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The human gut possesses millions of microbes that define a complex

microbial community. The gut microbiota has been characterized as a vital

organ forming its multidirectional connecting axis with other organs. This

gut microbiota axis is responsible for host-microbe interactions and works

by communicating with the neural, endocrinal, humoral, immunological,

and metabolic pathways. The human gut microorganisms (mostly non-

pathogenic) have symbiotic host relationships and are usually associated with

the host’s immunity to defend against pathogenic invasion. The dysbiosis of

the gut microbiota is therefore linked to various human diseases, such as

anxiety, depression, hypertension, cardiovascular diseases, obesity, diabetes,

inflammatory bowel disease, and cancer. The mechanism leading to the

disease development has a crucial correlation with gut microbiota, metabolic

products, and host immune response in humans. The understanding of

mechanisms over gut microbiota exerts its positive or harmful impacts

remains largely undefined. However, many recent clinical studies conducted

worldwide are demonstrating the relation of specific microbial species and

eubiosis in health and disease. A comprehensive understanding of gut

microbiota interactions, its role in health and disease, and recent updates

on the subject are the striking topics of the current review. We have also

addressed the daunting challenges that must be brought under control to

maintain health and treat diseases.
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Introduction

The association of human health with the intestine has
been long acknowledged as Hippocrates said, “Death sits in the
bowls” in 400 B.C. Many studies worldwide have focused on the
significant impact of intestinal microbiota on human health and
disease (AboNahas et al., 2022). The human body is colonized
by a diversity of bacteria, viruses, archaea, and unicellular
eukaryotes. Microbes inhabit all human body surfaces, but
a significant number of microbes live in the gastrointestinal
tract/gut. The human gut possesses approximately more than
one thousand microbial species that form a complex ecological
community called gut microbiota (Lagier et al., 2016). The
human gut microbiota is carrying about 150 times more
genes compared to the entire human genome. It is widely
accepted that approximately a hundred trillion microbes live
on and inside the human body having a key role in various
biological processes including health and disease (Wang et al.,
2017). They are the primary mediators of body homeostasis,
impacting various physiological activities, such as metabolism,
barrier homeostasis, inflammation, and hematopoiesis through
both intestinal and extra-intestinal actions. The gut microbiota
has recently been classified as a “vital organ” because
of its multidirectional and communicational connection or
axis with other organs through neural, endocrine, humoral,
immunological, and metabolic pathways. Any change in the
microbial community not only causes gut-related issues but
also influences other organs related diseases, though the actual
interaction mechanism between the gut and the organs has yet
to be fully understood (Ahlawat and Sharma, 2021).

The interaction between host and microbes plays a pivotal
role in both health and disease. Gut microbiota diversity
is greatly dependent on various host factors including diet,
human lifestyle, age, and environmental factors. However, diet
is currently considered one of the major factors (modifiers)
in modulating the gut microbiota (Simões et al., 2022).
Human microbiota has promising potential in altering appetite,
increasing nutrient harvest, and exerting energy from various
food components. Microbes have also a fundamental role
in xenobiotic metabolism. In xenobiotic metabolism, various
gut microbes alter the chemical structures of various diet
components, drugs, pollutants, and many pesticides (Nakov and
Velikova, 2020).

Many research studies have supported the concept that
gut microbiota plays a key role in modulating immunity,
weight gain or loss, energy homeostasis, and obesity-related
disorders (Piccioni et al., 2022). Likewise, gut microbiota and
their metabolites are associated with various non-alcoholic fatty
liver diseases (NAFLDs), inflammatory bowels diseases (IBDs),
hepatocellular carcinoma, cardiovascular diseases (CVDs),
alcoholic liver disease (ALD), chronic kidney diseases (CKDs),
and cirrhosis (Hsu et al., 2020; Jansen et al., 2021; Ryma et al.,
2021; Wang et al., 2021; Zhou et al., 2021; Philips et al., 2022).

Figure 1 depicts several symbiotic gut microbial strains and the
possible negative health consequences of dysbiosis on the gut-
organ axis. Hence, the comprehensive understanding of recent
gut microbiota interactions, their eubiotic role in health and
disease, and other recent updates on this subject are compiled
in this review, with a major focus on controlling the challenges
to maintain health and treat various diseases.

Significance of human gut
microbiota eubiosis

Comprehensive clinical studies are available on microbiota
and involvement in their balance, i.e., eubiosis and related
pathophysiological aspects. The compositional difference in gut
microbiota has been observed in health and disease conditions.
Eubiosis conditions are effective in controlling various diseases
caused by microbes. Proper intake of a healthy diet and the
development of eubiosis acts in favor of human health. The high
intake of antibiotics causes an imbalance in the gut microbiota
and favors systemic diseases (Santacroce et al., 2021).

