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Photoaging of the skin depends primarily on the degree of ultraviolet radiation (UVR) and on an amount of melanin in the skin
(skin phototype). In addition to direct or indirect DNAdamage, UVR activates cell surface receptors of keratinocytes and fibroblasts
in the skin, which leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. It is
hypothesized that dermal collagen breakdown is followed by imperfect repair that yields a deficit in the structural integrity of
the skin, formation of a solar scar, and ultimately clinically visible skin atrophy and wrinkles. Many studies confirmed that acute
exposure of human skin to UVR leads to oxidation of cellular biomolecules that could be prevented by prior antioxidant treatment
and to depletion of endogenous antioxidants. Skin has a network of all major endogenous enzymatic and nonenzymatic protective
antioxidants, but their role in protecting cells against oxidative damage generated by UV radiation has not been elucidated. It seems
that skin’s antioxidative defence is also influenced by vitamins and nutritive factors and that combination of different antioxidants
simultaneously provides synergistic effect.

1. Introduction

Unlike chronological aging, which is predetermined by indi-
vidual’s physiological predisposition, photoaging depends
primarily on the degree of sun exposure and on an amount
of melanin in the skin. Individuals who have a history of
intensive sun exposure, live in sunny geographical areas, and
have fair skin will experience the greatest amount of ultravi-
olet radiation (UVR) skin load and consequently severe pho-
toaging [1, 2]. Clinical signs of photoaging include wrinkles,
mottled pigmentation (hypo- or hyperpigmentation), rough
skin, loss of the skin tone, dryness, sallowness, deep furrows,
severe atrophy, telangiectasias, laxity, leathery appearance,
solar elastosis, actinic purpura, precancerous lesions, skin
cancer, and melanoma [3, 4]. Sun-exposed areas of the skin,
such as the face, neck, upper chest, hands, and forearms, are
the sites where these changes occur most often [5]. Chrono-
logical skin aging, on the other hand, is characterized by laxity
and fine wrinkles, as well as development of benign growths
such as seborrheic keratoses and angiomas, but it is not asso-
ciated with increased/decreased pigmentation or with deep

wrinkles that are characteristic for photoaging [6]. Seborrheic
keratoses are regarded as best biomarker of intrinsic skin
aging since thier appearance is independent on sun exposure.
While intrinsically aged skin does not show vascular damage,
photodamaged skin does. Studies in humans and in the albino
and hairless mice showed that acute and chronic UVB irradi-
ation greatly increases skin vascularization and angiogenesis
[7, 8]. The sun is the main source of UVR and the main con-
tributor to the photoaging. UVC radiation (100 to 290 nm) is
almost completely absorbed by the ozone layer and does not
affect the skin. UVB (290 to 320 nm) affects the superficial
layer of the skin (epidermis) and causes sunburns. It is the
most intense between 10 am and 2 pm, during summer
months, does not penetrate through the glass, and accounts
for 70% of a person’s yearly average cumulative UVB dose.
UVA (320 to 400 nm) was believed to have a minor effect on
the skin, but studies showed that they penetrate deeper in
the skin (e.g., about 20% at 365 nm), are more abundant in
sunlight (95% of UVA and 5% of UVB), and therefore exhibit
more severe damage [9, 10]. Significantly more photons in
the UVA are needed to cause the same degree of damage
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compared to UVB since they are less energetic, but they are
present in much higher quantities in sunlight and are more
penetrant than in UVB [9]. Until recently, it has become
evident that also infrared radiation (IR) could induce skin
damage and contribute to the skin photoaging. While proton
energy of IR is low, total amount of IR which reaches humans’
skin accounts approximately for 54% (compared to 5–7% of
UV rays).Most of the IR lies within the IR-A band (𝜆 = 760 to
1440 nm), which represents approximately 30% of total solar
energy, and penetrates human skin deeply compared to IR-
B and IR-C, which only penetrate the upper skin layers. In
comparison, IR-A penetrates the skin deeper than UV, and
approximately 50% of it reaches the dermis. Molecular mech-
anisms of damaging effect of IR-A on the skin are attributed to
induction of matrix mtalloproteinase-1, as well as to genera-
tion of reactive oxygen species (ROS).The exposure of human
to environmental and artificial UVR has increased signifi-
cantly in the last 50 years. This is due to an increased solar
UVR as a consequence of the stratospheric ozone depletion,
use of sunscreens, false believe of being well protected while
exposed to sun for longer time, outdoor leisure activities, and
prolonged life expectancy in industrialized countries [11].

