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Fast learning designates the behavioral and neuronal mechanisms underlying the
acquisition of a long-term memory trace after a unique and brief experience. As such
it is opposed to incremental, slower reinforcement or procedural learning requiring
repetitive training. This learning process, found in most animal species, exists in a
large spectrum of natural behaviors, such as one-shot associative, spatial, or perceptual
learning, and is a core principle of human episodic memory. We review here the neuronal
and synaptic long-term changes associated with fast learning in mammals and discuss
some hypotheses related to their underlying mechanisms. We first describe the variety
of behavioral paradigms used to test fast learning memories: those preferentially involve
a single and brief (from few hundred milliseconds to few minutes) exposures to salient
stimuli, sufficient to trigger a long-lasting memory trace and new adaptive responses. We
then focus on neuronal activity patterns observed during fast learning and the emergence
of long-term selective responses, before documenting the physiological correlates of fast
learning. In the search for the engrams of fast learning, a growing body of evidence
highlights long-term changes in gene expression, structural, intrinsic, and synaptic
plasticities. Finally, we discuss the potential role of the sparse and bursting nature of
neuronal activity observed during the fast learning, especially in the induction plasticity
mechanisms leading to the rapid establishment of long-term synaptic modifications. We
conclude with more theoretical perspectives on network dynamics that could enable fast
learning, with an overview of some theoretical approaches in cognitive neuroscience and
artificial intelligence.

Keywords: fast learning, one-shot learning (OSL), memory engram, synaptic plasticity (LTP/LTD),
neuromodulation, neurocomputational models, artificial intelligence

FAST LEARNING BEHAVIORS

Fast learning mechanisms are best characterized in one-shot or single-trial learning paradigms
which lead to memory formation after a single and brief (few hundred milliseconds to few minutes)
exposure to relevant stimuli (Figures 1A–D). Indeed, what distinguishes fast learning are the
features of the encoding stage (or learning experience): fast learning refers here to situations where
memory traces are rapidly formed without requiring repetitions of the learning experience.

Abbreviations: BLA, basolateral amygdala; CTA, conditioned taste aversion; eCB, endocannabinoid; EPSP, excitatory
postsynaptic potential; LTD, long-term depression; LTP, long-term potentiation; mPFC, medial prefrontal cortex; NMDAR,
N-methyl-D-aspartate receptor; NMDAR-LTP, NMDAR-mediated LTP; STDP, spike-timing-dependent plasticity.
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In animal models, a single exploration of a new place or
novel objects can evoke long-lasting memories, as assessed in
rodents using the delayed-matching-to-place task in a watermaze
or novel object recognition (Ennaceur and Delacour, 1988; Steele
and Morris, 1999; Nakazawa et al., 2003; Clarke et al., 2010).
Paradigms using positive or negative reinforcement are also used
to boost one-shot associative learning. Examples from rodents
include odor-reward associations (Roullet et al., 1997; Armstrong
et al., 2006), fear conditioning, and inhibitory avoidance tasks
(Venable and Kelly, 1990; Izquierdo et al., 1997; Sacchetti et al.,
2002; Vale et al., 2017) or conditioned taste aversion (CTA;
Escobar et al., 2002). Positively reinforced one-shot learning
of multiple visuomotor associations has also been reported in
pigeons and baboons (Cook and Fagot, 2009).

In humans, episodic memory, referring to the formation and
maintenance of memory traces of unique experiences, illustrates
well fast learning. It should be noted that the existence of episodic
memory in non-human mammals has remained controversial in
the literature (Clayton et al., 2001; Fellini and Morellini, 2013).
Behavioral tests in humans have focused on the familiarity and
recollection components of episodic memory, using respectively
forced recognition tasks (Standing et al., 1970; Rutishauser
et al., 2006) and source memory tests (Jacoby, 1991; Harlow
and Donaldson, 2013). One-shot associative learning can be
used to test additional aspects of episodic memory, such as
objects-place associations (Ison et al., 2015; Brodt et al., 2018).
One-shot associative learning can also extend to more abstract
representations and semantic memories, such as in learning new
words (Carey and Bartlett, 1978), concepts, or object categories
(Biederman, 1987).