Several population-based studies have revealed the highly
beneficial role of human gut microbiota in healthy people,
as well as the importance of well-understanding its structure
and the factors that influence its composition, such as food,
age, geography, systemic disorders, and drugs (Wang et al.,
2017; Rowland et al., 2018). Phyla Firmicutes, Bacteroides,
Actinobacteria, Proteobacteria, and Verrucomicrobia
contribute to the significant resident bacterial populations in the
gut microbiome (Fava et al., 2019). The first step in identifying
the symbiotic interactions between intestinal microbes and
their hosts is to describe the balanced composition of gut
microbiota and disease-related variations. The microbes reside
in a mutual association with the host in a healthy state, affecting
the host’s health by controlling nutrient metabolism, defending
against pathogens, and delivering signals to immune cells to
promote host physiology and immunity (Ribaldone et al., 2022).
An initial underestimation of the total number of microbial
species in the intestine has been described through several vivo
and ex vivo studies due to complications in culturing certain
microorganisms (Lagier et al., 2015).

Bacteria and proteobacteria contribute to carbohydrate
digestion, gut microbiota, regulation of the immune system,
and defense against pathogen colonization (Rosser and Mauri,
2016; Fan and Pedersen, 2021). For survival, microbes in the
intestine tract mainly depend on dietary substrates undigested
in the upper digestive tract. Saccharolytic bacterial fermentation
typically creates advantageous metabolites, while bacteria switch
to an alternative energy source if there are insufficient
carbohydrates, leading to the development of other metabolites
that could be more disadvantageous to human health (Rowland
et al., 2018). Methanobrevibacter smithii is the human-associated
Archaea that plays a vital function in the synthesis of methane
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FIGURE 1

Gut microbial strains and negative health outcomes of gut microbial dysbiosis.

from H2 processed by bacterial metabolism. It is a prominent
and essential Archean in the gut microbiota (Hoffmann et al.,
2013; Berry, 2016). Some of the beneficial functions of gut
microbiota for human health are shown in Figure 2.

It is considered that diet is a significant factor associated
with health and disease control, but some recent studies
concluded that diet is pivotal for shaping the gut microbial
structure and influencing the metabolism of the host. The
gut environment, sequentially, can help reproduce, grow,
and survive the microbial community (Browne et al., 2016).
Carbohydrates are an essential and significant energy source;
also, intestinal microbiota has provided a fermentation stage to
deliver vital biomolecules to the host (Conlon and Bird, 2015).

A normal balance between the host and gut flora is essential
for human health, while disruption is linked with various human
diseases, like hypertension, obesity, cardiovascular disorders,
diabetes, and IBD (Von Martels et al., 2017; Kho and Lal,
2018; Szablewski, 2018). However, the human microbiome
analysis is still at its initial phase in filling the knowledge gap
in the microbiome-host relationship and its role in disease
pathogenesis and therapeutical importance. Therefore, further
in-depth research is needed to unravel this fascinating yet
enigmatic area of study.

Gut microbiota and human
metabolism

The diverse human microbiome has substantial metabolic
activities essential for the functioning of mammalian enzymes

in the gut mucosa and liver and the host metabolism. Gut
microbiota influence host health by shaping the biochemical
profile of the diet. The significant role of gut microbiota in
human immunity has promoted research to investigate the
contributions of particular microbes in metabolic pathways,
especially in dietary components’ metabolism (Cardona and
Roman, 2022). Recent studies have found that gut microbiota
can metabolize phytochemicals, especially polyphenols, by
well-defined paths (Rowland et al., 2018). The human gut
microbiota reacts efficiently to major dietary changes. The
presence of these fast, diet-induced patterns is confirmed by
evidence from individuals switching between plant and meat-
based diets, adding to their diet more than 30 g of specific
dietary fibers a day or adapting either a high-fiber-low fat
diet or a low-fiber-high-fat diet for ten days; in all cases, the
structure and composition of microbiome changed over 1–
2 days (Wu et al., 2011; David et al., 2014). This flexibility
may be an advantageous feature of enlisting microbes as part
of the digestive structure, particularly when considering the
potential day-to-day variability in food available to foragers. It
may also be an inescapable consequence of dealing with such
a microbial community that is diverse and competitive and
undergoes rapid turnover. Human gut microbiota is associated
with the degradation of dietary fibers, proteins, and peptides by
fermentation and anaerobic degradation (Yadav et al., 2018).

Carbohydrates and simple sugars are the main components
of food metabolized by gut microbiota. Bacterial species,
especially the phyla Bacteroidetes and Firmicutes, can ferment
fibers (the indigestible carbohydrates) to produce branched-
chain and short-chain fatty acids (SCFAs), lactate, ethanol,
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FIGURE 2

Positive health outcomes of gut microbial eubiosis.

hydrogen, and carbon dioxide; these products are further
used by the host or excreted (Patrascu et al., 2017). Acetate,
propionate, and butyrate are the main short-chain fatty acids
(SCFAs) distinguished in human feces, usually found in 3:1:1
to 10:2:1 molar ratio; this ratio is consistent with the values
reported in the intestine in early sudden deaths (Rowland et al.,
2018). These are the main SCFAs that perform several essential
functions in the human body (Rauf et al., 2022). Butyrate
is perhaps the essential SCFA for human health, as it is the
primary source of energy for human colonocytes (Wang et al.,
2019). Butyrate has the potential to act as an anti-carcinogen
as it persuades apoptosis of colon cancer cells and regulates
gene expression by inhibiting histone deacetylase (Havenaar,
2011; Steliou et al., 2012). Propionate is also an essential
energy source for the epithelial cells in the liver; it plays a
vital role in gluconeogenesis (Cani, 2018). Acetate helps in the
growth of other bacteria as an essential co-factor; for example,
Faecalibacterium prausnitzii will not grow in pure culture in the
absence of acetate (Rowland et al., 2018).

