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Background
MicroRNAs (miRNAs) are a wide range of endogenous small non-coding RNA mol-
ecules, regulating the expression of target genes via translational inhibition [1–4]. The 
long non-coding RNAs (lncRNAs) have been shown to involve miscellaneous cellular 
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processes such as protein scaffolding and cell differentiation [5–8]. Recently, there is 
more and more evidence to show that lncRNA can function as miRNA sponge to partic-
ipate in various biological processes, besides that, miRNA can lead to a lower effect on 
mRNAs in the regulation and has an essential role in the molecular level to lncRNA [8–
12]. Furthermore, the regulatory networks of lncRNA-miRNA associations can be con-
cerned with pathological processes involved in many diseases, and the potential to use 
this knowledge to achieve the goal of "precision" or "personalized medicine" in oncology 
is also discussed [13–19]. Therefore, on the molecular level, the potential associations 
between lncRNAs and miRNAs in important cell activities can be predicted. Moreover, 
it is critical and urgent to identify uncovered lncRNA-miRNA associations to facilitate 
understanding the mechanisms [20–22].

To date, there are three categories of methods for predicting potential lncRNA-miRNA 
associations. The first kind of method predicts the associations between lncRNA-
miRNA by designing the traditional wet experiment. Amanda et al. [23] designed their 
experiment based on the crosslinking and real-time PCR (RT-qPCR), the experiment 
results revealed that H19 identify as an important regulator of the major let-7 family 
of microRNAs. Li et al. [24] using the algorithm of MIRANDA and TARGETSCAN to 
investigate lncRNA-miRNA associations on a genomic scale. Traditional wet methods 
are time-consuming and labor-intensive. Benefiting from the high-throughput technolo-
gies, many computational methods were used to predict associations between lncRNA-
miRNA. These methods are roughly classified as collection methods and prediction 
methods, collection methods based on the technology of text mining and data analysis, 
Li et al. [25] systematically identify the lncRNA–miRNA associations networks and other 
related information from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data 
sets. Gong et al. [26] collected 8091 associations verified by wet experiments between 
lncRNA-miRNA on account of the SNP experiments required. The limitations of col-
lection methods are obvious, only associations between lncRNA-miRNA proved by wet 
experiments can be collected. Thus, prediction methods were proposed, in the begin-
ning, prediction methods based on several features of lncRNAs and miRNAs, such as 
putative functions, expression profiles, and sequences information. For instance, Huang 
et al. [27] proposed a new way named EPLMI to predict lncRNA-miRNA associations 
by using the features extracted from expression profiles to represent a bipartite graph of 
known interactions to construct a prediction model. With the development of technol-
ogy, some deep learning methods were applied in the field of predicting lncRNA-miRNA 
associations. Veneziano et al. [28] provide a brief update on the actual biomedical rel-
evance of lncRNAs and miRNAs. Wang et al. [29] proposed the GNMFLMI calculation 
model to construct affinity graphs by p-nearest neighbors. Zhou et al. [30] proposed a 
method named GEEL based on graph embedding methods to represent latent represen-
tations of their network. Zhang et al. [31] proposed a method named SLNPM based lin-
ear neighborhood propagation to predict lncRNA-miRNA associations. These models 
are based on the information of the research objects to detect unknown associations. 
Computational methods could predict lncRNA-miRNA associations in a short time and 
provide a novel perspective for predicting other associations [32–36]. Recently, research-
ers are gradually addressing their research through an increasingly overall perspective. 
Guo et  al. [37] presented the concept of molecular associations to explore potential 



Page 3 of 15Yang et al. BMC Bioinformatics          (2021) 22:621  

associations among different biological objects. Ma et  al. [38] proposed GABN model 
to find an optimal alignment between proteins across species. Hu et al. [39] used diverse 
heterogeneous datasets to explore potential associations.

