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Abstract

Background: Changes in gene expression enable organisms to respond to environmental stress. Levels of cellular lipid
second messengers, such as the phosphoinositide PtdIns5P, change in response to a variety of stresses and can modulate
the localization, conformation and activity of a number of intracellular proteins. The plant trithorax factor (ATX1) tri-
methylates the lysine 4 residue of histone H3 (H3K4me3) at gene coding sequences, which positively correlates with gene
transcription. Microarray analysis has identified a target gene (WRKY70) that is regulated by both ATX1 and by the
exogenous addition of PtdIns5P in Arabidopsis. Interestingly, ATX1 contains a PtdIns5P interaction domain (PHD finger) and
thus, phosphoinositide signaling, may link environmental stress to changes in gene transcription.

Principal Findings: Using the plant Arabidopsis as a model system, we demonstrate a link between PtdIns5P and the activity
of the chromatin modifier ATX1 in response to dehydration stress. We show for the first time that dehydration leads to an
increase in cellular PtdIns5P in Arabidopsis. The Arabidopsis homolog of myotubularin (AtMTM1) is capable of generating
PtdIns5P and here, we show that AtMTM1 is essential for the induced increase in PtdIns5P upon dehydration. Furthermore,
we demonstrate that the ATX1-dependent gene, WRKY70, is downregulated during dehydration and that lowered transcript
levels are accompanied by a drastic reduction in H3K4me3 of its nucleosomes. We follow changes in WRKY70 nucleosomal
K4 methylation as a model to study ATX1 activity at chromatin during dehydration stress. We found that during dehydration
stress, the physical presence of ATX1 at the WRKY70 locus was diminished and that ATX1 depletion resulted from it being
retained in the cytoplasm when PtdIns5P was elevated. The PHD of ATX1 and catalytically active AtMTM1 are required for
the cytoplasmic localization of ATX1.

Conclusions/Significance: The novelty of the manuscript is in the discovery of a mechanistic link between a chromatin
modifying activity (ATX1) and a lipid (PtdIns5P) synthesis in a signaling pathway that ultimately results in altered expression
of ATX1 dependent genes downregulated in response to dehydration stress.
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Introduction

Phosphoinositides can mediate differentiation, cellular growth,

and responses to biotic and abiotic stress [1]. Differential

phosphorylation of phosphatidylinositol results in phosphoinosi-

tides, which may function as precursors of second messengers or to

modulate the localization, conformation, and activity of bound

proteins. PtdIns5P is a minor component of the cellular lipid pool

implicated in the cell osmoprotective response pathway [2], in the

etiology of muscular and neuronal pathologies [3], and in the host-

cell response to infection by S. flexneri [4]. In the nucleus, PtdIns5P

can interact with ING2, an adaptor protein regulating p53 and

histone acetylation in response to cellular stress [5,6]. In plants,

PtdInsPs function in responses to salinity, drought, and temper-

ature stresses [7–9]. PtdIns5P accumulates in response to

hyperosmotic stress in Chlamydomonas, in plant tissues from tomato,

pea, alfalfa, and in cultured carrot cells [9]. PtdIns5P has not been

formally identified in Arabidopsis [10] but Arabidopsis proteins

Patellin1 and ATX1 can bind PtdIns5P in vitro [11,12].

ATX1 is a chromatin modifier that tri-methylates lysine 4 of

histone H3 of associated nucleosomes [13]. ATX1 binds

specifically PtdIns5P in vitro and microarray analysis revealed a

set of co-regulated genes [12,14] suggesting the existence of a

shared pathway in which PtdIns5P acts as a ligand modifying the

activity of ATX1. However, evidence for the existence of PtdIns5P

in Arabidopsis, for a change in the lipid level under stress, and for

role of PtdIns5P in ATX1 activity is lacking. Here, we investigated

whether PtdIns5P existed in Arabidopsis, whether the PtdIns5P level
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changed upon dehydration stress, whether endogenous PtdIns5P

could affect the activity of ATX1, and how this might occur. We

tested the hypothesis that dehydration stress increases cellular

PtdIns5P, which acting as a ligand modulates ATX1 activity in

vivo. Without excluding a role for PtdIns5P in chromatin [15], we

elucidate a PtdIns5P-driven mechanism that sequesters ATX1 in

the cytoplasm suppressing its function in the nucleus. The

cytoplasmic sequestration is dependent on the ePHD finger,

which interacted with PtdIns5P in vitro, and on factors that affect

the cellular level of PtdIns5P. The model suggests a pathway

mediated by PtdIns5P that translates environmental stress into

altered activity of a chromatin modifier.

Results

PtdIns5P in Arabidopsis thaliana
A high cellular level of PtdIns4P, a predicted low level of

PtdIns5P, and the overlap of PtdIns4P and PtdIns5P peaks in high

performance liquid chromatography (HPLC) impede identifica-

tion of PtdIns5P in Arabidopsis [10] (Figure 1).

To determine the presence of endogenous PtdIns5P in

Arabidopsis, we used a mass assay based on the specificity of

PIP4Ka to phosphorylate PtdIns5P at the 49-position of the

inositol head group [16] allowing a quantitative determination of

intracellular PtdIns5P [17].

Total phospholipids extracted from four different tissues were

used as starting material for the PtdIns5P mass assay. The two

labeled PtdInsP2 isomers formed in all the reactions were

putatively identified as PtdIns(4,5)P2 (spot 1) and PtdIns(3,4)P2

(spot 2) by thin layer chromatography (TLC) (Figure 2a).

According to the known substrate specificity of PIP4Ka [16],

these reaction products reflected the endogenous PtdIns5P and

PtdIns3P, respectively. To further identify the products they were

deacylated, subjected to HPLC analysis and identified as

PtdIns(4,5)P2 and PtdIns(3,4)P2 (Figure 2b). In all subsequent

analyses we focused exclusively on determining the mass of

endogenous PtdIns5P.