Human gut microbiota can also synthesize essential
vitamins, including biotin, folate, and vitamin K, and neutralize
carcinogenic compounds, such as pyro lysates (Selber-Hnatiw
et al., 2017). Various indications specify that the host
metabolism is mainly affected by multiple microbial metabolites
that bind to specific host membranes or nuclear receptors
(Bhutia et al., 2017). Some of the most important metabolites
produced by gut microbiota are described in Table 1.
The majority of essential functions for host physiology and
maintenance are associated with gut microbiota, e.g., the

nervous system’s development, intestinal development, appetite
regulation, etc.

Gut microbiota in immune
homeostasis

The contribution of the human gut microbiota to various
aspects of human health, especially the immune system, is
crucial for providing the host with several essential benefits.
Recent studies have found that early development of the
gut microbiota is crucial in preventing autoimmune disorders
and proper immune functioning (Lazar et al., 2018; Spencer
et al., 2019; Elmassry et al., 2020; Schluter et al., 2020).
The intestinal microbiome is essential for the maturation
of the immune system, which includes adaptive and innate
immune responses. Innate immunity deals with the physical
barrier of the epithelia, specialized cells, and circulating
chemicals to immediately identify a wide assortment of
foreign antigens and eradicate them (Thaiss et al., 2016).
The mucosal immune system, in particular, mechanisms
are primarily independent of the systemic immune system,
and after bacterial colonization of the intestinal tract, it
undergoes significant changes. For the immune system’s growth
and development, commensal microorganisms are necessary
to distinguish between commensal and pathogenic bacteria.
Recent studies have demonstrated that gastrointestinal tract
microbiota modulates the movement and role of neutrophils
and influences the division of populations of T cells into
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TABLE 1 Metabolites produced by gut microbiota and their functions.

Metabolites Functions References

Bile acid metabolites; including deoxycholic acid
(DCA) and lithocholic acid (LCA)

Regulate bile acid, cholesterol, lipid, glucose, and energy metabolism, show
antimicrobial effects, and activate host nuclear receptors and cell signaling
pathways.

Ramírez-Macías et al., 2022

Short-chain fatty acids (SCFAs) metabolites such as
propionate and butyrate

Regulate food intake and insulin secretion, also aid in maintaining body
weight.

Psichas et al., 2015; Larraufie
et al., 2018

Branched-chain fatty acids (BCFA) including
isobutyrate, isovalerate

Histone deacetylase (HDAC) inhibition, increased histone acetylation. Mischke and Plösch, 2016

Indole derivatives including indoxyl sulfate and
indole-3-propionic acid (IPA)

IPA exhibits neuroprotective effects, acts as a powerful antioxidant, and
regulates intestinal barrier function. Indoxyl sulfate is a uremic toxin that
accumulates in the blood of individuals with impaired excretion systems.

Hendrikx and Schnabl, 2019

Lipopolysaccharide (LPS), peptidoglycan (PGN),
lipoteichoic acid (LTA)

Epigenetic regulation of genes in colorectal cancer, modulation of chromatin
structure and transcriptional activity.

Lightfoot et al., 2013; Mischke
and Plösch, 2016

Phenolic derivatives include 4-OH phenylacetic
acid, urolithins, enterodiol, and
9-prenylnaringenin

Exhibit antimicrobial effects, maintain intestinal health, and protect against
oxidative stress.

Larrosa et al., 2010

Choline metabolites include choline,
trimethylamine N-oxide (TMAO), and betaine

Regulating lipid metabolism, and glucose synthesis contribute to the
development of cardiovascular disease.

Smallwood et al., 2016

Polyamines include putrescine, spermidine, and
spermine

Sustaining the high proliferation rate of intestinal epithelial cells enhances
intestinal barrier integrity and enhances the systematic adaptive immune
system.

Rooks and Garrett, 2016; Tofalo
et al., 2019

Vitamins including thiamine (B1), riboflavin (B2),
niacin (B3), pyridoxine (B6), pantothenic acid
(B5), biotin (B7), folate (B11-B9), cobalamin (B12),
and menaquinone (K2)

Help in red blood cell formation, DNA replication, and repair, work as an
enzymatic co-factor, and enhance immune functioning.

Nicholson et al., 2012; Forster
et al., 2017

Ethanol Protein fermentation metabolites may be involved in NAFLD progression. Yao et al., 2016; Wu et al., 2021

Hydrogen sulfide (H2s) Reduction/neutralization of reactive oxygen species. Afanas’ev, 2014; Mischke and
Plösch, 2016

various forms of T helper cells (Th), respectively: Th1, Th2,
and Th17 or into regulatory T cells (Francino, 2014; Owaga
et al., 2015; Tomkovich and Jobin, 2016). Th17 cells are a
subset of TCD4+ cells that secrete several cytokines, affecting
immune homeostasis and inflammation (Rossi and Bot, 2013).
Gut microbiota contributes to the stimulation and maturation
of the immune system in response to pathogens, and it induces
and sustains tolerance (Pickard et al., 2017).