NEURONAL ACTIVITY DURING FAST
LEARNING

In vivo recordings of spiking activity during a fast learning
experience reveal sparse activity modulation and the occurrence
of few bursting events (Figures 1E,F). During a ∼1 s visual
stimulation, few neurons from human or monkey anterior and
medial temporal cortical lobes and basolateral amygdala (BLA)
fire∼5–20 spikes (Messinger et al., 2001; Rutishauser et al., 2006;
Ison et al., 2015). These brief presentations of a novel stimulation
can however induce significant changes in neuronal activity
lasting for at least 10 h (Fried et al., 1997; Xiang and Brown, 1998;
Rutishauser et al., 2006) and even allow distinguishing between
subjects having perceived the stimulus as a novel or familiar
(Fried et al., 1997; Rutishauser et al., 2006). During active touch
or passive sensing, sparse activity is also detected in the visual,
somatosensory, and auditory cortices, with 0.5–5% of neurons
increasing their firing rates in cats, ferrets, or rodents (Yao et al.,
2007; Hromádka et al., 2008; Jadhav et al., 2009; O’Connor et al.,
2010; Tang et al., 2018; Yoshida and Ohki, 2020; Figure 1E).
Such sparse activity is accompanied by the emission of bursts
in pyramidal cells, coupled to active dendritic events, in sensory
cortices and in the hippocampus (Xu et al., 2012; Smith et al.,
2013; Takahashi et al., 2016; Manita et al., 2017; Figure 1F).
Moreover, a single presentation of a sensory stimulus induces
short-term reverberatory patterns in spontaneous activity during

at least a few minutes (Yao et al., 2007), and persistent changes
in receptive fields, lasting for several hours (Fritz et al., 2003).
Similarly, a single passage in a maze, inducing few bursting
events (O’Keefe and Recce, 1993; Epsztein et al., 2011), leads
to new stable place fields (Mehta et al., 2000; Bittner et al.,
2017). After visuo- and odor-motor association fast learning
tasks, long-lasting task-related responses emerge rapidly in the
prefrontal cortex and striatum (Pasupathy and Miller, 2005;
Cromer et al., 2011) and in the striatal olfactory tubercle
(Millman and Murthy, 2020). Similar phenomena are observed
in the auditory cortex during the very first fear conditioning trials
(Edeline et al., 1993) or in the BLA-projecting neurons of the
gustatory cortex after CTA (Lavi et al., 2018).

Altogether, despite the low number of spikes or bursting
events, the induction of persistent selective responses can be
initiated after a single or few stimulus presentations across
the brain and thus serve as neural indicators of acquired
memory traces.

FAST LEARNING-INDUCED NEURONAL
LONG-TERM CHANGES

Long-term changes have been reported subsequently to various
fast learning tasks. In particular, some studies identified
such long-term changes in cells activated during the learning
experience, thus giving privileged access to understanding the
nature of fast learning engrams, that are the set of ‘‘enduring
physical and/or chemical changes elicited by learning and
that underlie a newly formed memory’’ (Josselyn et al., 2015;
Tonegawa et al., 2015; Josselyn and Tonegawa, 2020).

Fast Learning-Induced Structural,
Synaptic, and Intrinsic Plasticity Changes
One-shot learning tasks can be sufficient to activate some
immediate-early genes or cellular transcription factors in
hippocampal, BLA, or cortical neurons (Radulovic et al., 1998;
Sananbenesi et al., 2002; Miyashita et al., 2009; Liu et al., 2012;
Fellini and Morellini, 2013; Tayler et al., 2013). Such markers,
in conjunction with genetic manipulations, have been used to
identify engram cells in fast learning tasks, by tracing active cells
during memory encoding and reactivated cells during retrieval
(Tayler et al., 2013; Denny et al., 2014; DeNardo et al., 2019), or
by manipulating their activity (Han et al., 2009; Choi et al., 2011;
Liu et al., 2012; Josselyn and Tonegawa, 2020).

