 
explain why spontaneous nystagmus was not prominent in the 
MdDS patients. Instead they generally manifested their vestibu-
lar imbalance through the body and limbs, as evidenced by the 
lateral movement on the Fukuda stepping test. This would be 
expected if the primary site of activation of the MdDS movements 
was in the VO neurons that primarily project to the head neck, 
limbs, and body, and not to the oculomotor system. Rather, it is 
believed that the major projection of the VO neurons that are 
sensing body rotation is to the body, and not to the eyes (48). The 
proposed link to the oculomotor system from the VO neurons is 
through the VPS neurons, and these neurons become inactivated 
during drowsiness along with the eye movements, whereas the 
VO neurons continue their activity unchanged (13, 43). Similarly, 
in agreement with this, the perceived rocking, swaying, and bob-
bing continue even when the MdDS patients are drowsy. These 
findings are consistent with the clinical state and support the 
conclusion that the VO neurons are at the basis of the MdDS.

Finally, we propose that the signal driving the 0.2 and 0.3 Hz 
oscillations impinges on the VO neurons through projections 
from the nodulus. Since the nodulus has been shown to have a 
close association with roll (28, 29, 69–74), the exposure to repeti-
tive roll while on the sea or in the air is presumably the trigger for 
the syndrome. As yet, the source of the 0.2 Hz signal, postulated 
to come from the nodulus, has not been found in humans or 
subhuman primates, but the findings by Barmack and Shojaku 
indicate that a preferred 0.2 Hz oscillation is present in the nodu-
lus of the rabbit, and that the climbing fiber-driven Purkinje cells 
are readily excited by a 0.2 or a 0.3 Hz oscillation in roll. Such a 
signal may also be present in the human nodulus.

The same organization is probably also responsible for the 
generation of the commonly experienced Mal de Debarquement 
(MdD). It is likely that the less intrusive MdD is also produced by 
a transient shift of the orientation vector in roll, but fortunately, 
this is short-lived in most individuals. The underlying basis for 
the difference in durations of the MdD and the MdDS are not 
known, but presumably involve different tendencies for continued 
activation of nodulus Purkinje cells in the two conditions. Nor 
is it obvious why women are much more susceptible to develop-
ment of MdDS than men. A similar propensity is also prevalent in 
migraine and motion sickness. If our postulate that the changes in 
the underlying frequency of nodular Purkinje cells is at the heart 
of the syndrome, then experiments in male and female monkeys 
and rabbits could prove interesting. It would also be important to 
determine if the effects of tilt of the body axis and exposure to brief 
flashes of light during recording of optokinetic after-nystagmus 
cause discharge in velocity storage (19, 65) Both of these functions 
have been demonstrated to originate in the nodulus (19, 30, 65).
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possiBLe eXperiMentaL 
inVestigation oF UnproVen 
assUMptions

The postulate that the VO neurons were set into oscillation 
through an inhibitory link across the brainstem is presented 
without specific evidence that this actually occurs in the MdDS 
patients. For that reason, it would be important to have registra-
tion of VO neurons in monkeys with long VOR time constants 
after they had been exposed to several hours of roll while 
rotating that produced the vertical positional nystagmus when 
their heads were put in roll on either side of the midline. This 
preparation could also be useful in determining if the 0.2  Hz 
oscillation in the Purkinje cells in the rabbit were similar to 
those in primates. It is also possible to determine if the pitch 
orientation axis is aligned with the spatial vertical in recordings 
of neurons in the nodulus. If so, then it could be determined 
if the pitch orientation vector was tilted after generation of an 
MdDS analog in monkeys and whether it was possible to reori-
ent the pitch orientation vector by exposure to a slowly moving, 
full-field OKN stimulus moving about the spatial vertical. It also 
might be possible to force a shift in the pitch orientation vector 
by exposure to roll while rotating, and to determine how much 
tilt of the OKN axis was sufficient to produce a tilt in the pitch 
orientation vector. Finally, it might also be possible to determine 
if the pitch orientation vector is actually strengthened after 
exposure to pitch while rotating (18).