2. Effects of UVR on Cells and Tissues

Studies in hairless mice demonstrated the carcinogenicity of
UVR, with UVB being the most effective, followed by UVC
and UVA [12]. UVB radiation is three to four orders of mag-
nitude more effective than UVA. In none of the experiments
it was possible to exclude completely a contribution of UVC,
but the size of the effects observed indicate that they cannot be
due to UVB alone [13]. People with a poor ability to tan, who
burn easily, and have light eye and hair colour are at a higher
risk of developing melanoma, basal-cell, and squamous-
cell carcinomas. UVB most commonly causes cyclobutane
pyrimidine dimmers. UVA, on the other hand, primarily
causes DNA damage indirectly by the production of short-
lived reactive oxygen species (ROS) such as singlet oxygen,
superoxide, andH

2
O
2
via endogenous photosensitizers. UVA

radiation generates more phosphodiester bond breaks in
DNA than would be expected by the total amount of energy
directly absorbed by the DNA; therefore, it most likely causes
indirect damage to DNA, which is caused by endogenous
photosensitizers such as riboflavin, nicotinamide coenzymes,
and rarely RNA bases [9]. Damage of the skin cells’ DNA
is repaired by two different mechanisms: nucleotide excision
repair (NER) and base excision repair (BER). The ROS-
induced DNA damage is primarily repaired by the BER sys-
tem and damage caused by direct influence of UVR on DNA
by the NER system. DNA damage that can be induced by
UVA radiation includes pyrimidine dimmers, single-strand
breaks (both are critical in UVA radiation-induced cellular
lethality), and perhaps more importantly DNA protein cross-
links [14–17]. On the other hand, ROS can oxidize guanine
in DNA to form 8-hydroxy-7,8-dihydroguanine (8-OHdG).
The frequency of this characteristic mutation in human
skin increases with cumulative sun exposure and could be
used as an internal marker of cumulative sun exposure [18].

OH∙ can be added to guanine at positions 4, 5, and 8 (causing
8-OHdG) or undergoes opening of the imidazole ring, fol-
lowed by one-electron reduction and protonation, to give 2,6-
diamino-4-hydroxy-5-formamidopyrimidine (FAPyG) [19].
Photoexcitation of cytosine and guanine may lead to the
formation of relatively rare 6-hydroxy-5,6-dihydrocytosine
and 8-oxo-7,8-dihydroguanine.

A second mechanism, which requires participation of
endogenous photosensitizers and oxygen, causes most of
the DNA damage generated by the UVA and visible light.
Singlet oxygen is likely to bemostly involved in the formation
of 8-oxo-7,8-dihydroguanine that was observed within both
isolated and cellular DNA. It may be expected that oxidized
purine together withDNA strand breaks and pyrimidine base
oxidation products is also generated with a lower efficiency
through Fenton type reactions [20]. The number of different
DNA modifications that are capable of producing OH∙
appears to be over 100 [21].

Solar UVR induces a variety of photoproducts in DNA,
including cyclobutane-type pyrimidine dimers, pyrimidine-
pyrimidone (6-4) photoproducts, thymine glycols, cytosine
damage, purine damage, DNA strand breaks, and DNA-
protein cross links [22]. Substantial information on biological
consequences is available only for the first two classes. Both
are potentially cytotoxic and can lead tomutations in cultured
cells, and there is evidence that cyclobutane-type pyrimidine
dimers may be precarcinogenic lesions [13].

UVR also directly or indirectly initiates and activates a
complex cascade of biochemical reactions in the human skin.
Besides, the UV light-induced ROS interfere with signalling
pathways. On a molecular level, UVR activates cell surface
receptors of keratinocytes and fibroblasts in the skin, which
initiates signal transduction cascades. This, in turn, leads to
a variety of molecular changes, which causes a breakdown of
collagen in the extracellular matrix and a shutdown of new
collagen synthesis [23]. UV-induced liberation of ROS in
human skin is responsible for stimulation of numerous signal
transduction pathways via activation of cell surface cytokine
and growth factor receptors. UVA or UVB induce activation
(sometimes via peroxides or singlet O