Both TLC and HPLC analyses indicated presence of PtdIns5P

in the four tested plant tissues: rosette leaves, stems, inflorescences,

and siliques. However, a potential caveat was that although

PtdIns4P is not a substrate for the PIP4Ka, it was still possible that

the enzyme had different substrate specificity for PtdInsPs of plant

origin, particularly in cases when PtdIns4P is more abundant than

PtdIns5P. To confirm that PIP4Ka phosphorylated PtdIns5P on

the 49 position of the inositol ring, the two radiolabeled products

(spots 1 and 2) were together incubated in the absence or presence

of yeast 59-phosphatase (Figure 2c).

A decrease in the radioactivity in the PtdIns(4,5)P2 spot

coinciding with the appearance of radioactivity in PtdIns4P

(containing an equal amount of radiolabel lost from PtdIns(4,5)P2

(spot 1) indicated that the radiolabel in the PtdIns(4,5)P2 was

exclusively on the 49-position. The 59-phosphatase did not affect

the intensity of the PtdIns(3,4)P2 (spot 2). We conclude that the

PtdIns(4,5)P2 produced by PIP4Ka originates from endogenous

PtdIns5P present in Arabidopsis.

Cellular PtdIns5P levels upon osmotic and hypotonic
stresses

Osmotic stress increases PtdIns5P in yeast, animal, and plant

cells [2,9,10,18]. Dry air, drought and floods are environmental

factors that stimulated our interest to examine changes in cellular

PtdIns5P upon exposure of Arabidopsis to these stresses. In

concurrent unrelated studies we have established that 9–12 days

exposure to water withdrawal conditions (in-soil dehydration

stress) followed by 3 day-watering resulted in cellular water loss

(,60% residual water levels) and cellular water level recovery (as

measured by the restoration of cell turgidity) that were similar to

the water-loss and recovery levels achieved in detached leaves

when exposed for 2 hours at room temperature conditions (20uC)

followed by an overnight submergence in water [19; a submitted

manuscript]. In addition, air-dried detached leaves showed little

variation in residual cellular water levels (between 58–62%)

making it the preferred choice for inducing dehydration stress in

Figure 1. Failure to detect PtdIns5P by HPLC. HPLC analysis of deacylated lipid products isolated from rosette leaves of in vivo radiolabeled
whole plants with orthophosphate (300 mCi/ml) for 16 hours at room temperature. Peak identification: 1, phospholipids with positive charge; 2,
phosphatidylinositol; 3, phosphatidic acid; 4, free inorganic phosphate; 5, PtdIns3P; 6, PtdIns4P; 7, PtdIns5P; 8, PtdIns(4,5)P2.
doi:10.1371/journal.pone.0013396.g001
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experiments exploring cell responses in four different backgrounds

and under different conditions as described here.

Optimal conditions for our analyses were established by

harvesting rosette leaves and exposing them to ambient air

(20uC). Water-loss was determined as the residual tissue mass

measured up to four hours of air-exposure (Figure 3a). PtdIns5P

was measured in total lipids extracted after 30 minutes and after

2 hours exposure to air. Leaves collected from the same plants

subjected immediately to lipid extraction were used as controls

(0 min). In fresh (non-treated) Arabidopsis leaves, the amount of

total phospholipid and of PtdIns5P measured in six independent

experiments were: 2.08 nmoles/mg fresh tissue (s.d. 0.22) and

3.6 pmoles/mg fresh tissue (s.d. 0.096), respectively (Figure 3b, see

also Figure 4a). To examine the effect of water stress, detached

leaves were submerged in water for 2 hours before measuring lipid

content. Leaves collected from the same plants and immediately

subjected to lipid extraction were used as controls (Figure 3c). The

results suggested that leaf submergence in water also increased the

cellular PtdIns5P, although to a lesser degree than dehydration for

the same length of time. Because a 2 hour exposure to air showed

the highest level of PtdIns5P accumulation, we used this condition

(from here on referred to as dehydration-stress) to experimentally

trigger elevated cellular PtdIns5P.

PtdIns5P levels in AtMTM1 over-expressing and knockout
cells

A family of phosphoinositide 39-phosphatases (myotubularins,

MTM1s) generates cellular PtdIns5P through their activity

Figure 2. PtdIns5P in Arabidopsis tissues determined by the PIP4Ka assay. Thin layer chromatographic separation of the products of the in
vitro phosphorylation reaction between PIP4Káandendogenous phosphoinositides isolated from leaves (lane 2), stems (lane 3), flowers (lane 4) and
siliques (lane 5). A PtdIns(4,5)P2 standard is shown (lane 1) (panel a). HPLC analysis of deacylated products of the in vitro phosphorylation reaction
between endogenous phosphoinositides (from leaves) and PIP4Ka. Deacylated PtdIns(3,4)P2 and PtdIns(4,5)P2 used as standards (panel b). The
products of the in vitro phosphorylation reaction between endogenous phosphoinositides isolated from rosette leaves and PIP4Ka were incubated in
the absence (lane 1) or presence (lane 2) of yeast YNK-5 phosphatase. The reaction products were analyzed by thin layer chromatography. The
position of a PtdIns4P standard is shown (lane 3) (panel c).
doi:10.1371/journal.pone.0013396.g002

Figure 3. Time-course of water loss from detached leaves. Water-loss in detached rosette leaves after exposure to ambient air and a
temperature of 20uC determined as percentage of residual tissue mass taken as 100%. Data are from four independent experiments; bars are s.d.
(panel a). Lipids extracted from leaves after 30 minutes or 120 minutes of air-exposure were processed for PtdIns5P content and expressed as the
percentage of the fresh sample (indicated as 100%). Data are from six independent experiments; bars are s.d. (panel b). Detached (column 1), air-
exposed (column 2) and water-submerged leaves (column 3) were treated in parallel for 120 minutes. Cellular PtdIns5P is indicated as pmoles
PtdIns5P/mg initial fresh tissue mass. Bars are s.d. (panel c).
doi:10.1371/journal.pone.0013396.g003
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towards PtdIns3,5P2 [20–22]. Inactivation or constitutive expres-

sion of MTM1 is a strategy used to study the roles of its substrates

(PtdIns3P and PtdIns3,5P2) and respective products (PI and

PtdIns5P) in cellular homeostasis.