Development of the immune system begins at birth, with
the introduction of the microbiota, and can only become
fully mature in the presence of commensal microflora. Proper
immune system maturation is needed to prevent aberrant
immune responses, which can cause chronic inflammation and
illness (Tibbs et al., 2019). Various strategies, including the
germ-free (GF) model, have been taken to demonstrate the
importance of gut flora for forming both innate and adaptive
immune systems (Uzbay, 2019). In comparison, gut microbiota
modulation with antibiotic treatment also demonstrated its
importance for immune homeostasis (Hill et al., 2010; Ubeda
and Pamer, 2012). Antigen-presenting cells (APCs), having co-
evolved with gut microbiota, a key advantage of intestinal APCs
is their potential to defend the body from infection while
retaining the immune tolerance to the normal gut microbiota
(Wu and Wu, 2012). Gut microbiota plays a significant role

in controlling the production of APCs. Gut microbiota is also
involved in various intestinal and extraintestinal autoimmune
diseases, as demonstrated by multiple studies (Andréasson et al.,
2016; Rinninella et al., 2019).

Gut microbiota in malnutrition and
fasting

Diets and food supplements have a significant influence on
the gut’s microbial composition and its variability over time.
A high-fat diet is a risk factor for diseases like obesity, metabolic
syndrome, and diabetes, all of which are linked to significant gut
microbiota composition changes. Disruption of the circadian
physiological rhythm increases the probability of intestinal
dysbiosis, potentially leading to the pathogenesis of a variety of
metabolic and inflammatory disorders, like diabetes, intestinal
inflammatory diseases, and even cancer (Reynolds et al., 2017).
Studies have also found that gut microbiota responds to
malnutrition and fasting (Flint et al., 2015). The impacts of
malnourishment on the gut microbiota were only studied under
controlled conditions in lab animals due to ethical reasons. In
a study, several weeks of nutrient deficiency showed increased
microbiome diversity in fish, mice, and toads; geckos showed
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a decrease while no change was detected in quails (Kohl et al.,
2014). Due to these variations, it is challenging to investigate
the influence of human nutrient deficiency, which can only
be experienced in particular undernourished people. One of
the leading causes of child mortality is malnutrition; nutrient-
rich therapeutic foods are used to treat severe malnutrition.
Also, children cannot completely recover from body mass
improvements, probably due to their immature microbiomes. In
children, the early development of the intestinal microbiome is
particularly significant because microbiome composition keeps
changing as they grow and continue changing their diet (Derrien
et al., 2019).

Weight loss is promoted by intermittent fasting (IF)
regimens, which contribute to enhanced metabolic health.
Through metabolic activities, IF participates in the modulation
of the gut flora, allowing ongoing interaction with nutrients to
be digested and shaping intestinal immune responses during
the development of coronary heart disease, blood pressure,
and diabetes mellitus (Matías-Pérez et al., 2022). Microbiota
reshaping by antibiotic therapy has extended the survival of
children with acute malnutrition; even so, severe malnutrition
reappeared when the microbiome remained immature,
implying that microbiota maturity would anticipate the long-
term therapeutic efficacy of the food (Subramanian et al., 2014).
Furthermore, a study found that gut microbiota contributes a
beneficial impact to the start of severe malnutrition, which can
be regenerated by microbiota transplantation into gnotobiotic
mice (Smith et al., 2013). Dietary and lifestyle activity such
as fasting, and time-restricted eating influences the makeup
of the intestinal microbiota. Various microbial products such
as SCFAs, trimethylamine N-oxide, tryptophan, and tyrosine
derivatives can significantly change with significant microbiota
composition changes. However, there are several promising
observational studies on human malnutrition, holding out the
hope that therapeutic renovation of the gut microbiota will
support eradicating mortality linked to malnutrition.

Gut microbiota in major human
diseases

From the findings of recent epidemiological, physiological
and omics-based studies, supported by cellular and animal
experiments, it is demonstrated that intestinal microbiota plays
a significant role in both health and disease (Ding et al., 2019).
Although this research area is still at a very initial stage, with less
understanding of the functional characteristics of the complex
gut microbiota, some promising studies have been reported
and indicated an enormous potential for revolutionizing the
pathogenesis of diseases and therapeutic approaches (Ding
et al., 2019; Yin et al., 2019; Rajoka et al., 2020; Bangar
et al., 2022). Several major human diseases are associated with
an altered gastrointestinal microbiota, for example, obesity,

diabetes, cardiovascular disorders, cancer, hypertension, and
IBDs (Ding et al., 2019; Nie et al., 2019; Xu et al., 2019)
have been discussed individually later in this review. A state
called “dysbiosis” is the variation in gut microbiota composition,
which is described in many diseases, as shown in Table 2. It
is a common problem in the current era because of bacterial
infections, diet shifts, and antibiotics (Lindell et al., 2022). It has
been challenging to define an appropriate healthy microbiome
composition because of inter-individual variation (Lloyd-Price
et al., 2016). A well-balanced gut microbial community is
essential for the host and the microbiome to co-exist in a
mutually beneficial relationship.