2
as signalling

molecules) of a wide range of transcription factors in skin
cells, including factor activator protein-1 (AP-1) [10].This can
increase production of matrix metalloproteinases that can
degrade collagen and other connective tissue components.
For example, the UV light-induced ROS induce the
transcription of AP-1. AP-1 induces upregulation of matrix
metalloproteinases (MMPs) like collagenase-1 (MMP-1),
stromelysin-1 (MMP-3), and gelatinase A (MMP-2), which
specifically degrade connective tissue such as collagen and
elastin and indirectly inhibit the collagen synthesis in the
skin [24]. As indicated by their name, these zinc-dependent
endopeptidases show proteolytic activity in their ability to
degrade matrix proteins such as collagen and elastin [25].
Destruction of collagen is a hallmark of photoaging. The
major enzyme responsible for collagen 1 digestion is matrix
metalloproteinase-1 (MMP-1) [26]. Skin fibroblasts produce
MMP-1 in response to UVB irradiation, and keratinocytes
play a major role through an indirect paracrine mechanism
involving the release of epidermal cytokine after UVB
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irradiation [27]. MMPs are produced in response to UVB
irradiation in vivo and are considered to be involved in the
changes in connective tissue that occur in photoaging [28].
They are associated with a variety of normal and pathological
conditions that involve degradation and remodelling of the
matrix [29–32]. UV rays and aging lead to excess proteolytic
activity that disturbs the skin’s three-dimensional integrity
[33]. These proteinases are important for breaking down the
extracellular matrix during chronic wound repair, in which
there is reepithelialization by keratinocyte migration. Thus,
MMPs are continuously involved in the remodelling of the
skin after chronic damage. Photodamage also results in the
accumulation of abnormal elastin in the superficial dermis,
and several MMPs have been implicated in this process [33].
ROS activate cytoplasmic signal transduction pathways in
resident fibroblasts that are related to growth, differentiation,
senescence, and connective tissue degradation [34]. ROS
activate cytoplasmic signal transduction pathways that are
related to growth differentiation, senescence, transformation
and tissue degradation and cause permanent genetic changes
in protooncogenes and tumour suppressor genes [35]. The
study of Kang et al. [36] revealed that UVA/UVB irradiation
of the skin causes generation of H

2
O
2
within 15 minutes.

AP-1, which leads to increased collagen breakdown, becomes
elevated and remains elevated within 24 hours following
UV irradiation [37]. Decreased procollagen synthesis within
eight hours of UV irradiation was demonstrated [38].
Consequently, increased collagen breakdown was demon-
strated [39]. It is hypothesized that dermal breakdown is
followed by repair that, like all wound repair, is imperfect.
Imperfect repair yields a deficit in the structural integrity
of the dermis, a solar scar. Dermal degradation followed by
imperfect repair is repeated with each intermittent exposure
to ultraviolet irradiation, leading to accumulation of solar
scarring and ultimately visible photoaging [40]. While it may
seem that the signs of photoaging appear overnight, they
actually lie invisible beneath the surface of the skin for years
(Figure 1). UV exposure of the skin causes oxidative stress,
leading to inflammatory reactions, such as acute erythema
and chronic damage. Most problematic consequences of
chronic damage include premature skin aging and skin
cancer [41].

3. Skin Antioxidants Protect against UVR

UVR exposure affects the skin antioxidants. Ascorbate, glu-
tathione (GSH), superoxide dismutase (SOD), catalase, and
ubiquinol are depleted in all layers of the UVB-exposed skin.
Studies of cultured skin cells and murine skin in vivo have
indicated that UVR-induced damage involves the generation
of ROS and depletion of endogenous antioxidants [42]. In
the study by Shindo et al. [43], enzymatic and nonenzymatic
antioxidants in the epidermis and dermis and their responses
to ultraviolet light of hairless mice were compared. Mice
were exposed to solar light and subsequently examined for
UV-induced damage of their skin. After irradiation, epider-
mal and dermal catalase and SOD activities were greatly
decreased. Alpha-tocopherol, ubiquinol 9, ubiquinone 9,
ascorbic acid, dehydroascorbic acid, and reduced GSH

decreased in both epidermis and dermis by 26% to 93%. Oxi-
dized GSH showed a slight nonsignificant increase. Because
the reduction in total ascorbate and catalase was much more
prominent in epidermis than dermis, the authors concluded
that UV light is more damaging to the antioxidant defences
in the epidermis than in the dermis. Many other studies
confirmed that acute exposure of human skin to UVR in
vivo leads to oxidation of cellular biomolecules that could
be prevented by prior antioxidant treatment. There have
beenmany studies performed where different antioxidants or
combinations of antioxidants and different phytochemicals
were tested in order to find evidence against ROS-induced
damage. Some of them are presented in Tables 1 and 2.