Recently, we found that the Arabidopsis gene At3g10550 encodes

a protein 59% similar to the human MTMR2 (called AtMTM11)

and, like mammalian myotubularins, has a phosphoinositide 39-

phosphatase activity against both PtdIns3P and PtdIns3,5P2 [19].

Whether constitutive expression of AtMTM1 could increase the

level of cellular PtdIns5P levels in plant cells is a key question,

which was addressed by over-expressing AtMTM1 (OX-AtMTM1)

in transgenic plants. The cellular PtdIns5P level was determined in

transgenic and wild type plants before and after stress. Differences

in PtdIns5P levels were evaluated by the Mann-Whitney (U)-test

[23].

Upon dehydration, PtdIns5P increased by ,30% in wild type

leaves (U-test p,0.006, Figure 4a). A further increase was seen

upon dehydration of OX-AtMTM1 cells producing ,70% more

PtdIns5P than non-stressed wild type cells (U-test p,0.002)

implicating AtMTM1 in elevating cellular PtdIns5P upon stress.

Importantly, solely the over-expression of AtMTM1 led to an

increase in PtdIns5P that was similar in magnitude to dehydration

stress stimulated wild type plants. To assess if AtMTM1 links

dehydration stress with increased PtdIns5P, we measured the

endogenous level of PtdIns5P in homozygous knockout mtm1

mutant plants. In non-stressed mtm1 leaves, PtdIns5P was not

significantly different from that in non-stressed wild type leaves

(Figure 4a, U-test p.0.2). However, the increased PtdIns5P seen

in wild type plants in response to stress was completely blunted in

mtm1 mutant leaves producing significantly less PtdIns5P (,35%

less, U-test p,0.01) than wild type leaves under stress. The

difference was even more pronounced when dehydration-stressed

mtm1 mutant leaves were compared with dehydration stressed

OX-AtMTM1 leaves (,75% less PtdIns5P, U-test p,0.001)

(Figure 4a). These data underscore the role of MTM1 activity in

increasing PtdIns5P upon stress but not of the basal PtdIns5P level.

As both PtdIns5P and ATX1 regulate WRKY70 and ATX1

interacts with PtdIns5P, we sought to determine a mechanistic link

between these observations in response to dehydration stress.

ATX1 activity in stressed plants
As previously shown [24] the transcript level of WRKY70 is

regulated by ATX1 as it decreased in homozygous ATX1 deleted

(atx1) plants (Figure 4b). Chip analysis with antibodies specific to

tri-methylated histone 3 lysine4 showed a dramatic decrease in

H3K4me3 signal from the 59 end of the WRKY70 gene in atx1

plants (Figure 4c), showing that the activity of ATX1 is largely

responsible for controlling the levels of H3K4me3 at the WRKY70

promoter. Furthermore, and important to this study, the level of

WRKY70 transcript was decreased in response to dehydration

stress (Figure 5a). Previous microarray analyses have suggested

that PtdIns5P negatively influences ATX1 activity [12]. Whole-

genome analyses, however, could not provide answers to two

critical questions: whether increased PtdIns5P affected the H3K4-

methylation profiles of ATX1 targets and whether association of

ATX1 with target nucleosomes changed under elevated PtdIns5P.

Here, we use the WRKY70 gene as a model to investigate ATX1

activity in vivo under dehydration-stress or under experimental

conditions where we manipulated the levels of endogenous

PtdIns5P. Selection of the WRKY70 gene was determined by

three important factors: the WRKY70 nucleosomes are directly

modified by ATX1 activity [24], its transcript levels are subject to

regulation by dehydration stress (Figure 5a), and WRKY70

transcript levels were diminished upon addition of exogenous

PtdIns5P [12].

WRKY70 expression and H3K4me3 profiles in OX-AtMTM1
and in mtm1 mutant cells

Similar to the results with dehydration-stressed wild type leaves,

lower WRKY70 transcripts were found in stressed OX-AtMTM1

leaves (Figure 5a). However, the levels of WRKY70 transcripts in

basal conditions were already significantly decreased and similar to

the levels measured in wild type plants after dehydration stress,

correlating with the increased levels of PtdIns5P (Figure 5a). By

contrast, in non-stressed mtm1 cells, the WRKY70 transcripts were

not significantly different than in the wild type (p,0.12) but,

importantly, the decrease in WRKY70 transcripts in response to

the stress was suppressed (Figure 5a). Consistent with the level of

Figure 4. PtdIns5P levels and ATX1 activity in AtMTM1 mutant cells. PtdIns5P levels in fresh and dehydrated wild type leaves, in OX-AtMTM1
leaves, and in leaves from homozygous mtm1 plants (panel a). Relative WRKY70 transcripts in non-stressed and in stressed wild-type, OX-AtMTM1, and
mtm1 mutant cells, quantified by real-time PCR (panel b). Quantitative PCR of ChIP assays of H3K4me3 methylation in wild-type, OX-ATMTM1 and mtm1
mutant chromatins in fresh leaves and in leaves after dehydration-stress (panel c). Relative enrichment in WRKY70-specific fragments vs input DNA.
doi:10.1371/journal.pone.0013396.g004
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the WRKY70 transcripts there was less H3K4me3 at the WRKY70

nucleosomes in basal AtMTM1-overexpressing plants, similar to

the levels seen in dehydration stressed wild type plants (Figure 5b).