Obesity

The global prevalence of obesity has exceeded nearly 650
million people in the last four decades, a total that is six times
more than what was reported in the 1990s (Sørensen et al.,
2022). That can only be justified by increasing caloric intake
and decreasing physical activity (Pascale et al., 2019). Several
other diseases, such as diabetes mellitus, coronary heart disease,
and cancers, are linked to obesity (Amin et al., 2019; Sun et al.,
2019). Thus, weight management and reduction have gained
more interest and attention from researchers. The involvement
of gut microbiota in obesity is becoming a broad research topic
and potentially useful for obesity treatment. Remarkably, the
effect of diet on intestinal microbiota composition has become
a specific subject of research. In this regard, recent evidence
from various studies of humans and mice has demonstrated
that changes in gut microbiota composition may play a vital
role in the development of obesity (Davis, 2016; Bouter
et al., 2017; Stephens et al., 2018; Socol et al., 2022). Several
gut microbiota species, called the obesogenic gut microbiota,
can significantly contribute to obesity, such as Firmicutes,
Bacteroidetes, Rhizobium, Lactococcus, and Clostridium (Cao
et al., 2019). In particular, obesogenic gut microbiota could
facilitate obesity by producing SCFAs such as butyrate,
providing the host with extra energy, and inducing low-grade
inflammation caused by intestinal microbiota metabolites (Cao
et al., 2019). Genetic aspects and epigenetic variations also play
a significant role in the correlation between the composition
of the gut microbiota and its contribution to obesity and the
production of metabolites.

Some mechanisms have been proposed to define the role of
gut microbiota in the development of obesity. Gut microbiota
can reduce fatty acid oxidation by suppressing adenosine
monophosphate kinase (AMPk) (López, 2017). This enzyme is
present in muscle fibers and the liver and serves as a cellular
energy indicator. AMPk suppression leads to reduced oxidation
of fatty acids and, as a result, increased fat accumulation.
By inducing systematic inflammation, intestinal microbiota
can also lead to metabolic disturbance observed in obesity
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TABLE 2 Diseases associated with gut microbiota abnormalities.

Disease Features References

Irritable bowel syndrome An abundance of Firmicutes and a decrease in Bacteroidetes. Kennedy et al., 2014

Type 1 diabetes In genetically predisposed individuals, autoimmune against pancreatic b-cells.
Deficient development or alteration of the microbiota may contribute to
dysfunctional immunity with the devastation of autoimmune b-cells and increased
leakiness of the intestinal epithelial barrier. Variability of microbiomes reduced.

Dunne et al., 2014

Asthma Outbreaks of Chlamydophila pneumonia during bronchitis and pneumonia
development affect the airway microbiome. Gut microbiota is influenced by the
introduction of microbiota to the environment, particularly in early life, which helps
immune function growth and the development of defending against allergic
sensitization.

Huang and Boushey, 2015

Food-borne pathogens and
food poisoning

Opportunistic pathogens (Campylobacter, Salmonella, Escherichia coli, Shigella, etc.)
disturb the microbiome’s balance leading to dysbiosis.

Josephs-Spaulding et al., 2016

Malnutrition Decrease or missing species that either process food categories efficiently or produce
vitamins may reduce the absorption of nutrients. An overabundance of
Enterobacteriaceae can lead to epithelial damage, diarrhea, and limited absorption of
nutrients.

Kane et al., 2015

Depression In physiological systems, Bifidobacterium infantis, generally found in infants’
gastrointestinal tract and administered probiotic drugs, can have antidepressant
effects.

Evrensel and Ceylan, 2015

Anxiety Oral administration of Campylobacter jejuni subclinical doses in murine models
induced anxiety-like behavior without stimulating immunity. In a marine model, the
Lactobacillus and Bifidobacterium may act as an anxiolytic influencer.

Schnorr and Bachner, 2016

(Pindjakova et al., 2017). Another proposed mechanism is the
energy regulation and microbes’ potential to ferment dietary
polysaccharides that are not digested by humans (Khan et al.,
2016). The fermentation of dietary fiber produces SCFAs.
SCFA can stimulate lipogenesis after being absorbed and boost
triglyceride storage via molecular pathways. Also, SCFA has
the potential to suppress the fasting-induced adipocyte factor
(FIAF), which inhibits lipoprotein lipase (LPL), causing the
accumulation of triglycerides in the host adipocytes (Khan et al.,
2016). To acknowledge, how intestinal microbiota promotes the
development of obesity, more prospective and interventional
studies are needed.