4. Endogenous Skin Antioxidants

Skin has a network of protective antioxidants. They include
endogenous enzymatic antioxidants such as GSH peroxidase
(GPx), SOD, and catalase and nonenzymatic low-molecular-
weight antioxidants such as vitamin E isoforms, vitamin C,
GSH, uric acid, and ubiquinol [43]. All the major antioxidant
enzymes are present in the skin, but their roles in protecting
cells against oxidative damage generated by UV radiation
have not been elucidated. In response to the attack of ROS,
the skin has developed a complex antioxidant defence system
including, among others, the manganese-superoxide dismu-
tase (MnSOD). MnSOD is the mitochondrial enzyme that
disposes of superoxide generated by respiratory chain activ-
ity. Of all electrons passing down the mitochondrial respira-
tory chain, it is estimated that 1% to 2% are diverted to form
superoxide (although recent studies claim that this amount is
even less); thus, production of hydrogen peroxide occurs at a
constant rate due toMnSOD activity. MnSOD dismutates the
superoxide anion (O∙−

2
) derived from the reduction of molec-

ular oxygen to hydrogen peroxide (H
2
O
2
), which is detoxified

by GSH peroxidase to water and molecular oxygen. The
study of Poswig et al. [44] revealed that adaptive antioxidant
response ofMnSOD following repetitiveUVA irradiation can
be induced. The authors provide evidence for the increasing
induction of MnSOD upon repetitive UVA irradiation that
may contribute to the effective adaptive UVA response of the
skin during light hardening in phototherapy. The study of
Fuchs and Kern showed that acute UV exposures lead also
to changes in GSH reductase and catalase activity in mouse
skin but insignificant changes in SOD and GSH peroxidase
[45]. The study of Sander et al. [46] confirmed that chronic
and acute photodamage is mediated by depleted antioxidant
enzyme expression and increased oxidative protein modifi-
cations. Biopsies from patients with histologically confirmed
solar elastosis, from non-ultraviolet-exposed sites of age-
matched controls, and from young subjects were analysed.
The antioxidant enzymes catalase, copper-zinc superoxide
dismutase, MnSOD, and protein carbonyls were investigated.
Whereas overall expression of antioxidant enzymes was very
high in the epidermis, low baseline levels were found in the
dermis. In photoaged skin, a significant depletion of antiox-
idant enzyme expression was observed within the stratum
corneum and in the epidermis. Importantly, an accumulation
of oxidativelymodified proteins was found specifically within
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Figure 1: DermaView skin analyser accentuates areas of sun-damaged skin of the face.

the upper dermis of photoaged skin. Upon acute ultraviolet
exposure of healthy subjects, depleted catalase expression
and increased protein oxidation were detected. Exposures of
keratinocytes and fibroblasts to UVB, UVA, and H

2
O
2
led to

dose-dependent protein oxidation confirming in vivo results.
Not all skin cells are exposed to the same level of oxidative

stress. It was found that keratinocytes utilize as much oxygen
as fibroblasts, even though maximal activities of the respi-
ratory chain complexes are two- to five-fold lower, whereas
expression of respiratory chain proteins is similar. Superoxide
anion levels are much higher in keratinocytes, and ker-
atinocytes display much higher lipid peroxidation level and
a lower reduced glutathione/oxidized glutathione ratio [47].

It can be concluded that oxidative stress is a problem of
skin cells and that endogenous as well as exogenous antioxi-
dants could play an important role in decreasing it.