Long-term structural and synaptic plasticity changes
have been reported in subcortical areas after a fast learning
experience and specifically linked to engram cells in fear
conditioning protocols: in vivo measurements of field-EPSPs
reveal long-term potentiation (LTP) in rat dentate gyrus during
spatial exploration, and at CA3-CA1 synapses after novel object
recognition or an inhibitory avoidance task in mice (Moser et al.,
1993; Whitlock et al., 2006; Clarke et al., 2010). Pharmacological
manipulations and ex vivo electrophysiology support these
findings, through the observation of synaptic plasticity occlusion
or the facilitation of plasticity induction under subthreshold
stimulation protocols (Sacchetti et al., 2002; Nakazawa
et al., 2003; Whitlock et al., 2006; Romberg et al., 2013).
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FIGURE 1 | One-shot learning pathways to long-term synaptic plasticity. (A–D) Four examples of one-shot learning tasks: associative visuomotor learning (A),
recognition of a novel stimulus (B), one-shot spatial learning in a maze (C), and conditioned taste aversion (CTA; D). (E,F) Associated spike patterns include sparse
firing (E) or a few bursts (F). (E) Sparse firing (right panel) is illustrated by two-photon imaging recording of the primary visual cortex (V1) of an awake and behaving
monkey during associative visuomotor learning (fixation task). Very few V1 neurons respond strongly to the natural visual stimuli considered (left panel), with a sharp
peak in the rank-ordered distribution of population calcium-responses. Adapted from Tang et al. (2018). (F) Somatic, and dendritic patch-clamp whole-cell in vivo
recordings in pyramidal cells of the visual cortex in mice show the emergence of few orientation-tuned somatic bursts and active dendritic events during the
presentation of square-wave grating visual stimuli. Adapted from Smith et al. (2013). (G) With a spike-timing-dependent plasticity (STDP) paradigm, few spike pairs
induce eCB-dependent long-term potentiation (LTP) at cortico-striatal synapses in rat brain slices. Top: protocol: 10 post-pre pairings of cortical stimulation and
striatal spike, with a delay between pre- and postsynaptic activity centered at ∆t (−20 ms) with jitter to mimic noisy in vivo inputs, lower-right panel (std
σ∆t = 6.4 ms). The lower left panel shows the progressive establishment of LTP (n = 9 cells). Adapted from Cui et al. (2018b). (H) A single burst evokes a long-term
depression (LTD) at layer 5 V1 pyramidal neuron in a rat brain slice. Top panel, somatic current recording upon single burst stimulation with the second peak
reflecting a local dendritic spike. The bottom panel, averaged time-courses of LTD induced by a single burst (n = 8 cells). Adapted from Holthoff et al. (2004). In (H,G)
arrows indicate the stimulation protocol. Permissions for the copyright of the adapted Figures in panels (E–H) have been obtained.

Furthermore, a single contextual fear conditioning induces
a structural and functional potentiation between CA3 and
CA1 engram cells, with increased spine size and number,
and ex vivo LTP expression (Choi et al., 2018), as well as a
presynaptic LTP between cortical inputs and BLA engram cells
(Nonaka et al., 2014).

Long-term intrinsic plasticity changes are also evoked by a
one-shot learning experience: hippocampal neurons activated by
a single fear conditioning protocol becomemore excitable during
several days, thus potentially facilitating subsequent learning
(Crestani et al., 2018), and changes in membrane excitability
correlate with freezing levels and can be reversed after a single
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extinction trial (McKay et al., 2009). Interestingly, the magnitude
of the increase in membrane excitability is comparable to those
reported after repeated trials of conditioning protocols (Moyer
et al., 1996; Saar et al., 1998; Song et al., 2012; Sehgal et al., 2014).

