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Brain structural connectivity and 
neuroticism in healthy adults
Issei Ueda1, Shingo Kakeda   1, Keita Watanabe1, Koichiro Sugimoto1, Natsuki Igata1, 
Junji Moriya1, Kazuhiro Takemoto   2, Asuka Katsuki3, Reiji Yoshimura3, Osamu Abe4 & 
Yukunori Korogi1

Understanding the neural correlates of the neurotic brain is important because neuroticism is a risk 
factor for the development of psychopathology. We examined the correlation between brain structural 
networks and neuroticism based on NEO Five-Factor Inventory (NEO-FFI) scores. Fifty-one healthy 
participants (female, n = 18; male, n = 33; mean age, 38.5 ± 11.7 years) underwent the NEO-FFI 
test and magnetic resonance imaging (MRI), including diffusion tensor imaging and 3D T1WI. Using 
MRI data, for each participant, we constructed whole-brain interregional connectivity matrices by 
deterministic tractography and calculated the graph theoretical network measures, including the 
characteristic path length, global clustering coefficient, small-worldness, and betweenness centrality 
(BET) in 83 brain regions from the Desikan-Killiany atlas with subcortical segmentation using 
FreeSurfer. In relation to the BET, neuroticism score had a negative correlation in the left isthmus 
cingulate cortex, left superior parietal, left superior temporal, right caudal middle frontal, and right 
entorhinal cortices, and a positive correlation in the bilateral frontal pole, left caudal anterior cingulate 
cortex, and left fusiform gyrus. No other measurements showed significant correlations. Our results 
imply that the brain regions related to neuroticism exist in various regions, and that the neuroticism 
trait is likely formed as a result of interactions among these regions. This work was supported by a 
Grant-in-Aid for Scientific Research on Innovative Areas (Comprehensive Brain Science Network) from 
the Ministry of Education, Science, Sports and Culture of Japan.

The Five Factor Model (FFM) is one of the most widely accepted taxonomies of personality and includes various 
aspects of social behavior and emotional responsiveness: openness, conscientiousness, extraversion, agreeable-
ness, and neuroticism. Among these, neuroticism has been widely recognized in various theoretical approaches 
to human personality1. Neuroticism is characterized by a tendency to worry and be anxious2 and is related to the 
experience of having a negative affect1,3,4. Many previous studies have demonstrated that neuroticism is associated 
with depressive symptoms or depression. A large meta-analysis reported higher levels of neuroticism in individ-
uals suffering from depression than in healthy controls5. In another meta-analysis, a longitudinal association was 
observed between high neuroticism and depressive symptoms or depression6. Because neuroticism is a potential 
risk factor for the onset of psychopathology, recent research has focused on understanding the neural correlates 
of the neurotic brain7–10.

Knowledge of the relationships between white matter (WM) integrity and FFM personality traits will help 
us understand how the integrity of the anatomical connections in the brain relates to emotion, cognition, and 
behavior11,12. Diffusion tensor imaging (DTI) is a useful magnetic resonance imaging (MRI) technique for quan-
tifying and describing the microstructural changes in the WM. Previous DTI studies demonstrated that neu-
roticism is correlated with fractional anisotropy (FA) and mean diffusivity (MD) in the anterior cingulum or 
uncinate fasciculus8. Notably, a study with a large sample size (668 participants) showed that higher levels of 
neuroticism were significantly associated with lower FA in the uncinate, suggesting that higher neuroticism is 
associated with reduced structural connectivity between the prefrontal cortex and the amygdala13. Previous stud-
ies by functional MRI (fMRI) also demonstrated alterations in the frontal-limbic circuitry in association with 
neuroticism10. On the other hand, previous studies showed an association between decreased WM integrity and 
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neuroticism not only in the fiber tracts interconnecting the prefrontal cortex and amygdala, but also in multiple 
other fiber tracts10,14. The resting-state functional MRI (rs-fMRI) study by Servaas et al. also showed that the 
cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with 
neuroticism, whereas cognitive control networks in the default mode network showed less efficient information 
processing14. Thus, the previous evidences suggest that the brain regions related to neuroticism exist over various 
regions.