5. Compounds Derived from the Diet with
Photoaging/Damage Protective Effects

Natural antioxidants are generally considered to be beneficial
fruit and vegetable components. It seems that skin’s antiox-
idative defence is also influenced by nutritive factors. Besides
vitaminsA,C, andE, 𝜂-3 fatty acids certain nonvitamin plant-
derived ingredientsmight have beneficial effect on skin aging,
skin sun protection, or skin cancer. The laboratory studies
conducted in animal models suggest that many plant com-
pounds have the ability to protect the skin from the adverse
effects of UVR. The proliferation of products, however, can
cause confusion among consumers, who often ask their
dermatologists for advice as to which antiaging products they
should choose. Ideally, the antiaging claims of cosmeceutical
formulations and their components should be demonstrated
in controlled clinical trials [48], but there is a lack of such
studies due to their high costs. Since cosmeceutical products
are claiming that they therapeutically affect the structure
and function of the skin, it is rational and necessary to
hold them to specified scientific standards that substantiate
efficacy claims [49].

Many studies have found that vitamin C can increase
collagen production, protect against damage from UVA and

UVB rays, correct pigmentation problems, and improve
inflammatory skin conditions [50] (Table 1).

Topical retinoids remain the mainstay for treating pho-
toaging given their proven efficacy in both clinical and histo-
logical outcomes. The application of retinoids might not
only clinically and biochemically repair photoaged skin, but
their use might also prevent photoaging [102]. Retinoid-
mediated improvement of photoaging is associated with
increased collagen I synthesis [103], reorganization of packed
collagen fibres [104], and increased number of type VII
anchoring fibrils [105]. However, up to 92% of subjects
who used tretinoin in various clinical studies have reported
“retinoid dermatitis,” that is, erythema and scaling at the
site of application [106, 107]. Irritation can be minimized by
reducing dose and frequency of treatments.

It seems that the biochemistry of CoQ10 may inhibit the
production of IL-6, which stimulates fibroblasts in dermis
by paracrine manner to upregulate MMPs production, and
contribute to protecting dermal fibrous components from
degradation, leading to rejuvenation of wrinkled skin [108].
It was reported that CoQ10 strongly inhibits oxidative stress
in the skin induced by UVB via increasing SOD2 and GPx
[109]. It was reported that it is considered that CoQ10 appears
to have also a cutaneous healing effect in vivo [110].

Green tea polyphenols have received attention as pro-
tective agents against UV-induced skin damage. Analysis of
published studies demonstrates that green tea polyphenols
have anti-inflammatory and anticarcinogenic as well as anti-
aging properties. These effects appear to correlate with
antioxidant properties of green tea polyphenols, which could
be used as new photoprotection agents (Table 1).

A number of experimental studies indicate protective
effects of beta-carotene against acute and chronic manifes-
tations of skin photodamage. However, most clinical studies
have failed to convincingly demonstrate its beneficial effects
so far. Studies on skin cells in culture have revealed that
beta-carotene acts not only as an antioxidant but also has
unexpected prooxidant properties [111]. For this reason,
further studies with focus on in vivo 𝛽-carotene-induced
prooxidative properties and its relevance onhumanhealth are
needed. Another problem represents the dosage. Although
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Table 1: Exogenous antioxidants with photoprotective or damage protective effects.

Antioxidants Outcome of the study Study

Ascorbic acid

Topical vitamin C 5% cream applied for six months led to clinical
improvement in the appearance of photoaged skin
Topical vitamin C stimulates the collagen-producing activity of the
dermis
Magnesium ascorbyl phosphate administration immediately after
exposure in hairless mice significantly delayed skin tumor formation
and hyperplasia induced by chronic exposure to UV radiation

Elmore, 2005 [51]

Ascorbic acid was a photoprotectant when applied to mice and pig
skin before exposure to ultraviolet (UV) radiation Elmore, 2005 [51]

Vitamin E
UV-induced vitamin E depletion Packer and Valacchi, 2002 [52]
The interaction of vitamin E with the eicosanoid system may result in
an anti-inflammatory effect and thereby complement the
photoprotective effects of other antioxidants in the skin

Boelsma et al., 2001 [53]

Vitamin E has skin barrier-stabilizing properties Packer et al., 2001 [54]

Lycopene
UV light decreased skin lycopene concentrations more so than skin
𝛽-carotene concentrations Ribaya-Mercadoet al., 1995 [55]

Lycopene protects against UV-induced erythema in humans

Carotenoids
(carotene, 𝛽-carotene, and
carotenoid mix)

Carotenoids are efficient in photoprotection, scavenging singlet
oxygen, and peroxyl radicals. Supplements or a carotenoid-rich diet
decreased sensitivity against UV-induced erythema

Sies and Stahl, 2004 [56]