Fast Learning Neocortical Engrams
While fast learning mechanisms have historically been associated
to allocortical and subcortical areas (McClelland et al., 1995;
Buschman and Miller, 2014), rapid formation of neocortical
engrams have been uncovered in several fast learning tasks
(Hofstetter et al., 2016; Kitamura et al., 2017; Brodt et al., 2018;
Hebscher et al., 2019). First, the formation of neocortical engrams
rapidly occurs in parallel to subcortical and allocortical changes
and contributes to early system consolidation mechanisms:
after a contextual fear conditioning, prefrontal neurons
immediately engage in the formation of memory engrams,
that progressively become functional with a maturation process
requiring hippocampal and BLA inputs, and serve as long-lasting
memory traces while hippocampal engram cells become silent
during remote memory retrieval (Tayler et al., 2013; Kitamura
et al., 2017; Matos et al., 2019). Furthermore, synaptic changes
rapidly emerge in cortical-dependent one-shot learning tasks,
such as after new word learning in human cortical areas involved
in language and reading (Hofstetter et al., 2016), or in the
perirhinal cortex during recognition memory (Brown and
Banks, 2015). Also, after CTA, long-term actin rearrangements
occur in gustatory and prelimbic cortices (Bi et al., 2010), and
N-methyl-D-aspartate receptor (NMDAR)-mediated LTP at
BLA-cortical synapses is occluded in vivo for at least 5 days
(Escobar et al., 2002; Rodríguez-Durán et al., 2011).

These experiments suggest that the neural correlates of
one-shot learning experience engage molecular machinery and
cellular processes similar to those reported after repetitive
training, such as the long-term activation of the same genetic
markers, the establishment of long-term synaptic and structural
changes, or the requirement for NMDA receptors. Yet, several
questions remain to be elucidated, such as the modalities of
induction and the extent (both in terms of magnitude and
number of cells engaged) of fast learning-induced changes
compared with repetitive training.

DECONSTRUCTING FAST LEARNING
SYNAPTIC PLASTICITY MECHANISMS

In light of the aforementioned results and given the neuronal
activity patterns observed during fast learning, we now present
some hypotheses on the induction mechanisms of fast learning-
induced synaptic changes. Two natural hypotheses ensue: fast
learning could constitute a condensed version of synaptic events
similar to those occurring during repetitive learning and/or
fast learning could be enabled by intrinsically stronger synaptic
events. In the former scenario, the difference between the
two learning processes would lie in the sensitivity of plasticity
induction, a factor that could be modulated by the initial state of
the synapses (with for instance more or less available membrane
voltage-gated channels) or the efficiency of neuromodulatory
systems. In the latter scenario, fewer synaptic events may be

needed to initiate long-term changes, such that a one-shot
exposure may be sufficient to drive the formation of a memory
trace. The excitability of the active cells and/or the activation of
some specific membrane channels could promote the generation
of larger events, such as amplificatory dendritic phenomena or
larger post-synaptic responses leading to stronger calcium influx.

Due to the sparsity of direct links between neuronal activity
and synaptic changes of engram cells, we mostly refer here to
in vitro electrophysiological experiments using brief stimulation
protocols, mimicking activity patterns observed during a fast
learning experience, and capable of inducing long-term synaptic
plasticity in randomly selected neurons (Figures 1G,H, 2).
We also examine the impact of additional factors such
as short-term intrinsic changes and neuromodulators. The
following experiments provide first insights into the putative
induction mechanisms, but further work is needed to apply
similar protocols on to-be engram cells and link their artificially-
induced long-term changes to learning, as well as to observe
in vivo natural plasticity rules.