Hypertension

Hypertension is becoming a significant threat to public
health and an important risk factor for cardiac, stroke, and
kidney diseases (Shah et al., 2019). By 2025, it is estimated that
the total number of patients with hypertension will rise to 1.56
billion worldwide (Xu et al., 2020). Studies have shown that
various genetic and environmental factors, including dietary
salt intake, lack of exercise, and alcohol consumption, also
contribute to hypertension progression (Booth et al., 2012;
Rust and Ekmekcioglu, 2016). Previous research on animal
models and human subjects has shown that hypertension
progression is also linked to gut microbiota dysbiosis (Jose
and Raj, 2015; Miremadi et al., 2016). Moreover, alterations in
the composition of the intestinal microbiota can result in the

development of novel antihypertensive therapies. The various
mechanisms underlying the relation between gut microbiota
and hypertension have been proposed, although there is
no definite understanding. The ratio of Bacteroidetes and
Firmicutes within intestinal microbiota has been significantly
associated with hypertension (Yang et al., 2015). Hypertensive
animals and seven hypertensive patients reported an abundance
of Bacteroidetes and Firmicutes in their gut microbiota as
sequenced by 16S ribosomal RNA (Moghadamrad et al., 2015).
Studies using angiotensin II-infused GF mice have shown
that gut microbiota is involved in vascular dysfunction and
hypertension induced by angiotensin II (Karbach et al., 2016).

Short-chain fatty acids play a crucial role in maintaining
gut microbiome homeostasis and host immunity. Recent studies
have found that SCFAs produced by gut microbiota is involved
in modulating blood pressure (Kang and Cai, 2018). SCFAs
have the potential to stimulate host G-protein-coupled receptor
(GPR) pathways that affect the secretion of renin and blood
pressure (Pluznick et al., 2013). In another study to investigate
the correlation between serum metabolites and hypertension, it
was found that lyxose levels (a by-product of intestinal microbial
fermentation) were higher in patients with newly diagnosed
hypertension compared to healthy controls (Hao et al., 2016).
However, these findings are preliminary; it is essential to validate
other environmental factors like the diet that might affect the gut
microbiota.

Furthermore, a beneficial role of Lactobacillus in the
regulation of blood pressure has been reported (Gómez-
Guzmán et al., 2015). Recent studies and clinical trials
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demonstrate a close but complex inter-relationship between gut
microbiota and hypertension. However, more studies involving
human participants are needed to elaborate on the critical role of
gut microbiota in hypertension and to demonstrate promising
therapeutical approaches.

Cardiovascular diseases

Even with the existing approaches in atherothrombosis
prevention and treatment, heart disease is still a significant
cause of death globally. It will constantly rise due to increased
incidence in low and middle-income countries (Odutayo
et al., 2016). In the pathophysiology and progression of
CVDs, the intestine has also been involved, primarily due to
decreased perfusion of the intestines leading to intestinal barrier
dysfunction. The intestinal endothelial barrier is regulated by
many mechanisms of a well well-balanced intestinal microbiota
(Sabatino et al., 2015). Recently, due to accumulating evidence,
intestinal microbiota has been studied as a contributing factor
to heart disease and stroke (Tang et al., 2017; Leustean et al.,
2018; Jayachandran et al., 2020). Emerging evidence has shown
that gut dysbiosis was correlated with the production of
many metabolites from intestinal microbiota and also fostered
disruption of the function of the gut endothelial barrier.

Furthermore, an essential correlation between the amount
of fecal gut microbiota and the intensity of intestinal
permeability was identified in patients with CVDs (Pasini
et al., 2016). In contrast, patients who had bacterial DNA in
the peripheral blood had considerably high plasma levels of
inflammatory markers, particularly highly sensitive C-reactive
protein and interleukin-6 levels, compared to those who did
not have bacterial DNA in their peripheral blood (Wang
et al., 2012). Moreover, an increased abundance of Streptococcus
and Enterobacteriaceae is linked with coronary artery disease
(Jie et al., 2017). Patients with coronary artery disease have
altered populations of the most prevalent bacterial species that
make up the gut microbiota, with a decrease in Bacteroidetes
and an increase in Firmicutes. Trimethylamine-N-oxide is a
metabolite that plays an important role in atherosclerosis and
can help predict cardiovascular risk (Ramírez-Macías et al.,
2022).

Various mechanisms have been proposed to understand
the crucial role of gut microbiota in the development and
prevention of CVDs. Copies of bacterial genes coding for
trimethylamine (TMA) lyase and atherosclerotic CVDs have
also been found to be associated (Barrington and Lusis, 2017).
TMA lyase contributes to the generation of trimethylamine-N-
oxide (TMAO), a metabolite derived from the gut microbiota
(Witkowski et al., 2022). TMAO has been shown to contribute
to the development of cardiovascular atherosclerotic disease in
animal studies and seems to be significantly linked in human
studies, identifying the primary function that TMAO may

perform in developing atherosclerotic CVD (Tang and Hazen,
2014; Jonsson and Bäckhed, 2017). Thus, a rapid increase in
cardiovascular and metabolic disorders has concentrated on gut
microbiota regulation as an effective treatment option.