Imaging connectomics, which can evaluate interregional structural and functional connectivity patterns, has 
opened new avenues towards understanding the organization and function of the human brain15,16. The brain 
is believed to support global and local information communication through an integrative network17. Using a 
graph theory analysis, recent studies on connectomics have demonstrated a number of non-trivial topologic 
features in whole-brain networks, including efficient small world architecture, a prominent modular structure, 
and highly connected and centralized network hubs18,19. We therefore used whole-brain network models to gain 
insight into this potentially high-dimensional interplay among the brain regions behind the neuroticism trait. In 
this study, using DTI data from healthy adults, we examined the tract-based whole-brain network measures to 
determine whether a correlation exists between structural network organization and neuroticism score on the 
NEO Five-Factor Inventory (NEO- FFI), which is a widely used measure of FFM.

Methods
Study Participants.  We acquired both MRI and self-reported NEO-FFI data from 51 healthy volunteers 
(male, n = 33; female, n = 18; mean age, 38.5 years; range, 20–65 years; standard deviation, 11.7 years) without 
any history of significant head injury, seizure, or neurologic condition. The subjects were eligible to participate 
in the protocol if they have never been diagnosed with an axis I or II psychiatric disorder, as confirmed by the 
Structured Clinical Interview for the DSM-IV (SCID)20, and if they had no history of psychotropic medica-
tion use within the preceding six months. This study was approved by the ethics committee of the University of 
Occupational Environmental Health. All participants gave their written informed consent to participate in the 
study.

Five Factor Model Personality Traits.  The self-reported version of the revised NEO- FFI (Japanese ver-
sion) was used to assess personality traits21. The NEO- FFI generates one score each for openness, conscien-
tiousness, extraversion, agreeableness, and neuroticism. In this study, we only used the neuroticism data. The 
R software program (version 3.3.1; www.R-project.org) was used to calculate Cronbach’s alpha values for the 
neuroticism trait.

Magnetic Resonance Imaging.  MRI data were obtained using a 3 T scanner (Signa EXCITE 3 T; GE 
Healthcare, Milwaukee, WI, USA) with a dedicated eight-channel, phased-array coil (USA Instruments 
Aurora, OH, USA). All participants underwent a brain MR examination, which included three-dimensional 
(3D) T1-weighted imaging (T1Wl) and DTI. 3D T1Wl was obtained by 3D fast-spoiled gradient-recalled 
(3D FSPGR) acquisition at a steady state. The parameters for the 3D FSPGR were as follows repetition, 10 ms; 
echo, 4.1 ms; inversion, 700 ms; flip angle, 10°; field of view, 24 cm; section thickness, 1.2 mm; and resolution, 
0.9 × 0.9 × 1.2 mm. The DTI was acquired by a single-shot, spin-echo planar sequence with the following param-
eters: TR/TE, 12000/83.3 ms; slice thickness, 4 mm; no gap; field of view, 26 cm; number of excitations, 1; and 
spatial resolution, 1.02 × 1.02 × 4 mm. Diffusion gradients (b value of 1,000 s/mm2) were simultaneously applied 
for each of the three axes around a 180-degree pulse. The diffusion properties were measured in 25 non-collinear 
directions.

Image Processing (Network Construction and Calculation of Graph Theory Metrics).  We pro-
cessed the 3D T1Wl and DTI data from each participant using the Connectome Mapper pipeline software pro-
gram22,23 (Fig. 1). First, we used the affine registration in the eddy correct tool that was implemented in the 
software program from the Oxford Centre for fMRI of the Brain (FSL, FMRIB Software Library, http://www.
fmrib.ox.ac.uk/fsl/) to correct each diffusion-weighted image for distortion caused by head motion and eddy 
currents.