Induction of Long-Term Synaptic Plasticity
Under Sparse and Burst Firing
Sparse Firing
Only a few spikes may be transmitted between neurons during
a one-shot experience: this constraint could potentially conflict
with the classic Hebbian framework requiring repetition or
persistence of a given activity pattern to induce stable long-term
synaptic plasticity (Hebb, 1949). Yet, in vitro studies demonstrate
that few coincident activities can be sufficient to induce spike-
timing-dependent plasticity (STDP) in several brain areas. No
more than ∼10–15 spike-EPSP pairings between L2/3 pyramidal
cells of the visual cortex are sufficient to induce Hebbian LTP,
while LTD induction requires ∼30 spikes (Froemke et al.,
2006), with classical induction STDP protocols relying on
75–150 pairings. Interestingly, LTP magnitude is not affected
by adding more pairings, suggesting a potentially rapid memory
acquisition through the induction of an abrupt all-or-none LTP
in response to minimal stimulation, as observed at CA3-CA1
synapses (Petersen et al., 1998). Moreover, in striatal projecting
neurons and in L5 pyramidal cells of the somatosensory
cortex, in vitro STDP paradigms involving∼5–15 cortico-striatal
pairings induce an endocannabinoid-mediated LTP (eCB-LTP;
Cui et al., 2015, 2016, 2018a; Xu et al., 2018; Gangarossa et al.,
2020; Figure 1G). This LTP disappears for 25–50 pairings,
only to re-emerge at 75 pairings as an NMDAR-mediated LTP
(NMDAR-LTP). Importantly, eCB-LTP is more robust to spike
jittering compared to NMDAR-LTP, and can thus arise in
a noisy environment (Cui et al., 2018b; Figure 1G). Such a
phenomenon could be critical to fast learning since the reliability
of spiking activity in response to sensory stimuli might not yet be
fully established (Yao et al., 2007). Interestingly, a recent study
establishes that transient (10 s to 5 min) neuronal activation as
well as a 1-min presentation of flashing visual stimuli specifically
activate the MAPK/ERK signaling, and are sufficient to induce
the first wave of primary response genes (Tyssowski et al., 2018).
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FIGURE 2 | Elementary cellular mechanisms of fast learning. Schematic diagram of the putative cellular mechanisms leading from a one-shot experience to a long
term memory. A one-shot experience leads a small fraction of cells to fire a few spikes (sparse network activity, left), and/or few bursts accompanied by active
dendritic events (right). Neuromodulators can also be released, particularly in the presence of salient elements in the stimulus (e.g., novelty or rewards). In vitro
evidence showed that neuromodulators play a role in the selection of patterns, as well as in the induction of short-term changes in excitability that could prime
neurons to become engram cells. Neuromodulators can also lower the synaptic plasticity induction threshold, thereby facilitating long-term plasticity. Such long-term
plasticity can then be consolidated by specific gene expression, structural changes, or reverberatory activity, altogether leading to the emergence of long-term
memory following a single experience.

Burst and Active Dendritic Events
Since bursts are transmitted more efficiently than isolated
spikes, they could increase the signal-to-noise ratio of the
network information transmission, and therefore appear as a
privileged signal for inducing long-term changes during fast
learning (Lisman, 1997; Krahe and Gabbiani, 2004; Figure 2).
Indeed, triggering a single synaptic stimulation of L5 pyramidal
neurons of the visual cortex induces LTD in vitro, only if
the paired excitatory postsynaptic potential (EPSP) produces
an NMDAR-dependent dendritic spike (Holthoff et al., 2004;
Figure 1H). Similarly, a single burst of activity in Schaffer
collaterals induces LTP, under the condition of triggering

a postsynaptic dendritic spike and activating NMDAR and
L-type voltage-gated calcium channels in CA1 pyramidal cells
(Pike et al., 1999; Wittenberg and Wang, 2006; Remy and
Spruston, 2007). Importantly, a pioneer in vivo study by
Bittner et al. (2017) shows that during spatial navigation,
spatially tuned entorhinal and CA3 inputs arriving 2–3 s before
or after a CA1 post-synaptic calcium plateau potential can
induce NMDAR-LTP and new place fields in CA1 pyramidal
cells, thus paving the way for behavioral time-scale plasticity.
These findings, also replicated in vitro (Bittner et al., 2017),
bridge the gap between the timescales of behavioral learning
and synaptic changes, and offer an alternative mechanism
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to a purely Hebbian framework that may be at stake in
episodic-like memories.

Factors Facilitating Long-Term Synaptic
Plasticity Under Sparse and Burst Firing
Intrinsic Plasticity
Changes in neuronal excitability not only support synaptic
changes as described above but can also act as a short-term
priming mechanism (Figure 2). Indeed, intrinsic modulation of
neuronal excitability generally has a lower induction threshold
than synaptic plasticity and could contribute to induce early
changes in neuronal activity (Titley et al., 2017) that will later
favor the establishment of synaptic plasticity, even under sparse
activity (Sah and Bekkers, 1996; Louise Faber et al., 2005). In this
sense, artificially elevating neuron excitability selectively in vivo
reveals place-cell activity in previously silent neurons (Lee et al.,
2012) and turns these neurons into engram cells during a fear
memory paradigm (Yiu et al., 2014). Interestingly, neurons of
the piriform cortex are initially more excitable in fast learners
compared to slow learners, with differences disappearing as their
performance on the odor-discrimination task converges upon
stimulus repetitions (Cohen-Matsliah et al., 2009).