In mtm1 plants where the increased PtdIns5P is abrogated in

response to dehydration stress, the H3K4me3 levels were not

significantly changed after stress (Figure 5b). These data show that

the transcript levels of WRKY70 and the H3K4me3 patterns of its

nucleosomes correlate with manipulated cellular PtdIns5P levels.

To mechanistically link changes in the H3K4me3 patterns, we

assessed the localization of ATX1 at the WRKY70 promoter using

the ChIP assay with anti-ATX1 antibodies. ATX1 was localized at

the WRKY70 59-end but its presence decreased in response to

dehydration stress of wild type plants. In non-stressed plants that

over-express AtMTM1 the levels of ATX1 were already signifi-

cantly decreased and reflected levels seen in stressed wild type

plants. In contrast, in mtm1 knock out plants, ATX1 localized at

the WRKY70 but was unaltered in response to dehydration stress

(Figure 5c). These data suggest that transcription of WRKY70 is

regulated in response to dehydration stress in a PtdIns5P

dependent manner. Changes in PtdIns5P appear to control the

localization and the activity (H3K4me3) of ATX1 at the promoter.

These changes are not a reflection of changes in ATX1 expression

as it was not altered by stress nor was it altered in the various

genotypes (Figure 5d). These results illustrated that the ATX1 level

at the WRKY70 gene locus changed in response to dehydration

and depended on the presence of a functional AtMTM1.

Decreased presence of ATX1 at the WRKY70 gene correlated

with decreased transcript and H3K4me3 levels (Figure 5a–c). By

contrast, transcript levels from two other ATX1 direct targets (AG

and FLC) not involved in the dehydration-stress response and not

found in the PtdIns5P-ATX1 co-regulated set [12] did not change

upon stress in the OX-AtMTM1 or mtm1 backgrounds (Figure 6).

Cellular distribution of ATX1
ATX1 can bind PtdIns5P [12] and here we analyze the cellular

localization of ATX1 under conditions that elevated cellular

PtdIns5P. Dehydration raises PtdIns5P but causes partial collapse

of internal structures (not shown) complicating cytological analysis.

As an alternative, distribution of GFP-tagged ATX1 (wild-type or

various deletion forms) was followed in the presence of AtMTM1-

RFP-fusion protein co-expressed in tobacco leaf-epithelial cells.

ATX1-GFP is seen in the nuclei, in the cytoplasm, and at the

plasma membrane (Figure 7a). However, in cells co-expressing

ATX1 and AtMTM1 most of the ATX1 was absent from the

nuclei (Figure 7b). Quantitation showed that ATX was present in

the nuclei when expressed alone but when co-expressed with

AtMTM1, its presence in nuclei decreased to about 20% (Figure 8).

Next, we determined which of the ATX1 structural domains

was involved in the re-localization. The N-terminal portion of

ATX1 (Figure 9) localizes in the nucleus (Figure 7a). Over-

expression of AtMTM1 did not relocate the nuclear ATX1

(Figure 7b) suggesting that the N-terminal protein half was not

involved. When the C-terminal portion of ATX1 was expressed

alone, it localized in both the nuclei and in the cytoplasm;

however, the nuclear signal decreased in cells co-expressing

AtMTM1 (Figures 7a, b and Figure 9) implicating it in the re-

localization. The ATX1-C terminal portion contains the ePHD

and the SET structural domains (Figure 9), which were expressed

separately to determine their individual roles. The SET domain

expressed alone, or co-expressed with AtMTM1, remained in the

cytoplasm (Figure 7a, b) implying that the SET domain was not

involved in the ATX1 nuclear localization. However, the ePHD-

GFP, which was present in the nucleus when expressed alone,

became cytoplasmic when co-expressed with AtMTM1-RFP

(Figure 7a, b) suggesting that the ePHD is involved in the

nucleus-to-cytoplasm re-localization of ATX1 in cells over-

expressing AtMTM1.

The role of the ePHD in the cytoplasmic retention of ATX1 was

proven further by generating an ATX1 protein with deleted

ePHD. When expressed alone, ATX1- DPHD-GFP localized in

the nucleus; however, in cells co-expressing MYO-RFP, the GFP

signal remained nuclear contrasting the redistribution seen with

wild-type ATX1-GFP (Figure 7a, b). We conclude that the ATX1-

ePHD is involved in the subcellular localization of ATX1 likely

through binding the ligand PtdIns5P.

PtdIns5P and the role of ePHD
Two mutually non-exclusive mechanisms may account for the

cytoplasmic retention of ePHD in OX-AtMTM1 cells: elevated

PtdIns5P binds and keeps the protein in the cytoplasm and/or the

AtMTM1 protein binds the ePHD. The ability of ePHDATX1 to

specifically bind PtdIns5P in vitro supports the first model [12]. To

provide evidence in vivo, we generated AtMTM1 isoforms with a

mutant active site to test whether production of PtdIns5P by

AtMTM1 is required for the cellular localization of the ePHD. A

protein with a mutation in the critically important Cys in the

Figure 5. ATX1 activity under drought conditions and different backgrounds. Relative WRKY70 transcripts in freshly harvested leaves and
in leaves after 2 h air-exposure in wild type, OX-AtMTM1, and mtm1 backgrounds quantified by real-time PCR normalised versus actin (panel a).
Quantitative PCR of ChIP assays of WRKY70 H3K4me3 levels in wild type control and dehydration-stressed tissue and in respective samples in the OX-
AtMTM1 and mtm1 backgrounds. The y-axis represents the relative enrichment of recovered DNA versus the input (panel b). Quantitative PCR ChIP
assay with anti-ATX1 antibodies at the WRKY70 locus before and after dehydration-stress in wild type, OX-AtMTM1, and mtm1 mutant chromatins;
relative enrichment in WRKY70-specific fragments vs input DNA (panel c). Relative ATX1 transcript levels in freshly harvested leaves and in leaves after
2 h air-exposure in wild type, OX-AtMTM1, and mtm1 backgrounds quantified by real-time PCR normalised versus actin (panel a). Bars are s.d.
doi:10.1371/journal.pone.0013396.g005
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active site (mut1) displayed low (,5%) phosphatase activity against