Similarly, the hypothesis that exposure to an optokinetic 
stimulus oriented to gravity induces reversion of the pitch orien-
tation vector could explain the finding that the body oscillations 
disappear briefly when the MdDS patients ride in cars (3–5). 
Presumably, some aspect of the visual streaming or the oscilla-
tions of the automobile temporarily restore the orientation vector 
back to the spatial vertical. This could be studied experimentally 
by blocking vision during the car rides, or by determining if rides 
on smooth, flat surfaces in well sprung cars fail to affect the sensa-
tions of the MdDS.

It would also be of interest to tilt the axis of rotation of the 
OKN when treating MdDS patients to determine whether tilts 
of the axis of the OKN stimulus failed to induce abolition of the 
MdDS, and if so, by how much tilt of the axis of rotation. The 
importance of the vestibular imbalance could also be studied by 
combining rotation at various velocities with the MdDS to deter-
mine whether it made the perception or actual oscillations better 
or worse, as does rotating the OKN stimulus during treatment 
against or in the direction of the vestibular imbalance. Finally, it 
would be of interest to reduce the time constant of the velocity 
storage integrator using the paradigm that was used to reduce 
velocity storage in motion sickness (66), and test the hypothesis 
that the MdDS could be improved by habituating or shortening 
the time constants of the VO neurons.

A critical experiment would also be to determine if the yaw 
axis orientation vector was tilted from the spatial vertical during 
off-vertical axis rotation (OVAR) in patients with the MdDS, 
and whether such a tilt reverted to its orientation to gravity 
after the patients had been successfully treated (20, 66). Such an 

experiment could provide proof of the tilted orientation vector 
hypothesis.

The syndrome considered in this manuscript is dependent 
on the presence of a velocity storage integrator and does not 
exist in monkeys and presumably in humans with a short VOR 
time constant. Velocity storage, as noted above, is not a recently 
developed phenomenon, since it is also present in the goldfish, 
evolved hundreds of millions of years ago (75). Ernst and 
Thomas have shown that it is possible to activate cross axis firing 
of neurons on each side of the vestibular nuclei of the goldfish 
with continuous rotation, as in humans (37, 38). The goldfish 
also have prominent cerebella with many similar connections as 
in mammals (75). Consequently, it could also be of interest if it 
were possible to produce cross-brain stem activation of vestibular  
units by roll while rotating in the goldfish. The point is that this 
type of cerebellar-driven oscillation of neurons in the vestibular 
nuclei may be a very old phenomenon. If so, then it would be of 
interest to determine if cerebellar-driven vestibular activity is an 
intrinsic phenomenon crossing species from fish to man.

QUaLiFiCations to tHe Mdds 
HypotHesis

Two major qualifications could invalidate the hypothesis pre-
sented in this paper. First, there has been heavy emphasis on 
the speculation that the syndrome produced in the monkey by 
roll while rotating is essentially the same as that of the MdDS in 
humans. This was based primarily on the finding of abnormal 
positional nystagmus and a vestibular imbalance in both humans 
and monkeys. However, there were significant differences 
between these two that were encountered. Namely, there was 
more activation of spontaneous nystagmus in the monkeys than 
in humans in whom spontaneous nystagmus was rarely present. 
This suggested that the vestibulo-ocular component was larger 
in the monkeys than in humans. It could have been related to 
the differences in generation of the mdDS. The monkeys were 
rotated in yaw for several hours, whereas the humans presum-
ably got their MdDS after prolonged exposure to roll, without the 
concomitant yaw axis rotation. More important, perhaps, was the 
difference in body movements. Rocking, swaying, and or bobbing 
was never observed in the monkeys after roll while rotating, but 
such movements or the perception of such movements were a 
cardinal feature of the MdDS. Of course, there was no manifest 
movement in many of the humans, only the sensation of move-
ment, and it could not be ascertained whether the monkeys also 
had a sensation of movement, not manifest by rocking, swaying, 
and/or bobbing. If the VO neurons were driven by the nodulus, 
such activity would be expected. However, the monkeys studied 
in the 2009 paper were always chaired when out of their cages, 
so that it is possible that weak oscillations of limbs were never 
observed (18). If monkeys were to be used in Future studies, 
it would be important to have implanted EMG electrodes to 
determine if weak oscillations were present in the muscles after 
exposure to roll.