Neuromodulation
Exposure to novel or salient stimuli releases neuromodulators
necessary for spatial memory, context, and object recognition
or one-shot emotional learning (Duszkiewicz et al., 2019;
Likhtik and Johansen, 2019). Importantly, neuromodulators can
favor the occurrence of specific synaptic events and neuronal
activity patterns as well as lower the threshold for inducing
long-term synaptic changes (Figure 2). Acetylcholine amplifies
cue encoding at sensory cortical sites through inhibition,
which allows the emission of larger bursts in presence of
meaningful stimuli (Froemke et al., 2007; Letzkus et al.,
2011). Also, under the presence of a cholinergic agonist, a
single burst at the peak or trough of theta-rhythms induces
in vitro LTP or depotentiation at CA3-CA1 synapses respectively
(Huerta and Lisman, 1995). In the same vein, single burst-
mediated LTP is more efficient with GABAergic transmission
antagonists, suggesting that the excitation/inhibition balance,
partly under neuromodulatory control, shapes the induction
of fast learning plasticity (Remy and Spruston, 2007). Finally,
dopamine expands the time window for NMDAR-LTP induction
at CA3-CA1 synapses in vitro and decreases the threshold
number of spike pairs (from 100 to 5–10) required for LTP
(Zhang et al., 2009).

Reverberating Activity, as a Bypass to Sparse Firing
In addition to plasticity rules activated by small numbers of
spikes, spontaneous replications of the associated neuronal
activity may contribute to consolidating one-shot memories
according to the classical Hebbian framework (Figure 2).
Reverberating activity is observed especially during slow-wave
sleep up to 48 h after a transient tactile exploration of novel
objects (Ribeiro et al., 2004), and replay of past trajectories, in
awake or asleep animals, is associated to memory consolidation
in the hippocampus, ventral striatum and neocortex (Wilson and

McNaughton, 1994; Hoffman and McNaughton, 2002; Pennartz
et al., 2004; Ólafsdóttir et al., 2018). Interestingly, the awake
replay is more prevalent and precise for trajectories in novel
environments or associated with salient elements (e.g., a reward,
Carr et al., 2011) and could thus particularly reinforce memory
traces of unique salient experience.

RECONSTRUCTING FAST LEARNING IN
NEURONAL NETWORKS

Fast Learning and Slow-Fast Network
Dynamics
If fast learning is best epitomized in one- or very few-shots
learning tasks, it may also apply to the initial stages of repetitive
and sustained training (Karni et al., 1998; Muellbacher et al.,
2002; Costa et al., 2004; Qu et al., 2010; Law et al., 2014). As such,
cortical engrams emerge in one-shot learning tasks as described
above, but also in the initial phases of procedural learning
(Karni et al., 1998; Muellbacher et al., 2002; Qu et al., 2010).
Importantly, cortical representations acquired slowly over time
are also essential in guiding future fast learning, which usually
relies on prior knowledge and existing schemata such as when
learning associations between known elements or novel words
(Tse et al., 2007, 2011; Hebscher et al., 2019). Thus, one should
keep in mind that fast and slow cortical dynamics are closely
intertwined as exemplified in tasks necessitating high levels of
cognitive flexibility (Pasupathy and Miller, 2005; Tse et al., 2007;
Durstewitz et al., 2010; Siniscalchi et al., 2016; Perich et al., 2018;
Remington et al., 2018; Rikhye et al., 2018).

How to Control Learning Speed?
If fast learning can confer strong advantages, e.g., in survival-
threatening situations, this strategy is not always adapted and can
potentially lead to detrimental responses, such as superstitious
behaviors, when an outcome is too rapidly associated with
the wrong cause. Typically, procedural learning based on trial-
and-error, or reinforcement learning, in which a trade-off
slowly balances exploration and exploitation, necessitates several
sessions before reaching an optimal behavior. Hence, control
of the learning speed or meta-learning should also be seen
as a critical component of the learning process. Yet, little is
known about how the brain is implementing and switching
between different learning strategies. Recent studies highlight
how an accurate tracking of feedback (Mao et al., 2019)
or stimulus saliency (Ceballo et al., 2019), amplified by
cortical ensembles, parallels with learning speed. The degree of
uncertainty of stimulus-outcome associations also regulates the
learning speed in humans and controls the coupling strength
between the hippocampus and ventrolateral prefrontal cortex
(Lee et al., 2015).