We used the FreeSurfer software program (Version 5.3; http://surfer.nmr.mgh.harvard.edu) to parcellate the 
cortical surface, segment the gray matter and WM, and define 83 regions of interest, which included 41 regions 
in each hemisphere and 1 region in the brainstem, with the Desikan–Killiany Atlas24. The regions were trans-
formed into the DTI space using boundary-based linear registration. All processed images were inspected for 
any artifacts, segmentation, or registration errors. Diffusion tensor reconstruction and whole brain deterministic 
tractography were performed with the Diffusion Toolkit software program (http://www.trackvis.org/dtk) based 
on the fiber assignment by the continuous tracking algorithm, which had a threshold angle of 60°, an auto mask 
threshold, with the application of the spline filter, and no additional options.

Finally, the adjacency matrix A with 83 × 83 entries (i.e., the weighted network with 83 nodes) was generated 
for each subject, with Aij corresponding to the weighted connectivity between structures i and j.

Thresholding.  According to a previous study25, the matrices or weighted networks were thresholded and 
binarized in order to emphasize the differences between strong and weak interactions (i.e., to minimize the noise 
in brain connectivity) (Fig. 1). The procedures were also performed to obtain networks with the same number 
of edges among the subjects, because the majority of the network measures were highly sensitive to the number 
of edges26; in particular, the threshold K indicated that the strongest K edges were included in each network. 
Threshold K was selected to maximize the difference between the actual and randomized networks in the con-
text of information theory. For all possible node pairs, we calculated the probability that edges would occur in 
the actual and randomized networks. We compared the Shannon entropy, which was calculated based on the 
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probabilities, between the actual and randomized networks to determine the optimum K at which the maxi-
mum difference in entropy occurred25. The randomized networks were generated from an actual network using 
a degree-preserving method27. At each threshold, we repeatedly generated one randomized network from a ran-
domly selected actual network to create 500 random networks. In this study, the optimum K was 343 (i.e., the 
average node degree was ~8.3).

Network Measure Calculation.  We calculated the network measures of the 51 binarized brain networks 
(i.e., interregional connectivity) using the R software program (version 3.3.1; www.R-project.org) and R-package 
igraph (version 1.0.1; igraph.org). Based on previous studies28, we obtained the characteristic path length (CPL), 
global clustering coefficient (GCC), small-worldness (SMW), and betweenness centrality (BET) of each node 
(Fig. 1). CPL was defined as the shortest average path length among all reachable node pairs and was calculated 
using the average.path.length function in the igraph package. GCC was defined as the average nodal clustering 
coefficient, which was defined as the ratio of the number of edges among the neighbors of a node to the total 
number of possible connections among the neighbors. GCC were obtained using the transitivity function in the 
igraph package. The SMW29 was proposed as a measure of the small-world property in real-world networked sys-
tems30. The small-world property means that all node pairs in a network are reachable in a short distance (i.e., the 
distance expected from random networks), although the network was divided into highly interconnected clusters 
(i.e., the network was far from random networks). Specifically, the SMW was calculated based on the CPL and 
GCC in the actual and randomized networks, as follows:

(GCC /GCC )/(CPL /CPL )act rand act rand

where Xact represents a network measure X (i.e., GCC or CPL) in the actual networks. Xrand was the average X 
obtained from 500 randomized networks. The BET of each node was calculated using the betweenness function 
in the igraph package28,31.