In this study, we proposed a method DWLMI to predict the associations between 
lncRNA-miRNA. An original lncRNA-miRNA-disease-protein-drug network was con-
structed by integrating the attributes information and behavior information of these bio-
logical objects, then, we can predict potential lncRNA-miRNA associations through the 
random forest classifier. Finally, for evaluating the prediction of our model, fivefold cross 
validation was implemented for DWLMI. As a result, DWLMI obtained substantial per-
formance with the AUC of 98.56% under fivefold cross validation. Moreover, the classi-
fier and method comparison experiment were also applied to evaluate our method from 
different aspects. To further assess our model, case studies were carried out to verify the 
ability of our model. This paper makes the following contributions: (1) the experiment 
offers a new perspective for exploring the associations between lncRNAs and miRNAs 
through some intermediary; (2) the proposed DWLMI models can effectively predict the 
potential lncRNA-miRNA associated pairs.

Result
Evaluation metrics

To further evaluate the performance of our model, a series of evaluation metrics were 
used. Cross-validation was used to assess the performance of our evaluation task fairly 
and comprehensively. In our work, the fivefold cross-validation was chosen to divide 
the whole data set into five mutually exclusive subsets of equal size, each subset can be 
regarded as the test set to evaluate our model in turn, the remaining subsets are used to 
train the model as the training set. After the fivefold cross-validation is implemented, 
ROC (Receiver Operating Characteristic) curve and PR (Precision-Recall) curve are 
drawn and calculated separately to evaluate the performance of our model. Generally, 
the ROC curve is used to evaluate the classifier to show the performance and measure 
the non-equilibrium in classification tasks. The calculation results of FRP (false positive 
rate) and TPR (true positive rate) are used to construct the ROC curve, the FPR con-
struct the abscissa of the ROC curve, and the TPR construct the ordinate of the ROC 
curve. The value of AUC generally ranging from 0.5 to 1. The calculation of AUC is 
calculating the areas under the ROC curve. The PR curve is also used to evaluate the 
classification ability of models, specially, PR curve can find more information while 
dealing with some imbalanced data sets. The areas under the PR curve can be defined 
as AUPR. Besides that, the extensively used evaluation metrics are used to assess our 
model including accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), precision (Prec.), 
and MCC. These evaluation metrics are defined as:

(1)Acc. =
TN + TP

TN + TP + FN + FP

(2)Sen. =
TP

TP + FN
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where TN indicates the number of true negative; FN represents the number of false neg-
ative; TP stands for the true positive number; FP denoted the false positive number.

LncRNA‑MiRNA associations prediction capability evaluation

For evaluating our model, the known associations between lncRNAs and miRNAs were 
selected as a complimentary sample, and the same amounts of negative samples were 
chosen randomly. The training set contains two kinds of samples. To measure the per-
formance of DWLMI that predicts the association of lncRNA-miRNA, we performed 
fivefold cross-validation to randomly divided the entire data into five parts in equal size. 
One subset is used as the test set, and others were used as training sets to test the clas-
sifier. Then, for each cross-validation, only 80% of the total edges in the current training 
set would be embedded as the manner of the node. Although the above operations may 
cause some problems, simulating the real environment for researchers still very domi-
nant through manual experiments is apparent.

As shown in Table 1, the results of average Acc., Sen., Spec., Prec., MCC, and AUC 
were 95.22%, 94.35%, 96.1%, 96.03%, 90.46%, and 98.56%, respectively, when DWLMI 
was applied to predict the associations of lncRNA-miRNA. For a better understanding, 
the ROC curve and the PR curve were also used to evaluate DELMI. ROC curve and PR 
curve were used to assess our model from a different angle. Our method obtained an 
AUC of 0.9856, and the results indicated that our method could identify the associations 
of lncRNA-miRNA effectively (Fig. 1).

Measure our method against feature extraction methods

For measuring the effectiveness of our method, respectively, we utilized the attributes 
information and the behavior information to compare with our method in the exten-
sive evaluation metrics. As presented in Table 2 and Fig. 2, the results of average Acc., 
Sen., Spec., Prec., MCC, and AUC of 95.22%, 94.35%, 96.1%, 96.03%, 90.46%, and 98.56% 

(3)Spec. =
TN

TN + FP

(4)Prec. =
TP

TP + FP

(5)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Table 1 Various evaluation metrics under fivefold cross validation achieved by DWLMI

Fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

0 95.31 94.81 95.82 95.78 90.63 98.53

1 95.19 94.09 96.3 96.21 90.41 98.51

2 95.31 94.51 96.12 96.06 90.64 98.75

3 94.51 93.19 95.82 95.71 89.05 98.09

4 95.79 95.16 96.42 96.37 91.58 98.91

Average 95.22 ± 0.46 94.35 ± 0.76 96.1 ± 0.27 96.03 ± 0.28 90.46 ± 0.91 98.56 ± 0.31
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demonstrate that the performance of node behavior information with node attribute 
information can obtain better performance than other feature extraction methods.