its substrate PtdIns3,5P2 compared to the wild type. A second

protein with a mutation in the adjacent Ser (mut2) retained ,30%

of wild type activity (Figure 10c, d). Co-expression of ePHD with

mut1-RFP failed to shift ePHD from the nucleus to the cytoplasm

(Figure 10a, e) in contrast to experiments with the wild-type

AtMTM1-RFP (Figure 10a, b). Importantly, co-expression of

ePHD with mut2-RFP resulted in a distribution similar to the one

observed with wild-type AtMTM1-RFP (Figure 10b, f). Because

the effects of the AtMTM1 mutants on the cellular distribution of

ePHD correlate with their lipid 39-phosphatase activity we

conclude that production of PtdIns5P is required for retaining

ePHD in the cytoplasm. These results do not preclude binding of

ePHD and AtMTM1, a possibility that remains to be explored.

Discussion

By analyzing the H3K4me3 pattern of the WRKY70 nucleo-

somes, we followed changes in ATX1 activity in vivo under stress or

in the presence of overexpressed AtMTM1. The statistically

significant decrease in WRKY70 nucleosomal H3K4me3 in

dehydrated wild type cells, in parallel with an increase in cellular

PtdIns5P, reflected diminished ATX1 activity. Increasing cellular

PtdIns5P by overexpressing AtMTM1 also led to a diminution of

Figure 6. FLC and AG transcripts are not regulated by AtMTM activity. Relative FLC transcripts determined in leaves of 12 day old seedlings in
non-stressed and in stressed wild-type, atx1, OX-AtMTM, and mtm mutants, quantitated by real-time PCR and normalized against actin (panel a). Relative
AG transcripts in inflorescences of wild-type, atx1, OX-AtMTM, and mtm mutants, under non-stressed and stressed conditions (panel b). Bars are s.d.
doi:10.1371/journal.pone.0013396.g006
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ATX1 activity and decreased H3K4me3 of WRKY70. Attenuation

of dehydration stress-induced PtdIns5P generation in mtm1 mutant

cells attenuated also the dehydration stress induced changes in

H3K4me3 and transcription of WRKY70. Under all of these

conditions, changes in H3K4me3 and WRKY70 transcripts

correlated with the presence of ATX1 at the promoter

nucleosomes, as assessed by ChIP (Figure 5c), suggesting that

PtdIns5P may regulate ATX1 localization. The cytoplasmic

localization of ATX1 observed under increased cellular PtdIns5P

was in accordance. The endogenous PtdIns5P level was not

significantly lower than in the wild type suggesting that PtdIns5P/

PtdIns3,5P2 homeostasis was not severely disrupted in AtMTM1-

depleted cells. Under stress, however, the mtm1 mutant cells failed

to elevate PtdIns5P underscoring the role of AtMTM1 in

producing PtdIns5P. These data are consistent with a causal role

for a dehydration-induced PtdIns5P regulating the localization of

ATX1. Furthermore, H3K4me3 and transcripts from WRKY70

did not change significantly in mtm1 cells indicating a requirement

for PtdIns5P. These results, however, do not preclude an

interaction of AtMTM1 with ATX1-SET. An intriguing feature

of all known active and inactive myotubularins, including the two

Arabidopsis proteins, is the presence of a conserved domain, SID

(Set interacting domain) that specifically binds the SET [25]

domain. The SID domain is conserved in all known active and

inactive members of the myotubularin family [25,26]. The

biological significance of this interaction, however, is under

debate, as crystallographic studies have shown that the SID

peptide is buried inside the tertiary structure of the protein arguing

against its binding with other proteins [27]. However, mutations in

SID impeding its binding to SET result in abnormal growth and

leukemia [25,28] and the inactive myotubularin Sbf1 has been

isolated as a component of the Trx complex, physically and

functionally linked with the trithorax protein in Drosophila [29]. An

important implication of these results is that myotubularins, active

or inactive, may have nuclear localization and could participate in

chromatin remodeling [30].

Lack of a visible phenotype in mtm mutants and the level of

endogenous PtdIns5P not significantly lower than in fresh wild

type cells suggest that the AtMTM1 function is not essential for the

cellular homeostasis in non-stressed cells, in stark contrast with

humans where myotubularin deficiency is implicated in severe

Figure 8. Cells showing nuclear GFP-signal associated with
ATX1 protein or its derivatives. The number of cells showing
nuclear localization of transiently expressed ATX1 alone is set at 100%.
ATX+M represents the population of cells displaying nuclear signal
when co-expressing the entire ATX1 and AtMTM; ATX-N+M represents
cells co-expressing the entire N-terminal portion of ATX1 and AtMTM;
ATX-C+M are cells co-expressing the ATX1-C-terminal portion and
AtMTM, respectively; bars are s.d. from four independent experiments.
doi:10.1371/journal.pone.0013396.g008

Figure 7. Sub-cellular distribution of ATX1 co-expressed with AtMTM1. ATX1 and its derivatives were expressed as ATX1-GFP fusion
proteins (green signal) while AtMTM1 was expressed as an RFP fusion protein (red signal). a) all images in this column illustrate cells expressing ATX1
or derivatives alone; b) all images in this column illustrate cells co-expressing ATX1 (or ATX1 derivatives) with AtMTM1. Arrows point to nuclei in cells
expressing a GFP-fusion protein. ATX-N is the N-terminal ATX1 portion, ATX1-C is the C-terminal ATX1 portion containing the ePHD and the SET
domains (SF7). Arrows point to nuclei; Bars are 50 mm.
doi:10.1371/journal.pone.0013396.g007

Figure 9. Structure of representative constructs used in the study. The FYRN and FYRC domains are called DAST, for Domain Associated with
SET in Trithorax; the ePHD belongs to a distinct, extended PHD, family of proteins. The putative AtMTM domains are labeled according to their
homology to the human MTMR2.
doi:10.1371/journal.pone.0013396.g009
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muscle dystrophy, neuronal diseases, and leukemia [1,3,31].