Statistical analysis.  To evaluate the contribution of each factor (i.e., age, sex, CPL, GCC, SWN, and BET 
of each region) to the neuroticism score of the NEO-FFI, we conducted a multivariate analysis. In this study, we 
could not use a direct regression model for all 88 explanatory variables (i.e., age, sex, 3 global network measures, 
and the BET values of the 83 nodes) because of the combinational explosion in the model selection and the multi-
collinearity that mainly arises from feature overlap among network measures. Thus, following a previous study32,  
to avoid this problem as much as possible, we considered the parameter selection using the least absolute 
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Figure 1.  Overview of the data processing and analysis. 3D T1WI, three-dimensional T1-weighted imaging; 
DTI, diffusion tensor imaging; CPL, characteristic path length; GCC, global clustering coefficient; SMW, 
small-worldness; BET, betweenness centrality; NEO-FFI, NEO Five-Factor Inventory; LASSO, least absolute 
shrinkage and selection operator.
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shrinkage and selection operator (LASSO) method, which is thought to be useful for regularization, to increase 
the interpretability of the regression model for finding significant variables33.

The multivariate analysis with the LASSO method was performed using the R software program (version 3.4.1; 
www.R-project.org). Using the cv.glmnet and glmnet functions from the glmnet R package (www.rdocumentation.
org/packages/glmnet), we selected parameters and defined the best subset of network measures to include in a 
regression model. We then conducted a regression analysis using the lm function to evaluate the contribution of 
age, sex, and the selected network measures to the neuroticism score. We considered the associations between the 
network measure and neuroticism score to be significant when the associated p-value was <0.01. We removed 
subject data with a Cook’s distance of more than 3 times the mean from the regression analysis.

Results
Neuroticism Score of the NEO-FFI.  The mean of neuroticism score on the NEO- FFI was 23.5 (standard 
deviation: 7.5). Cronbach’s alpha coefficient of the neuroticism score was 0.81, indicating the high internal con-
sistency of this score.

Network Measures.  We examined the contribution of age, sex, CPL, GCC, SWN, and BET of each region 
to the neuroticism score of NEO-FFI. One participant’s data point was removed from the analysis, because its 
Cook’s distance was more than 3 times the mean. A multivariate regression analysis (Adjusted R-squared = 0.869, 
F-statistic p-value < 0.0001) was performed after outlier removal and the parameter selection using the least 
absolute shrinkage and selection operator (LASSO) method.

The neuroticism scores were negatively associated with the BET in the left isthmus cingulate cortex, left supe-
rior parietal, left superior temporal, right caudal middle frontal and right entorhinal cortices (p < 0.01) (Fig. 2) 
(Table 1). On the other hand, the neuroticism score was positively associated with the BET in the right frontal 
pole, left caudal anterior cingulate cortex, left frontal pole, and left fusiform gyrus (p < 0.01) (Fig. 2) (Table 1).

The CPL, GCC, and SMW values were not significantly correlated with the neuroticism score.

Discussion
The aim of the current study was to investigate the association between the alterations in the structural network 
organization of the neurotic brain. The BET, which is defined as the fraction of all shortest paths in the network 
that passes through a node28, describes the central nodes that participate in many short paths within a network. 
Thus, the BET consequently acts as an important control of the information flow34, and is useful for detecting 
important anatomical or functional connections28. Our study showed that in comparison to individuals with low 
neuroticism, highly neurotic individuals had lower BET values in the left isthmus cingulate cortex, left superior 
parietal, left superior temporal, right caudal middle frontal and right entorhinal cortices, whereas information 
processing in the neurotic brain predominantly occurred in the right frontal pole, left caudal anterior cingulate 
cortex, left frontal pole, and left fusiform gyrus. Our results showed regional laterality (more on left side), which 

lt. caudal anterior cingulate 
standardized β = 0.316

S.E.(β) = 0.070
p = 0.000124

lt. superior temporal 
standardized β = -0.389

S.E.(β) = 0.097
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Figure 2.  The brain regions for which a significant association was observed between betweenness centrality 
(BET) and the neuroticism score. The regions with positive and negative associations are indicated with red and 
blue circles, respectively. lt., left; rt., right; S.E., standard error.
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is consistent with results from the previous DTI studies; the fiber tracts associated with neuroticism showed 
asymmetry (more on left side)8,10. Although the reason is unclear, it is suggested that there may be laterality in the 
brain regions affected by the neuroticism trait.