Compared with other state‑of‑the‑art methods

To further demonstrate the prediction performance of DWLMI, we compared DWLMI 
with other state-of-the-art methods. Among them, EPLMI [27] predicts lncRNA-
miRNA associations by representing known interactions as a bipartite graph. The GNM-
FLMI [29]calculation model constructs affinity graphs by p-nearest neighbors. GEEL 
[30] fully exploring the structure of lncRNA-miRNA associations network, using graph 
embedding methods to represent the heterogeneous network. SLNPM [31] based linear 
neighborhood propagation to predict lncRNA-miRNA associations. To further evalu-
ate the performance of our model. The AUC values comparison between DWLMI and 

Fig. 1 The AUCs, ROCs, AUPRs, and PRs of DWLMI under fivefold cross‑validation

Table 2 Measuring our method with different features

Feature Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

Attribute 85.58 ± 0.64 83.53 ± 0.36 87.63 ± 1.0 87.11 ± 0.95 71.22 ± 1.3 92.63 ± 0.56

Manner 94.33 ± 0.38 92.45 ± 0.77 96.22 ± 0.38 96.07 ± 0.37 88.73 ± 0.74 98.09 ± 0.16

Both 95.22 ± 0.46 94.35 ± 0.76 96.1 ± 0.27 96.03 ± 0.28 90.46 ± 0.91 98.56 ± 0.31

Fig. 2 Comparison with different features under fivefold cross‑validation
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other state-of-art methods were making, the results are shown in Table 3. The experi-
ment results indicate that DWLMI can effectively predict lncRNA-miRNA associations.

Case studies

In our work, case studies are carried out to further verify the ability of DWLMI on 
predicting potential lncRNA-miRNA associations, we implemented DWLMI on 
nonhsat159246.1 and hsa-mir-544a as case studies, all associations collected from lncR-
NASNP2 database. After dealing with the dataset, such as de-redundancy, simplification, 
and deletion of the irrelevant items, we obtained 466 kinds of lncRNAs and 254 kinds of 
miRNAs. For nonhsat159246.1, all miRNAs which connect with nonhsat159246.1 were 
removed from the lncRNASNP2 dataset, after removing the associations from our data-
set, the number of positive samples is 8265. Negative samples have the same amounts of 
positive samples and were randomly selected from disconnect associations as mentioned 
above. The model of DWLMI is trained by the train sets that consist of positive samples 
and negative samples. Then, the final prediction results were sorted in descending order 
according to the prediction score. Table 4 shows the top 20 predicted interactions for 
this lncRNA.18 out of the top 20 candidate miRNAs are confirmed by the lncRNASNP2 
database. The same way is used for hsa-mir-544a, it is worth noting that the number of 
positive samples was 8303. the prediction results are shown in Table 5, the top 20 pre-
dicted miRNAs by DWLMI were verified by the lncRNASNP2 database. The experiment 
results show that DWLMI can effectively predict lncRNA-miRNA associations.

Discussion
In this article, we proposed a new model named DELMI. This model integrates multi-
source biological data, besides that, biological entities were represented in hetero-
geneous attribute networks in a multi-view and multi-modal way. Even in the field of 

Table 3 The AUC values of DWLMI compared with other state‑of‑art methods

Methods EPLMI GNMFLMI SLNPM GEEL DWLMI

AUC 0.8447 0.8894 0.9165 0.9537 0.9856

Table 4 The top 20 predicted MiRNAs by DWLMI for nonhsat159246.1 on the lncRNASNP2 dataset