Diabetes mellitus

Diabetes mellitus causes a significant adverse effect on the
health condition of human populations worldwide. Diabetes-
related risk factors include aspects like a family history of
diabetes, poor eating habits, and being overweight. Regarding
the continuous rise of urbanization, shifts in diet, and
the emergence of more unhealthy lifestyles, the growing
incidence of diabetes is a global crisis. According to a
report, about 463 million people globally reported diabetes in
2019, and future estimates predict that by 2045, the number
of diabetic patients will exceed 700 million (Saeedi et al.,
2019). Recent studies have demonstrated that the progression
of diabetes is closely correlated to the alterations in the
composition of intestinal microbiota (Sender et al., 2016;
Gurung et al., 2020). Diet is among the key determinants of
the composition of the intestinal microbiota and a significant
causal factor in the development of diabetes (Meijnikman et al.,
2018).

Given that the development and formation of the gut
microbiota depend on the availability of nutrients, it is vitally
important to demonstrate that metabolite production depends
on food consumption. It has been found that, in response
to a shift from a low-fat, plant polysaccharide-rich diet to a
high-fat, high-sugar diet, the microbiome composition changed
rapidly (Turnbaugh et al., 2009). Human eating patterns have
evolved over the past few decades, with fats preferred over fibers;
in response to recent eating habits, intestinal microbiota has
also changed. Therefore, it was suggested that diabetes could
be linked to the intestinal microbiota’s systematic alterations
(Sircana et al., 2018).

It was observed in the diabetes prevention and prediction
(DIPP) study that new-onset type-1 diabetes subjects had a
distinct composition of gut microbiota compared to controls
(Brown et al., 2011). It was found that mucin formation
was caused by lactate and butyrate-producing bacteria in the
control group to sustain gut integrity. In contrast, mucin
synthesis was inhibited by non-butyrate producing lactate-
utilizing bacteria contributing to autoimmunity of β-cells and
type 1 diabetes (Brown et al., 2011). Also, an increase in the
occurrence of Akkermansia muciniphila has been observed to
be inversely related to the probability of developing type 1
diabetes (Hansen et al., 2012; Navab-Moghadam et al., 2017).
A. muciniphila may is a potential probiotic in the treatment of
type 1 diabetes. Many other studies have reported the variations
in the composition of gut microbiota between type 1 diabetes
and their matched health controls, illustrating the need for a
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better understanding of the function that these bacteria can play
in the development of diabetes (Murri et al., 2013; Gülden et al.,
2015).

It has been indicated that the influence of microbiota
on type 2 diabetes can be mediated through mechanisms
involving changes in the butyrate and incretins secretions
(Nøhr et al., 2013; Baothman et al., 2016). In patients
with type 2 diabetes, a study showed a moderate degree
of intestinal microbial dysbiosis, a decrease in bacteria-
producing universal butyrate, and an increase in opportunistic
pathogens (Baothman et al., 2016). Other studies have also
shown the significant influence of gut microbiota on type 2
diabetes pathways, including insulin signaling, inflammation,
and glucose homeostasis (Baothman et al., 2016; Cani, 2018).
However, more studies are needed to deeply understand the
mechanisms and influential role of gut microbiota in the
development of diabetes.

Cancer

Cancer is the second most common cause of death
globally (Fitzmaurice et al., 2017). Many factors significantly
influence cancer risks, such as exposure to pathogens, UV
radiation and toxic substances, diet, and lifestyle. However,
the risk mainly depends on the dosage, the period, and
the combination of such factors, along with the genetic
background of the patient (Vivarelli et al., 2019). There is a
growing interest in the characterization and functionality of
intestinal microbiota due to its complicated relationship with
the host (Tao et al., 2020). Different studies have indicated
that abrogation or alteration of gut microbiota significantly
contributes to developing colorectal carcinoma in genetic
and carcinogenic tumorigenesis models (Arthur et al., 2012;
Vivarelli et al., 2019). Metabolomics and metagenomics studies
have demonstrated the dual role of gut microbiota in cancer
risk reduction and tumor growth, and anti-cancer therapies
(Bultman, 2014).

A greater abundance of Bacteroides massiliensis was found
in patients with prostate cancer, while Eubacterium rectale
and F. prausnitzii have been identified in comparatively less
abundance, indicating the potential contribution of these
specific microorganisms in the pathogenesis of prostate cancer
(Chung et al., 2018). It has also been found that the gut
microbiota is linked with the development of colorectal
cancer, with Fusobacterium nucleatum, Bacteroides fragilis, and
Peptostreptococcus anaerobic being identified in its development
as important players (Hsieh et al., 2018). Gut bacteria, especially
F. nucleatum and Clostridium colicanis, were proposed as
indicative markers in gastric cancer’s carcinogenesis (Mehta
et al., 2017). Recent studies have indicated that F. nucleatum
can suppress the host’s immune response and upgrade cellular
proliferation. In contrast, a diet rich in whole grains and

dietary fiber have a lower risk of F. nucleatum positive cancer,
indicating that the gut microbiome may be a significant
mediator between dietary and colorectal cancer interactions
(Hall et al., 2017). Various preclinical studies using GF mice
have proposed the mechanism and considerable impact of
gut microbiota on genesis and cancer progression (Arthur
et al., 2012). A deeper understanding of the influential role
of gut microbiota in the development of cancer has increased
the interest in research for microbiome-based therapeutics in
cancer treatment. However, more studies involving human
participants are required to deeply understand the mechanism
of gut microbiota in the development of cancer and its anti-
carcinogenic characteristics.