A Computational Perspective on a Fast
Learning
Physiologically realistic models of fast learning have remained
scarce andmay require the development of new synaptic learning
paradigms (Brea and Gerstner, 2016). Yet, phenomenological
models of fast learning and machine learning algorithms
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have proposed various mechanisms providing a guide for
the development of physiological models and offer testable
hypotheses for experimentalists. Fast learning is affected with
particular severity by two critical difficulties and exacerbates
Hebb’s sensitivity-stability dilemma (Hebb, 1949): (i) small
sample sizes hamper generalization capabilities and pattern
inference; and (ii) catastrophic interference, the abrupt forgetting
of previously learned information, can be easily encountered due
to the high plasticity rates required by fast learning (McCloskey
and Cohen, 1989; Ratcliff, 1990). To overcome these difficulties,
various theories have been proposed. Synapses with hierarchical
plasticity levels (Fusi et al., 2005) or selective consolidation
of synapses (Leimer et al., 2019) allow fast acquisition and
better retention of memories. In cognitive neurosciences,
three key principles stand out as crucial for fast learning
(Lake et al., 2017): the ability to compose simple primitives
(and therefore use prior learning), identify causalities, and
meta-learning (i.e., learning to learn). Combined in a generative
hierarchical Bayesian framework, these mechanisms allowed
the acquisition of new concepts after a single presentation,
with performance comparable to human best one-shot learners
(Lake et al., 2011, 2015).

Inmachine learning, variousmethods were developed to learn
from few examples (Botvinick et al., 2019; Wang et al., 2020),
with applications to an inference of situations with intrinsically
limited samples (Shu et al., 2018) or for the prediction of rare
events (Kaiser et al., 2017). In particular, data augmentation
methods consist in adding to the dataset copies of the original
data, modified according to specific rules, such as imposing
invariances (Perez and Wang, 2017). Such repetitions of slightly
modified stimuli could be akin to a sort of reverberating
activity or replays. Concept (transfer, or multitask) learning
consists in using and combining prior knowledge, potentially
acquired from learning other tasks. These techniques integrate
task-specific fast-learning modules and generic modules that
learn from various tasks on generally slower timescales. These
generic modules either transfer to the fast learning task a
generic skill needed (Pan and Yang, 2009) or guide the task
in the process of learning (Schaul and Schmidhuber, 2010;
Finn et al., 2017). This typically echoes the aforementioned
slow-fast plasticity interactions between brain areas. Recently,
computational models of meta-learning have shown how a
natural division of labor into functionally specialized clusters
may arise in the prefrontal cortex, thus making it possible to
compose multiple task elements for rapidly learning new tasks
(Wang et al., 2018; Yang et al., 2019). Finally, adding external
memories (Graves et al., 2014; Weston et al., 2014), storing

past experiences (if not all, the most recent or most salient)
allows few-shot learning and can further be combined with
meta-learning algorithms to increase learning efficiency (Santoro
et al., 2016; Ritter et al., 2018).

CONCLUSION

Fast learning is thus a crucial component in daily life memory
acquisition that involves one-shot learning experiences. If fast
learning can be characterized by the brevity and rarity (or even
uniqueness) of the learning experience, the processes involved in
memory acquisition and maintenance are embedded in multiple
timescales, considering their interactions with meta-learning and
consolidation systems. While current findings have lifted part of
the veil on fast learning engrams, several mechanisms remain to
be further elucidated. In particular, causal interactions between
minimal activity patterns and the induction of long-term changes
during one-shot learning task remain to be further explored
in vivo, as well as the cellular and molecular determinants
controlling the learning speed across brain areas and in
different contexts. These elucidations could uncover additional
components of cellular and synaptic-based learning rules and
would allow the development of more physiological models of
fast learning.
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