Rank MiRNAs Evidences Rank MiRNAs Evidences

1 hsa‑mir‑455‑5p lncRNASNP2 11 hsa‑mir‑29a‑3p Unconfirmed

2 hsa‑mir‑23a‑3p lncRNASNP2 12 hsa‑mir‑873‑5p lncRNASNP2

3 hsa‑mir‑23b‑3p lncRNASNP2 13 hsa‑mir‑3167 lncRNASNP2

4 hsa‑mir‑23c lncRNASNP2 14 hsa‑mir‑221‑3p lncRNASNP2

5 hsa‑mir‑205‑5p lncRNASNP2 15 hsa‑mir‑19b‑3p Unconfirmed

6 hsa‑mir‑544a lncRNASNP2 16 hsa‑mir‑221‑3p Unconfirmed

7 hsa‑mir‑374b‑5p lncRNASNP2 17 hsa‑mir‑4465 lncRNASNP2

8 hsa‑mir‑135b‑5p lncRNASNP2 18 hsa‑mir‑196b‑5p lncRNASNP2

9 hsa‑mir‑590‑3p lncRNASNP2 19 hsa‑mir‑29c‑3p lncRNASNP2

10 hsa‑mir‑29b‑3p unconfirmed 20 hsa‑mir‑346 lncRNASNP2
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bioinformatics field, technology has made great progress, but there are few tools to 
integrate multi-source information. The method proposed in this paper is data-driven 
and represents a preliminary exploration of the combination of computer technology 
and biological big data. The results demonstrate that our research helps understand 
various cellular and molecular mechanisms. However, there are still some limitations. 
For example, we use a very simple representation for the sequence of biological entities 
and chemical structure, and the prediction results have not been verified by wet experi-
ments. These will be further investigated in future work.

Conclusions
The associations between lncRNAs and miRNAs have been confirmed to be closely 
related to diverse biological processes including the development of various diseases. 
Identifying lncRNA-miRNA associations will be useful for researchers to understand the 
mechanisms of various diseases. In recent years, accumulating evidence demonstrates 
the effectiveness of deep learning strategy in big biological. In this article, we proposed a 
machine learning model based on different molecular relationships and network embed-
ding to detect potential lncRNA-miRNA associations. In our method, each node can be 
transformed into a vector-based feature of the attributes and embeddings. Then, based 
on the above information, a 128-dimensional vector can be used to represent every node 
to train the classifier to predict the lncRNA-miRNA associations. The experimental 
results suggest that DWLMI can effectively predict the potential lncRNA-miRNA asso-
ciated pairs. This provides a new insight for related non-coding RNA researchers. There 
are several deficiencies with our method. For example, we used a very simple represen-
tation for the sequence of biological entities and chemical structure, and the prediction 
results have not been verified by wet experiments. These will be further investigated in 
future work, and new methods will be used to deal with these problems.

Methods
The framework of the proposed DWLMI model for lncRNA-miRNA association predic-
tion is given in Fig. 3, DWLMI model consists of the following main stages:

Table 5 The top 20 predicted LncRNAs by DWLMI for hsa‑mir‑544a on the lncRNASNP2 dataset

Rank LncRNAs Evidences Rank LncRNAs Evidences

1 nonhsat137542.2 lncRNASNP2 11 nonhsat022125.2 lncRNASNP2

2 nonhsat137558.2 lncRNASNP2 12 nonhsat159244.1 lncRNASNP2

3 nonhsat137541.2 lncRNASNP2 13 nonhsat159242.1 lncRNASNP2

4 nonhsat007662.2 lncRNASNP2 14 nonhsat022145.2 lncRNASNP2

5 nonhsat022132.2 lncRNASNP2 15 nonhsat017523.2 Unconfirmed

6 nonhsat159248.1 lncRNASNP2 16 nonhsat007668.2 lncRNASNP2

7 nonhsat159252.1 lncRNASNP2 17 nonhsat007695.2 lncRNASNP2

8 nonhsat159243.1 lncRNASNP2 18 nonhsat026096.2 Unconfirmed

9 nonhsat034665.2 unconfirmed 19 nonhsat007699.2 lncRNASNP2

10 nonhsat035663.2 unconfirmed 20 nonhsat007681.2 lncRNASNP2
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Step 1 We collected our data from multiple databases, after a series of dealing with 
our data, such as de-redundancy, simplification, and deletion of the irrelevant items, 
we collect five biological objects, besides that, the associations among them were 
also collected.
Step 2 We construct a global heterogeneous graph to show the relationships among 
these biological objects, the network embedding method named DeepWalk was used 
to represent the behavior information of vertices in our molecular network, and the 
methods of k-mer, Mesh descriptor, fingerprint were used to represent the attribute 
information of nodes in our network.
Step 3 All nodes in our graph can be represented by the attribute information com-
bined with behavior information, the classifier of random forest was used to train our 
model.