Regarding the brain regions in which a negative association was observed between the neuroticism score and 
the BET, our results supported the findings of many previous DTI studies8,10,13,35,36. Many studies have shown a 
negative association between the neuroticism score and the FA in the uncinate fasciculus and cingulate cortex8,13. 
The uncinate fasciculus is an association tract that interconnects the inferior frontal gyrus and parts of the limbic 
system, such as the hippocampus and amygdala. The entorhinal cortex, which was detected in this study, is a part 
of the anterior parahippocampal gyrus37 and an important pathway connecting the amygdala and the hippocam-
pus38. The entorhinal cortex is also involved in nociceptive processing and the generation of pain perception39, 
and plays an important role in anxiety40,41. Ploghaus et al.39 found that anxiety-induced hyperalgesia is associated 
with the activation of the entorhinal cortex. Thus, our data may also suggest the role of the entorhinal cortex in 
neuroticism-anxiety. The previous studies also showed a significant negative association between neuroticism and 
the FA value in the superior longitudinal fasciculus8, which is a pathway connecting the superior parietal and cau-
dal middle frontal cortices42. Moreover, the middle fontal gyrus, including the caudal middle frontal cortex, has 
been proposed to be a site of convergence of the attention networks43. Neuroticism is associated with decreased 
attentional control over the visual field44.

Our results are also consistent with previous results using a graph theory analysis of rs-fMRI, which demon-
strated that in highly neurotic individuals, the cingulo-operculum networks had relatively more connections 
with other functional networks, whereas the cognitive control networks in the default mode network showed less 
efficient information processing14. The cingulo-operculum networks consist of brain regions related to the identi-
fication and appraisal of salient affective stimuli and the production of affective states45. Likewise, previous studies 
have revealed that these high trait scorers dealt poorly with daily stressors and often applied maladaptive coping 
strategies, such as worrying and avoidance46,47. These findings implied that a neurotic brain is less cognitively 
controlled and that (negative) affect predominates in information processing. The cingulo-opercular network, 
which consists of the anterior insula/operculum, prefrontal cortex, dorsal anterior cingulate cortex, and thala-
mus48. Thus, the frontal pole and caudal anterior cingulate cortex, in which the neuroticism score was positively 
associated with the BET in our study, were included in the cingulo-opercular network. The default mode network 

Coefficients
Standardized 
β

S.E. 
(β) t value Pr (>|t|)