Inflammatory bowel diseases

Inflammatory bowel disease is a significant disease with
the highest prevalence in western countries; its incidence has
risen rapidly in newly industrialized countries in Asia, the
Middle East, Africa, and South America (Kaplan and Ng,
2017). It is also imperative to examine the exact etiology and
pathogenesis of IBD. Notable advancements have been achieved
in identifying the development of IBD in the last few years.
The most significant and clinically beneficial aspect of this
advancement was the identification of gut microbiota as a
crucial multifunctional inflammatory factor. Recently, the role
of intestinal microbiota in the pathogenesis of IBD has been
emphasized. Several lines of evidence indicate the essential part
of the gut microbiota in intestinal inflammation. Most studies
have demonstrated decreased intestinal microbiota diversity in
patients with IBD (Willing et al., 2010; Matsuoka and Kanai,
2015). Significant decreases in Firmicutes and proteobacteria
are the most important observations of altered composition of
gut microbiota in patients with IBD. The decreased diversity of
intestinal microbiota found in patients with IBD was primarily
due to the reduction of Firmicutes. A decline in the Clostridium
leptum groups, particularly F. prausnitzii, has been observed
among Firmicutes (Wang et al., 2014). In biologically susceptible
hosts, alterations of the gut microbiota have been associated
with aberrant mucosal immune responses that result in a
variety of intestinal and extraintestinal disorders, including
IBD. As a result, restoring immunological homeostasis by
modifying the gut microbiota is currently considered to be a
potential therapeutic strategy to treat IBD patients (Facciotti,
2022).

The majority of discovered human pathogenic bacteria
belong to the phylum Proteobacteria, which play an increasingly
important role in IBD (Mukhopadhya et al., 2012). Analysis
of microbial diversity shows a rise in the number of bacterial
species belonging to this phylum, implying an active role in
initiating chronic inflammation in patients with IBD (Hold
et al., 2014). The abundance of Ruminococcus gnavus is also
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found to be higher in IBD (Örtqvist et al., 2019). Although more
clinical studies are required to examine and deeply understand
the mechanism through which gut microbiota contribute to IBD
progression.

Eubiosis and food

Dietary effects and influences on our gut microbiome are
not new subjects of research. Food causes transient changes
in the gut microbiota composition, which are primarily due
to fish, meat, and fiber, which have long-term effects (Bajinka
et al., 2020). More than two macronutrients can be found in
one diet, which alters the gut microbiota while also altering
metabolic output (Qiu et al., 2020). The positive benefits of
dietary fiber on human metabolism have been explored and
found to be significant. Dietary fiber has been shown to alter
the microbiota and produce beneficial metabolites like butyrate
(Silva et al., 2020). While a balanced nutritional diet is important
for overall health, a diet high in fiber is particularly essential to
maintain the diversity of the intestinal microbiota (Zhang et al.,
2013).

Microbiota ferment complex undigested carbohydrates,
also known as microbiota-accessible carbohydrates (MAC),
leads to an increase in SCFA levels and, as a result, a
positive health effect (Seo et al., 2020). These complex
carbohydrates, which include resistant starch, oligosaccharides,
and dietary fiber, can positively modulate a variety of gut
microbes that are beneficial to health (Yang et al., 2020).
Unsaturated plant-based fats in the diet reduce detrimental
bacteria while increasing the abundance of Bifidobacterium and
butyrate-producing bacteria (Roseburia and Faecalibacterium),
all of which have been associated with positive health effects
(Muralidharan et al., 2019). Micronutrients, in addition to
macronutrients, may play a key role in gut reshaping,
according to various studies (Ramos and Martín, 2021).
All of these findings point to the importance of dietary
factors as modulators of the microbial community, which can
therefore have an impact on human physiology and disease
processes.

Conclusion

The crucial role of probiotics in health, disease, and
nutrition has increased their scientific and marketing
significance across the globe. The attention has been shifted
from prospective studies to clinical trials to have a better
understanding of how microbiota can interplay in human
health and disease. Eubiosis is important in exerting the
health endorsing benefits of probiotics. An unhealthy diet
intake, such low intakes of fruits and vegetables intakes and

overuse of antibiotics can result in dysbiosis. In nutshell,
probiotics aid in the treatment of various infectious diseases,
dysfunctions of the GI tract, and inflammatory disorders
as well as in controlling obesity and diabetes. The advances
in gut microbiota modeling and analysis will enhance our
knowledge of how they influence health and disease, allowing
us to adapt current and forthcoming therapeutic and preventive
strategies. Understanding the specific roles played by the gut
microbiome in our growth and development, as well as how it
functions in health and disease, holds the potential to improve
many parts of our daily lives, from improving the formula
for infants to offering new approaches in fighting obesity and
cancer, among others. As gut microbiota is a complex topic,
future research should focus on multidisciplinary approaches,
taking into consideration recent innovations in various
scientific fields.
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