Heterogeneous associations network

Heterogeneous associations network systematically and holistically collected associa-
tions among many types of databases, for example, lncRNASNP2 databases, HMDD 
databases, all databases were well known and curated experiment-supported evidence. 
after a series of dealing with the dataset, such as uniform identifiers and elimination of 
redundancy, 6528 nodes, and 105,546 associations were collected, besides that we can 

Fig. 3 The flowchart of DWLMI
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find five biological objects, such as lncRNA, miRNA, drug, protein, and disease. The 
experiment results are shown in Table 6.

After aggregating the above database, final statistics are obtained by separately clas-
sifying the different nodes as shown in Table 7.

Numerical sequence information

The sequences of protein, lncRNA, and miRNA were obtained from LncRNASNP2 [40], 
NONCODE [49], MiRbase [50], and String [31], respectively, the algorithm of k-mer was 
used to analyze sequence information, the term k-mer refers to the substrings of biologi-
cal sequence with length K, such that the sequence GTAA would have four monomers 
(G, T, A, and A), three 2-mers (GT, TA, AA), two 3-mers (GTA and TAA) and one 4-mer 
(GTAA). A biological sequence of length K can generate L-K + 1 k-mers, besides that, 
the number of possible monomers would have nk total possible k-mers, for representing 
the attributes of nodes, the sequence of lncRNA, miRNA, and protein are represented 
by a 64 (4 × 4 × 4) dimensional vector. With the corresponding 3-mer in sequence, the 
normalized frequency can be represented by the vector.

MeSH descriptors and directed acyclic graph

National library of medicine creates a widespread searchable controlled vocabulary of 
MeSH thesaurus, including the headings of the subject and the index and classifica-
tion used in the life sciences. Due to the structure of the MeSH descriptor hierarchy, 

Table 6 The associations of different biomolecules in DWLMI

Relationship type Database Number of 
associations

lncrna‑miRNA lncRNASNP2 [40] 8374

Protein‑miRNA miRTarBase [41] 4944

Disease‑miRNA HMDD [42] 16,427

Disease‑lncRNA LncRNADisease [43] 1264

lncRNASNP2 [40]

Protein‑lncRNA LncRNA2Target [44] 690

Disease‑protein DisGeNET [45] 25,087

Protein‑drug DrugBank [46] 11,107

Disease‑drug CTD [47] 18,416

Protein–protein STRING [48] 19,237

Total N/A 105,546

Table 7 The amounts of nodes in DWLMI

Node Amount

LncRNA 769

Disease 2062

Protein 1649

MiRNA 1023

Drug 1025

Total 6528
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the DAG (Directed Acyclic Graph) generated through diseases and MeSH can be used 
to represent a wide variety of ailments. Details of representing the disease in DAG are: 
DAG(D) = (D, N(D), E(D)), N(D) contains all diseases that are represented by points. 
E(D) contains all the associations of nodes in the DAG(D) [16]. Figure 4 below shows the 
DAG of coronary diseases.

The condition is characterized by utilizing DAG included in the Mesh. We define the 
semantic similarity as follows. Ancestral disease t contributes to disease D, expressed as 
the following formula in DAG:

The factor of semantic contribution is ∆. The contribution of node D to itself is I, and 
D contributed by other nodes will be attenuated due to the total of donations of all dis-
eases that can be obtained in DAG to D:

Jaccard similarity coefficient is used to calculate the semantic similarity between dis-
eases i and j:

To better understand the process of the semantics calculation between diseases, the 
systemic lupus erythematosus and acne vulgaris are selected to illustrate the method. 
First, we construct the directed acyclic graphs of systemic lupus erythematosus and 
acne vulgaris according to the Mesh descriptors. Second, we calculate the contribu-
tion of nodes in the directed acyclic graphs to systemic lupus erythematosus and acne 
vulgaris. According to the formula above, we can find these two diseases are at the low-
est level of their directed acyclic graph, they contribute 1 to themselves, then the parent 
node contributes 0.5 to themselves, by that analogy, we can calculate the contribution of 
all nodes in the directed acyclic graph to the systemic lupus erythematosus and acne 