Despite highly conserved in evolution, molecular tools are adapted

and used in kingdom and species-specific manners [32]. Two

phosphatases that can convert PtdIns(4,5)P2 to PtdIns5P were

discovered in human cells [33] but whether a similar route for

generating PtdIns5P exists in plants is unknown.

As a substrate of AtMTM1, it is possible that PtdIns3P and

PtdIns(3,5)P2 cellular levels were also affected. PtdIns3P is

associated with late endosomes, multivesicular bodies and pre-

vacuolar membranes [8] suggesting a possible indirect involve-

ment of PtdIns3P in the reported events. However, the ability of

the ePHD finger to bind PtdIns5P suggests that PtdIns5P is likely

to be the endogenous regulator of ATX1 localization.

Most likely, AtMTM1 has a broader role than just regulating

ATX1 consistent with our results from whole-genome transcrip-

tion profiling of PtdIns5P-treated [12] and of OX-MTM1 genomes

[19]. Our data suggest that ATX1 and AtMTM1 (PtdIns5P,

respectively) function in distinct pathways, which partially overlap

only along branches that target a shared set of genes. In

agreement, ATX1 regulated stress-response genes that are not

involved in the PtdIns5P/MTM1-pathway (i.e. the NCED3 gene,

not shown); the developmentally regulated AG and FLC genes

(Figure 6a, b) are efficiently transcribed during dehydration stress,

illustrating different patterns of ATX1 activity, and perhaps,

regulation. The dynamic subcellular localization of ATX1 in non-

stressed root cells [12] suggested that, most likely, ATX1 was

responding to a variety of cellular signals. Furthermore, the FLC

gene, which is under the control of complex genetic, epigenetic,

and growth-signaling mechanisms, re-establishes anew the

H3K4me3 modification pattern at the transcription start site in

Figure 10. PtdIns5P in the cytoplasmic retention of ePHD is dependent on AtMTM1 catalytic efficiency. Nuclear localisation of ePHD-
GFP expressed alone. Arrows in all panels point to nuclei (panel a). ePHD-GFP co-expressed with wild-type AtMTM1-RFP causes depletion of the
green nuclear signal (panel b). The consensus amino acids in the active AtMTM1 phosphatase site and the amino acid substitutions in mut1 and mut2
(panel c). Phosphoinositide 39-phosphatase activity of recombinant wild type, mut1 and mut2 phosphatases. The Vmax values towards PtdIns(3,5)P2

as a substrate are shown as the percentage of the wild-type (WT) ATMTM1 activity. Bars are s.d. from three measurements (panel d). Distribution of
ePHD-GFP co-expressed with mut1AtMTM1-RFP show nuclear localizations of the green signal (panel e). Co-expression of ePHD-GFP with
mut2AtMTM1-RFP. The green signal is largely distributed in the cytoplasm (panel f). Bars are 50 Pm.
doi:10.1371/journal.pone.0013396.g010
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each developmental cycle. H3K4me3 levels correlate with

reactivated FLC transcription, which persists until transition to

flowering [34]. It is plausible, then, that the FLC H3K4me3 and

transcript levels established early in development might not be

affected by ATX1 presence at the FLC locus later in life. On the

other hand, the WRKY70 gene displaying dynamic H3K4me3

changes in responses to biotic [24] and dehydration stresses (this

study) showed a clear dependence on ATX1 presence.

Production of PtdIns5P is required for retention of ePHD in the

cytoplasm (Figure 10). The ePHD found in all animal and plant

members of the Trithorax family belongs to a family distinct from

the families of the PHD domains of the chromatin proteins ING,

NURF, CHD, ORC1, or ACF. Some PHDs bind PtdIns5P [5,6]

as well as H3K4me3 [35,36]. Whether ePHD binds histones is

unknown and a role for ePHD at chromatin is not excluded. Here,

we report a novel function for the ePHD domain of a chromatin-

associated protein as a mechanism regulating ATX1 activity. The

shared ATX1-AtMTM1 dehydration-responding fraction identi-

fied by microarray analysis provided further evidence for a

pathway involving an epigenetic regulator and a lipid phosphatase

producing PtdIns5P (microarray expression data are deposited in

the NCBI series GSE15577). The genes co-regulated by ATX1

and by exogenously supplied PtdIns5P [12] further support the

biological relevance of the ATX1 binding to this lipid ligand. A

bound lipid may activate or deactivate the protein by sequestering

it in a cellular sub-compartment, by inducing a conformational

change, or by triggering phosphorylation of another downstream

target [37]. It is possible that PtdIns5P can regulate ATX1 activity

in both nuclear and cytoplasmic contexts and that different

mechanisms may operate in the two cellular compartments.

Materials and Methods

Plant material
Wild type and mutant plants were grown in soil under the same

controlled daylight environmental conditions. Leaves were de-

tached from plants and immediately weighed to determine their

fresh weight. Recovery upon dehydration was established by

measuring turgidity as described in [38]. Briefly, dehydration

stressed leaves were submerged in deionized water for 24 h,

blotted dry and weighed to determine their TW (turgid weight).