Supplementation with carotenoids contributes to basal protection of
the skin but is not sufficient to obtain complete protection against
severe UV irradiation

Stahl and Krutmann, 2006 [57]

Dietary beta-carotene has effect on wrinkles and elasticity,
procollagen gene expression, and ultraviolet (UV)-induced DNA
damage in human skin

Cho et al., 2010 [58]

Erythema-protective effect of a carotenoid mix inhibited serum lipid
peroxidation

Heinrich et al., 1998 [59]
Heinrich et al., 2003 [60]
Lee et al., 2000 [61]

Presupplementation with 𝛽-carotene before and during sunlight
exposure provides protection against sunburn Gollnick et al., 1996 [62]

Inhibition of UV-induced epidermal damage and tumor formation in
mouse models

Mathews-Roth and Krinsky, 1987
[63]

Tretinoin

Topical tretinoin ameliorates the clinical signs of photoaging Cordero, 1983 [64]
Kligman et al., 1986 [65]

The treatment of photodamaged skin with tretinoin increased
collagen I formation. Griffiths et al., 1993 [66]

Topical tretinoin is safe and effective in the treatment of photodamage Gilchrest, 1997 [67]
Improvement in photodamaged skin Weinstein et al., 1991 [68]
Topical tretinoin reduced the effects of photoaging Voorhees, 1990 [69]
Topical tretinoin in combination with sun protection as a useful
approach to the treatment of sun-damaged skin Leyden, 1998 [70]

Coenzyme Q10 (CoQ10)

Topical application of CoQ10 has the beneficial effect of preventing
photoaging Hoppe et al., 1999 [71]

Coenzyme Q10 protects against oxidative stress-induced cell death
and enhances the synthesis of basement membrane components in
dermal and epidermal cells

Muta-Takada et al., 2009 [72]

CoQ10 was shown to reduce UVA-induced MMPs in cultured human
dermal fibroblasts Inui et al., 2008 [73]

Glutathione Glutathione is a photoprotective agent in skin cells Connor and Wheeler, 1987 [74]

Zinc
Zn-treated fibroblasts were more resistant to UVR than cells grown in
normal medium Richard et al., 1993 [75]

Zn can positively influence the effects of oxidative stress on cultured
human retinal pigment epithelial (RPE) cells Tate et al., 1999 [76]
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Table 1: Continued.

Antioxidants Outcome of the study Study

Resveratrol
Application of resveratrol to the skin of hairless mice effectively
prevented the UVB-induced increase in skin thickness and the
development of the skin edema

Afaq and Mukhtar, 2002 [77]

Green tea
Green tea polyphenols were shown to reduce UV light-induced
oxidative stress and immunosuppression Katiyar et al., 2000 [78]

Topical treatment or oral consumption of green tea polyphenols
(GTP) inhibits chemical carcinogen- or UV radiation-induced skin
carcinogenesis in different laboratory animal models

Katiyar, 2003 [79]

Green tea or caffeine

Oral administration of green tea or caffeine in amounts equivalent to
three or five cups of coffee per day to UVB-exposed mice increased
levels of p53, slowed cell cycling, and increased apoptotic sun burn
cells in the epidermis

Lu et al., 2008 [80]

Sylimarin
Silymarin strongly prevents both photocarcinogenesis and skin tumor
promotion in mice Singh and Agarwal, 2002 [81]

Skin cancer chemopreventive effects Ahmad et al., 1998 [82]
Genistein Antioxidant and anticarcinogenic effects on skin Wei et al., 1995 [83]

Cocoa

Dietary flavanols from cocoa contribute to endogenous
photoprotection, improve dermal blood circulation, and affect
cosmetically relevant skin surface and hydration variables

Heinrich et al., 2006 [84]

Photoprotection against UV-induced erythema Heinrich et al., 2006 [84]

Table 2: Exogenous antioxidant’s mixtures with photoprotective or damage protective effects.