(6)
{

DD(t) = 1 if t = D
DD(t) = max

{

�∗D1D
(

t ′
)

|t ′ ∈ children of t
}

if ift �= D

(7)DV 1(D) = �t∈N (D)D1D(t)

(8)S1
(

i, j
)

=
∑

t∈N (i)∩N(j)
(

D1i(t)+ D1j(t)
)

DV 1(i)+ DV 1

(

j
)

Fig. 4 The DAG of coronary disease
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vulgaris. Finally, we can get the DV values, DV
(

lupus erythematosus, systemic
)

= 2.5 , 
DV

(

acne vulgaris
)

= 2.375 , the similarity also was calculated by the for-
mula:Similarity

(

systemic lupus erythematosus, acne vulgaris
)

= 0.25+0.125
2.5+2.375 = 0.0769.

Drug molecular fingerprint

Molecular fingerprints are a way to show the structure of a molecule by using binary digits 
to represent the special infrastructures in the molecule. The fingerprint structure of aceta-
minophen is shown in Fig. 5. The DrugBank database includes detailed drug and inclusive 
drug target information, such as the chemical data and structure information of drug tar-
gets. In our experiment, the similarity of drugs was obtained from DrugBank, then, a chem-
informatics toolkit named RDKIT was used to transform the similarity of drugs to Morgan 
Fingerprint to show the feature of the drug, it is worth noting that RDKIT is binding for 
python, so the experiment is carried out under python environment.

Stacked autoencoder

Autoencoder can learn the features of input data. By learning new features, original input 
data can be reconstructed. The data of the output layer can be reconstructed by under-
standing the hidden layer.

The stacked autoencoder is a stack of an autoencoder and can be used to improve accu-
racy by normalizing attribution information to a uniform dimension. The basic structure of 
the Stacked Autoencoder is shown in Fig. 6.

The encoder and the decoder constitute SAE. The encoder can turn the input data into 
the corresponding representation h, and hidden representation h can be reconstructed as 
an approximation x by the decoder.

ReLU function as the activation function:

(9)h = f (x) := Sf (wx + p)

(10)y = g(h) := Sg
(

w′x + q
)

(11)Sf (t) = Sg(t) = max(0,wt + b)

Fig. 5 The fingerprint structure of acetaminophen
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Learning node representation by DeepWalk

In our experiment, the heterogeneous network is constructed to describe the associa-
tion systematically. The intrinsic attributes can be represented by their features. The 
relationship with other nodes of each node can be represented by a network embed-
ding algorithm. In our method, nine kinds of molecular associations, such as lncRNA-
miRNA associations, miRNA-disease associations, protein–protein associations were 
collected from multiple databases, then, we combined all associations to construct a 
heterogeneous network to represent their associations, then, DeepWalk was selected 
as the algorithm of network embedding to obtain the behavior information of the 
molecular network. DeepWalk is scalable, so it can deal with large representations for 
graphs, besides that, for sparse data, DeepWalk outperforms other methods, utiliza-
tion of DeepWork can make our network easier to generalize in statistical learning. 
That is the reason why we choose DeepWalk as the algorithm of network embed-
ding. Based on the idea of collaborative filtering, the heterogeneous network can use 
DeepWalk to transform the relationships between nodes and other nodes as a vector 
through network embedding.

In the algorithm of DeepWalk, the graphs can be used as input, we can obtain latent 
representation from output to generalize a useful model to process a particular lan-
guage by DeepWalk [51], then local information was used to learn latent phrases of 
vertices in a network as the equivalent of sentences were obtained from truncated 
random walks. Finally, we can get an effective method by truncated random walks 
and language models. Table 8 below describes the whole algorithm in detail.

Fig. 6 The structure of stacked autoencoder
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Let G = (V, E), where V represents the nodes in our molecular network, E are their 
associations, E ∈ (V × V ) , and � ∈ R

|V |×d , where d is the dimension of each attribute 
vector in the feature space. DeepWalk consists of two parts: an updater and a random 
walk generator. First, the random walk estimates the probability of the next node:

Then, a mapping function will be used to show the hidden social representation 
between nodes. A mapping function � : v ∈ V → R

|V |×d.

Finally, the Skip Gram module is used to optimize:
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(12)pr(vi|(v1, v, . . . , vi−1))
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