Transgenic plants were generated by transformation with binary

vectors. Binary plasmids were transformed into chemically competent

Agrobacterium tumefaciens strain C58C1 by incubating DNA with

Agrobacteria on ice for 5 minutes, freezing in liquid nitrogen for 5

minutes and heat shock at 37uC for 5 minutes. The cells were allowed

to recover in growth medium with shaking for 2 hours at room

temperature and plated on selection medium containing rifampicin,

gentamycin and a third antibiotic for plasmid selection. Agrobacteria

selected for transformation were used to transform Col-O plants

using a floral dipping method as described [39].

To generate stably AtMTM-over-expressing lines the full-length

sequence of At3g10550 was amplified using PCR-specific primers

containing the attB1 and attB2 sequences and recombined by the

attB x attP (BP) reaction into the pAlligator vector [40] to generate

an N-terminal HA-tagged expression clone for stable expression in

plants. The entry clone was also recombined into the pB7WGR2.0

vector [41] to generate an N-terminal RFP fusion expression clone

for expression in plants. The binary vector pAlligator2-AtMTM

construct containing the coding sequence of the full length AtMTM

gene cloned in-frame with an N-terminal HA tag and driven by

the 35S promoter was used for transformation in Arabidopsis.

Transgenic plants were selected by GFP-fluorescent seeds where

expression of the GFP marker was driven by a seed-specific

promoter. The T-DNA insertion line SALK_029185 was obtained

from the SALK institute. Homozygous (mtm) lines were screened

by segregation, PCR, and RT-PCR analyses; atx1 mutant lines

were as described [13].

Constructs
The following gateway specific PCR products were obtained as

follows:

ATX1-Full Length cDNA was PCR amplified using forward

primer atx1attB1:

59-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATG-

GCGTGTTTTTCTAACGAAAC-39 and the reverse primer

atx1-attB2: 59-GGGGACCACTTTGTACAAGAAAGCTGGG-

TATTCTGCGGTCCAGTCTATTAGAT-39.

The N-terminal domain of ATX1 was PCR amplified using the

forward primer atx1attB1 and the reverse primer dast-attB2:

59-GGGGACCACTTTGTACAAGAAAGCTGGGTAATC-

GAGATCTTTCCAGTCAACAC-39.

The C-terminal domain of ATX1 was PCR amplified using the

forward primer phd-attB1:

59-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAAG-

TGCAATGTCTGCCAC-39 and the reverse primer atx1-attB2.

The ePHD domain of ATX1 was PCR amplified using the

forward primer phd-attB1 and the reverse primer atx1-attB2.

The SET domain of ATX1 was PCR amplified using the

forward primer set-attB1

59-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAT-

GAATACTCCAAGCAAC-39 and the reverse primer atx1-attB2.

The gateway PCR products were cloned into the entry vector

pDONR221 and the entry clones recombined into expression

vectors pB7FWG2,0 vector [41] for C-terminal GFP-fusion and

expression in plants; pDESTT17 vector (Invitrogen) for N-terminal

fusion to a 66his tag and inducible expression in bacteria.

Generation of coding sequences of AtMTM1 with mutations in

the active site was carried out by a site directed mutagenesis

approach using an overlap extension PCR approach [42]. The

following primers overlapping by 42 bp in reverse orientation

were designed to contain point mutations of residues of the

conserved CX5R phosphatase domain active site:

(PTP-fwd 59-CTTGTGCACAGCAGTGATGGATGGGTCA-

GAAC-39 and

PTP-rev 59-GTTCTGACCCATCCATCACAGCAGTGCA-

CAAG-39). In a first step the rid-attB1 primer

59-GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAT-

GACGCCGCCGAGACCACCG-39 and the PTP-rev primer were

used to obtain a 757 bp PCR product A.

The PTP-fwd primer 59-CTTGTGCACAGCAGTGATG-

GATGGGTCAGAAC-39 and a AtMTM-attB2 primer 59-

GGGGACCACTTTGTACAAGAAAGCTGGGTATTTAGG-

TTGGAAATAGCTATCG-39 were used to amplify a 1228 bp

PCR product B. The overlapping PCR products A and B were

used as templates for a second step overlapping PCR, in the

presence of primers rid-attB1 and AtMTM-attB2 to generate a

1953 bp gateway PCR product. After recombination cloning into

the pDONR221 vector, several entry clones were sequenced and

the two active site mutations of interest defined as mut1 and mut2

were selected for further studies.

Phosphatase activity
Phosphoinositide 3-phosphatase assays were performed using

the malachite green assay [43,44] Clones obtained as described

above were introduced into the pGEX4T-1 vector (GE Health-

care), expressed as GST-fusions in E. coli BL21 cells, and used to

assay the enzyme activity. Recombinant affinity-column purified
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GST- tagged proteins were incubated with substrates (2.5 mmoles

per experimental point) in 50 ml assay buffer (50 mM TrisHCl,

pH 8.0, 100 mM KCl and 2 mM DTT). Di-C8 phosphoinositides

(Echelon Biosciences Inc. catalogue numbers P-3008, P-5008, and

P-3508) were used as substrates and PTEN lipid phosphatase

(Echelon Biosciences Inc. catalogue number E-3000) was used as a

positive control. Following incubation at 37uC for 30 minutes the

reactions were quenched by the addition of 20 ml of 0.1 M N-

ethylmaleimide and spun at 18,000 g for 10 minutes. Twenty-five

microliters of the supernatant was added to 100 ml of malachite

green reagent and vortexed. Samples were allowed to incubate for

40 minutes for color development before measuring absorbance at

620 nm. Inorganic phosphate release was measured by a standard

curve of KH2PO4 in distilled water.