Age −0.125 0.080 −1.55 0.134

Sex −0.267 0.161 −1.66 0.109

BET in brain Regions

lt. caudal anterior cingulate 0.316 0.070 4.54 0.000124*

lt. entorhinal −0.087 0.063 −1.38 0.180

lt. frontal pole 0.238 0.072 3.32 0.00276*

lt. fusiform 0.197 0.068 2.91 0.00741*

lt. isthmus cingulate −0.356 0.081 −4.37 0.000193*

lt. superior parietal −0.196 0.070 −2.81 0.00949*

lt. superior temporal −0.389 0.097 −4.02 0.00047*

rt. caudal anterior cingulate −0.131 0.073 −1.79 0.0860

rt. caudal middle frontal −0.352 0.061 −5.74 <0.0001*

rt. cuneus −0.081 0.060 −1.37 0.184

rt. entorhinal −0.449 0.068 −6.62 <0.0001*

rt. frontal pole 0.360 0.074 4.82 <0.0001*

rt. lateral orbitofrontal −0.131 0.071 −1.84 0.0776

rt. lingual 0.080 0.070 1.15 0.261

rt. peri-calcarine 0.141 0.090 1.56 0.130

rt. posterior cingulate 0.053 0.068 0.79 0.439

rt. precuneus 0.019 0.070 0.28 0.783

rt. superior temporal −0.105 0.105 −1.00 0.329

rt. supramarginal −0.123 0.064 −1.92 0.0659

lt. caudate −0.116 0.069 −1.67 0.108

lt. pallidum −0.107 0.082 −1.31 0.203

rt. caudate −0.114 0.076 −1.49 0.148

Table 1.  The association between the neuroticism score and the variables selected by the least absolute 
shrinkage and selection operator (LASSO) method. BET, betweenness centrality; LASSO, least absolute 
shrinkage and selection operator; lt., left; rt., right; S.E., standard error. *Indicates effects that were statistically 
significant (p < 0.01) at this study assessments. The multivariate regression analysis showed a residual standard 
error of 0.363 with 25 degrees of freedom; Multiple R-squared, 0.933; Adjusted R-squared, 0.869; F-statistic, 
14.49 with 24 and 25 DF; p-value < 0.0001.
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consists of brain regions involved in attention, memory, emotion regulation, self-reflection, problem solving, and 
planning49–51. Hyatt et al. demonstrated that the default mode network was related to the mentalizing processes 
located in three core regions: the medial prefrontal cortex, the posterior cingulate cortex/precuneus, and the 
bilateral temporoparietal junction52. The isthmus cingulate and superior parietal cortices, which were detected in 
our study, are a portion of the posterior cingulate cortex and the precuneus, respectively.

In this study, in the left superior temporal cortex and left fusiform gyrus, the neuroticism score is also asso-
ciated with the BET, which may consistent with the risk-conferring effects in social anxiety disorder (SAD). 
SAD, which is characterized by heightened fear of social evaluation in conjunction with a maladaptive pattern 
of emotion regulation53,54, has been associated with neuroticism55. SAD involves the impairment of networks 
associated with the ability to make inferences about others’ mental state, which has been termed ‘theory of mind’ 
(ToM)56. The superior temporal cortex is a brain structure that is thought to be important for social perception 
and mindreading based on the perception of emotions in facial stimuli57,58, and is also considered to play key roles 
in ToM processing. The fusiform gyrus also plays key roles in the pathology of SAD. SAD has been associated 
with hyper-reactivity in limbic brain regions like the amygdala, both during symptom provocation and emotional 
face processing tasks. Frick et al. showed that the severity in patients with SAD was positively correlated with 
amygdala connectivity with the fusiform gyrus59.

Our study is associated with some limitations. First, the small sample size must be taken into account when 
interpreting the results. Furthermore, the study participants were mostly adults with a mean age of 38 years 
and our findings cannot be applied to the general population. Second, we used DTI data with 25 non-collinear 
diffusion directions, which showed lower spatial resolution in comparison to previous studies8,13. Thus, our DTI 
sequence protocol might have limited the statistical power of the imaging analyses. Third, we could not verify 
an underlying altered functional network organization in the altered WM structural network that we observed 
because we only evaluated DTI data. Thus, we could not provide insight into the causal relationship between 
structural network organization and neuroticism. Future studies combining fMRI and DTI and/or following indi-
viduals longitudinally may provide additional insight. Furthermore, a more recent study proved the underlying 
genetic determinants associated with personality traits and mental health60. Thus, prospective studies combining 
genetic and structural brain metrics are also warranted to provide insight into the brain mechanisms underlying 
neuroticism in relation to psychiatric disorders.

In conclusion, we examined the alterations in the structural network organization or WM integrity associated 
with neuroticism. We found various brain regions that were both negatively and positively correlated with the 
neuroticism score. Our results, which are supported by a great deal of evidence from previous DTI and fMRI 
studies, suggest that various brain regions are related to neuroticism, and that the neuroticism trait is likely 
formed as a result of interactions among these regions.

Compliance with Ethical Standards.  Ethical approval: All procedures performed in studies involving 
human participants were in accordance with the ethical standards of the institutional and/or national research 
committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent: Informed consent was obtained from all individual participants included in the study.

Data Availability
The datasets generated and analyzed during the current study are not publicly available due to restrictions set by 
the Ethics Committee of the University of Occupational and Environmental Health regarding patient confidenti-
ality, but are available from the corresponding author on reasonable request.
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