Second, heavy emphasis was placed on the origin of the 
role of the nodulus in perpetuating the body oscillations or the 
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perception of the body oscillations. This postulate depended on 
data from the rabbit. However, there was little direct evidence 
that such activation of nodular Purkinje cells was also present 
in the individuals with the MdDS. If such activity does not exist 
in humans, then an important part of this hypothesis would be 
invalidated.

Despite these differences, the hypothesis that the pitch ori-
entation vector had been tilted in roll that led to the treatment 
generated a therapy that was successful in a majority of the MdDS 
patients, for the first time (1, 2). If the study using OVAR can be 
performed, then it could potentially provide support for this por-
tion of the hypothesis. However, these qualifications must be kept 
in mind in evaluating whether the hypothesis is generally valid.

otHer treatMent neCessities

A major criticism of the therapeutic results is that they were 
obtained without adequate controls. This largely accrued because 
there was no significant support for such a study. The patients 
were desperate for relief after having had the MdDS for years 
without relief, and some were even suicidal. Also, this was the first 
successful treatment for the MdDS, and the results in the initial 
study were statistically significant (1). Moreover, the patients were 
coming for treatment from all over the country and the world and 
were not able to return for motor studies without support. The 
fact that many of the patients had had their illness for many years 
without relief despite a wide range of investigative steps, extensive 
drug treatment, and prolonged physiotherapy without significant 
improvement rendered treatment, even without controls to be 
a necessity. Presumably, given the strong positive results, even 
though they were largely reported by telephone, provide the 
preliminary data to support a complete, controlled study. Such a 
study is now under consideration.

A significant problem remains in the treatment of the MdDS, 
namely, that there was a substantial reversion back to the rock-
ing, swaying, and/or bobbing after treatment. This was generally 
attributed to oscillations during the ride home (2). Initial efforts to 

reduce this reversion with oral baclofen have not been successful. 
This might be due to its limited ability to cross the blood–brain 
barrier (86–89).

Intramuscular injections of baclofen in monkeys caused the 
disappearance of any vestige of velocity storage in the VO neurons 
(22, 40, 55). If our hypotheses that the MdDS is produced by VO 
neuronal activity are correct, suppression of VO neuron activity 
could stop the uncontrollable oscillations of the body during the 
MdDS. If the 0.2 or 0.3 Hz signals are coming from the cerebellum, 
however, we do not have the appropriate drugs to affect cerebellar 
circuitry, aside from the GABAA and GABAB inhibitory agonists, 
and more research is necessary on this subject.

Since cruises on the sea continue to be an attractive vacation, 
it is likely that we will continue to have numerous people who 
are afflicted by this malady. However, while it was originally 
considered to be untreatable, and people have even been driven 
to suicide by this condition, there appears to be the possibility 
of finally correcting the position of the pitch orientation vector 
so that it stays permanently on its appropriate orientation to the 
spatial vertical. Of course, adequate therapy demands reduction 
in the host of associated symptoms such as brain fog, sensitivity 
to sound and fluorescent lights, headaches, inability to work, 
depression, and suicidal tendencies that accompany the MdDS 
(2, 4, 6, 7, 9, 10, 13–15), but this must be addressed in detail 
when the uncontrolled body movements or the sensation of these 
movements ceases.
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