Tobacco transient assays
Agrobacteria colonies containing binary plasmids for plant

transformation were grown overnight in 10 mls of media with

antibiotics. The cells were collected and re-suspended in an equal

volume of induction medium (60 mM K2HPO4, 33 mM KH2PO4,

(NH4)SO4, 1.7 mM Na Citrate.2H2O, 10 mM MES, 1 mM

MgSO4, 0.2% Glucose, 0.5% Glycerol, antibiotics and 50 mg/ml

of acetosyringone), and incubated with shaking for 6 hours at 30uC.

The cells were re-suspended to an OD of 0.8 in infiltration medium

(0.56 MS, 10 mM N-moropholino-ethanesulfonic acid, 150 uM

acetosyringone) and used to infiltrate the abaxial surface of N.

benthamiana leaves. After 40 hours detection of expression was

conducted by laser scanning confocal microscopy using 488- and

633-nm excitation and two-channel measurement of emission,

522 nm (green/GFP) and 680 nm (red/chlorophyll). RFP was

detected by excitation at 540 nm and emission at 590 nm.

Real time quantitative RT-PCR analysis
RNA for qRT-PCR (quantitative real-time reverse transcrip-

tion-polymerase chain reaction) was isolated with TRIZOL

(Invitrogen) and purified with a RNeasy plant mini kit (Qiagen,

catalogue number 74903). For the first strand cDNA synthesis

8 mg total RNA was treated with DNase I, extracted with phenol

and chloroform, precipitated with ethanol, followed by the

addition of oligo (dT) and superscript III reverse transcriptase

(Invitrogen). Real-time PCR analysis was performed using the

iCycleriQ real-time PCR instrument (Bio-Rad) and iQ SYBR

Green Supermix (BioRad). The relative expressions of specific

genes were quantitated using 22DDCt calculation, where DCt is the

difference in the threshold cycles of the test and housekeeping gene

ACTIN7. DCt is the threshold cycle of the target gene subtracted

from the threshold cycle of the housekeeping gene. The mean

threshold cycle values for the genes of interest were calculated

from three experiments. The following primers were used:

ACTIN7: F-(59-CTACGAGGGGTATGCTCTTCCTCAT-39),

R- (59- CTGAAGAACTGCTCTTGGCTGTCTC-39) ATX1: F-

(59-CCCAATTGCTATTCTCGAGTCATCA-39), R- (59- TTTG-

CATGTTGTTCTTCAGCTTCTG-39), ATMTM: F- (59-CCCA-

AGGAGCTCTCTGGAGAATAAC-39), R- (59-CTTCCGACAT-

GAGCACATCCTACTT-39)

WRKY70: F- (59-AGCAACTCCTCTCTCAACCCG-39), R-

(59-CCATTGACGTAACTGGCCTGA-39)

Chromatin Immunoprecipitation (ChIP) assays
A protocol previously described [45] was used. Anti-H3K4me3

antibodies (Millipore, catalogue number 07–473) were used.

Negative control samples were treated in the same way except

that antibodies were not added. Each immunoprecipitation was

performed in at least three separate experiments. Calibration

curves were constructed to determine optimal amounts of

chromatin to be used in each experiment and to ensure equivalent

amounts of starting material. The PCR products were amplified

using the primer sequences for

WRKY70: F (59-agcaactcctctctcaacccg-39); R: (59-ccattgacg-

taactggcctga-39);

ACTIN7: F (59-ggtgaggatattcagccacttgtctg-39); R: (59-tgtga-

gatcccgacccgcaagatc-39).

Mass assay; TLC; HPLC; PIP4K assay; 59-phosphatase assay
Leaves were carefully excised from growing plants and

immediately weighed. Total lipids were extracted from leaves either

immediately or after dehydration stress (left on the bench for

2 hours at room temperature resulting in a weight loss of 30–40%)

using ice-cold chloroform (250 ml) and methanol (500 ml) in a UCD-

200TM bioruptor (Tosho Denki Co., Japan) operating at full power

for 2 minutes. After storage at 220uC overnight another sonication

step ensured complete leaf tissue disruption. Water (250 ml), 2.4 M

HCl (200 ml) and CHCl3 (250 ml) were subsequently added to

induce phase separation. After thorough mixing and centrifugation

(5,000 g for 2 minutes at room temperature), the lower chloroform

phase was washed once with theoretical upper phase and then dried

in a speedvac at room temperature. PtdIns5P was quantitated in a

neomycin affinity chromatography enriched phosphoinositide

fraction using a radioenzymatic assay [6,46]. The mass of PtdIns5P

was normalized according to the starting leaf mass. Deacylated

radiolabeled phospholipids were also analyzed by HPLC [17].

Purified yeast YNK-5 phosphatase was used to de-phosphorylate

the isolated PtdInsP2 formed from the phosphorylation of

endogenous leaf PtdInsP by PIP4Ka [17]. The TLC plate was

developed once in chloroform/methanol/25% ammonia/water

(ratio: 45/35/2/8, v/v/v/v). After air-drying for 30 minutes the

plate was exposed to a phosphorimaging screen or to X ray film.

HPLC analysis used a gradient of 0–1 M ammonium phosphate

pH 3.85 with a flow rate of 1 ml/minute. Direct on-line

radioactivity detection every 15 seconds avoided the requirement

for fraction collecting. Correct peak identification was achieved

using in-house radioactively labelled standards. The method has

been described previously [46].

Statistical analysis
A Wilcoxon signed t-rank test was applied for determining

significant differences [23] employing significance threshold of

P,0.05.

As biological material was taken from different plants, the

measurements represented statistically relevant averages of

PtdIns5P content in all the tested samples.
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identification of phosphatidylinositol 3,5-bisphosphate in T-lymphocytes and its

regulation by interleukin-2. J Biol Chem 274: 18407–18413.

ATX1, PtdIns5P, and Stress

PLoS ONE | www.plosone.org 12 October 2010 | Volume 5 | Issue 10 | e13396