Antioxidant mixtures Outcome of the study Study
Oral vitamin E and beta-carotene
supplementation

Ultraviolet radiation-induced oxidative stress in human
skin

McArdle et al., 2004 [85]

Carotenoids and tocopherols Scavenging reactive oxygen species generated during
photooxidative stress

Stahl et al., 2000 [86]

Beta-carotene, lutein, and lycopene UV irradiation induced intensity of erythema was
diminished

Albanes et al., 1996 [87]

Tomato extract and a drink containing
solubilized Lyc-o-Mato

Reduction in erythema formation following UV
irradiation

Aust et al., 2005 [88]

Quercetin, hesperetin and naringenin Protective agents in certain skin diseases caused,
initiated, or exacerbated by sunlight irradiation

Bonina et al., 1996 [89]

𝛼-Tocopherol and ascorbate MEDs increased markedly after intake of the
combination of 𝛼-tocopherol and ascorbate

Fuchs and Kern, 1998 [45]

Combination of vitamins C and E Mean MEDs increased in group receiving vitamins
compared with baseline

Eberlein-Konig et al., 1998 [90]

Vitamin C, vitamin E, lycopene,
beta-carotene, the rosemary polyphenol,
and carnosic acid

Vitamin C, vitamin E, and carnosic acid showed
photoprotective potential human dermal fibroblasts
exposed to ultraviolet-A (UVA)

Offord et al., 2002 [91]

Lycopene, beta-carotene,
alpha-tocopherol, and selenium

Many parameters of the epidermal defense against
UV-induced damage were significantly improved

Césarini et al., 2003 [92]

𝛽-Carotene, lycopene, tocopherol, and
ascorbic acid

Significant increase of melanin concentrations in skin
was found

Postaire et al., 1997 [93]

Carotenoids (beta-carotene and
lycopene), vitamins C and E, selenium,
and proanthocyanidins

A selective protection of the skin against irradiation
was confirmed Greul et al., 2002 [94]

studies convincingly showed that vitamin supplementation
effectively protects the skin against sunburn, the doses of
vitamins used were generally much higher than amounts
generally ingested from habitual diets [112]. Additionally, it
was shown that the combination of different antioxidants
applied simultaneously can provide a synergistic effect [50].

Antioxidants are most effective when used in combination
(Table 2). VitaminC regenerates vitamin E, and selenium and
niacin are required to keep glutathione in its active form.
It has been demonstrated that vitamin C can regenerate 𝛼-
tocopherol from its chromanoxyl radical [113] and that the
vitamin C radical may be recycled by GSH nonenzymatically
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Table 3: Exogenous antioxidants with no protective/beneficial effects.

Antioxidant Outcome of the study (nonbeneficial results) Study

Lycopene Lycopene enhances UVA-induced oxidative stress in C3H cells Yeh et al., 2005 [95]

Carotenoids

Carotenoids were not protective against DNA lesions repairable by
excision repair Wolf et al., 1988 [96]

No significant change in the intensity of erythema; no effects of
supplementation Garmyn et al., 1995 [97]

No significant difference between the beta-carotene and placebo
groups in incidence of cancer Green et al., 1999 [98]

No significant effect of 𝛽-carotene on either number or time of
occurrence of new nonmelanoma skin cancer Greenberg et al., 1990 [99]

An average of 12 years of supplementation with beta-carotene does
not affect the development of a first NMSC Frieling et al., 2000 [100]

Supplementation with 𝛽-carotene produced no reduction of the
incidence of malignant neoplasms Hennekens et al., 1996 [101]

under slightly acidic conditions [114] that are present in the
stratum corneum [115].Werninghaus et al. [116] reported that
vitamin E given orally at 400 IU/day for a period of six
months affords no significant increase inUVprotection. Sim-
ilarly, in a study with 12 volunteers, vitamin C given at
500mg/day over eightweeks hadno effect on theUV-induced
erythemal response [85], indicating again the importance
of antioxidants to be supplemented together to obtain the
synergistic effect.

6. Conclusion

Studies (usually performed on skin cells in vitro or on animal
models) suggest that oral uptake of selected micronutri-
ents and phytochemicals can provide photoprotection of
human skin [117]. Nevertheless, photoprotection can only
be achieved if an optimal pharmacological dose range is
reached in the human skin due to well-known prooxidative
reactions of antioxidants, for example, in the case of excessive
carotenoid concentrations (Table 3). Nevertheless, research is
continuously demonstrating that various phytopharmaceu-
ticals offer significant protection against different diseases
and skin aging. The primary treatment of photoaging is
photoprotection, but secondary treatment could be achieved
with the use of antioxidants and some novel compounds such
as polyphenols. Exogenous antioxidants like vitamin C, E,
and many others cannot be synthesized by the human body
and must be taken up by the diet.
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