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predicting binding sites 
from unbound versus bound 
protein structures
Jordan J. clark, Zachary J. orban & Heather A. carlson*

We present the application of seven binding-site prediction algorithms to a meticulously curated 
dataset of ligand-bound and ligand-free crystal structures for 304 unique protein sequences (2528 
crystal structures). We probe the influence of starting protein structures on the results of binding-site 
prediction, so the dataset contains a minimum of two ligand-bound and two ligand-free structures 
for each protein. We use this dataset in a brief survey of five geometry-based, one energy-based, and 
one machine-learning-based methods: Surfnet, Ghecom,  LiGSitecsc, fpocket, Depth, AutoSite, and 
Kalasanty. Distributions of the F scores and Matthew’s correlation coefficients for ligand-bound versus 
ligand-free structure performance show no statistically significant difference in structure type versus 
performance for most methods. Only Fpocket showed a statistically significant but low magnitude 
enhancement in performance for holo structures. Lastly, we found that most methods will succeed on 
some crystal structures and fail on others within the same protein family, despite all structures being 
relatively high-quality structures with low structural variation. We expected better consistency across 
varying protein conformations of the same sequence. Interestingly, the success or failure of a given 
structure cannot be predicted by quality metrics such as resolution, Cruickshank Diffraction Precision 
index, or unresolved residues. Cryptic sites were also examined.

Interactions between proteins and small molecule ligands are a cornerstone of biochemical function. These 
interactions vary in specificity, which allows for invention of new molecules to modulate the function of protein 
targets. Modern drug discovery heavily utilizes structure-based drug design, which requires structural informa-
tion for the target of interest (typically a protein). As structural information for new targets is obtained, there are 
cases where little is known about the orthosteric and allosteric binding pocket(s) of the protein. Consequently, 
significant effort has been invested into the development of ligand binding-site (LBS) prediction algorithms 
to help solve this issue. As with many computational methodologies, extensive testing and validation of these 
algorithms has been a common topic of literature  review1–3. Unfortunately, due to the timespan of these dif-
ferent validation and benchmarking publications, very few of them use the same dataset. Another common 
theme among the datasets is the underrepresentation of ligand-free (apo) crystal structures, as most datasets 
are disproportionately populated with ligand-bound (holo) structures, simply mirroring the relative population 
of the Protein Data Bank (PDB)4.

In this study, we address the question of how much influence a starting structure has on the resulting LBS 
prediction. Previous studies have been mixed on the issue. Chen et al. reported that geometry-, energy-, and 
consensus-based methods benefitted from the use of holo  structures5. However, An et al. found that using apo 
versus holo pockets had little effect on the resulting prediction of  LBS6. There are two aspects we focused on. 
First, do bound or unbound structures work better, and second, how much variability is seen in the results across 
many structures of the same protein. To address these questions, we had to create a new dataset.

Our current dataset is derived from our previous study of protein  flexibility7, and it originates from Binding 
 MOAD8,9, a collection of high-quality holo crystal structures. Corresponding apo structures were acquired using 
sequence-based searches of the PDB and similar quality assessment criterion to the curation process for Binding 
MOAD. Starting from the 4048 crystal structures used in the previous study, we culled this dataset to 1446 holo 
structures and 1082 apo structures, representing 304 unique protein families (as clustered by 100% sequence 
identity) where all structures have resolution of 2.5 Å or better and all holo structures contain ligands that are 
biologically relevant. Additionally, each of the 304 unique proteins is represented by at least two ligand-bound 
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and at least two ligand-free structures. Unified binding sites (UBSs) have been calculated for all protein families 
in this dataset, which represent the union of all residues contacted by any bound ligand within a family. This 
dataset is much larger and contains many more ligand-free structures than any of the datasets used in past work. 
The curation process for this dataset is described in the “Methods” section.

Previous LBS-prediction algorithms have been trained and tested using numerous different datasets and data-
bases. Some  methods10–12 were trained and tested using manually curated datasets from the PDB and  some13,14 
using previously established datasets such as  LigASite15 or the Astex diverse  set16. Older publications were more 
likely to use manually curated datasets, as some of the publicly available datasets and resources were not yet 
available. Resources such as  LigASite15 and  BioLiP17 have since been created with the direct intent for use in 
prediction method training and testing since that time. The  APoc18 and TOUGH-M119 datasets also deserve 
mention in this context, though these datasets are intended for use in benchmarking binding-site similarity 
methods and thus contain sequence-dissimilar protein pairs.

Cimermancic and coworkers created the CryptoSite dataset of 84 binding sites annotated as being “cryptic”20. 
Cryptic sites require structural rearrangement for ligands to access to the binding pocket. When analyzing these 
cryptic pockets using  Fpocket21 or  ConCavity13, the apo structures yielded pocket scores much lower than their 
holo counterparts. Proteins containing cryptic binding sites are of significant interest to the biochemical com-
munity, and they represent particularly difficult cases for binding-site detection. However, characterizing these 
pockets using only two methods leaves room for the application of many additional methods.

The recently published  CavBench22 benchmarking tool is highly related to the work herein. Its CavDataset is 
a curated subset of  PDBsum23, consisting of 2293 protein structures with 660 apo and 1633 holo structures. This 
dataset is larger than many of the previous datasets of its kind, but it only shares ~ 5% (122 structures) overlap 
with the dataset used in our work here. Additionally, the number of sequence-related or sequence-unique pro-
teins contained in the CavDataset is not specified by the authors. The authors contrast the performance of four 
prediction methods  (Fpocket21,  GuassianFinder24,  Ghecom25, and  KVFinder26) on their CavDataset based on 
different classifications of pockets, as well as the apo or holo nature of the starting structures. The performance 
of all four methods appears completely unaffected by the presence or absence of ligands in the starting structure.

Given the previous findings, we see a need for (1) a more robust dataset for benchmarking computational 
prediction methodology using multiple conformations of the same protein and (2) further investigation into the 
implications of ligand presence on starting structure performance.

LBS-prediction methods. LBS-prediction methods are divided into four categories for discussion: tem-
plate-based methods (sometimes referred to as genomic-based methods), geometry-based methods, energy-
based methods, and other methods.

Template-based methods utilize the atlas of already known protein information as a map to guide the algo-
rithm. Their assumption is that binding sites of new protein sequences may be located using the known bind-
ing sites of close structural homologs. Some examples of template-based methods include:  3DLigandSite27, 
 FINDSITE28,  Firestar29, I-TASSER30,  IntFOLD31, and  ProBis32.

Geometry-based methods characterize protein surfaces using observable biophysical parameters such as Van 
der Waals radii in order to locate pockets or clefts, assuming that the binding site of the protein is one of these 
pockets or clefts. Exploration of the protein surface may be accomplished by calculation of molecular distance, 
solvent accessible surface area, and cavity volume. These measurements may be computed using probes, spheres, 
grids, and other forms of spatial voids, which are then clustered or further analyzed to yield ranked cavities pre-
sumed to be binding sites. Geometric methods have the advantage of not requiring any prior knowledge about 
a protein target or any of its close structural relatives, aside from having structural information to work with. 
This property is advantageous to the purpose of this work. Some examples of geometry-based methods include: 
 SURFNET10,  Ghecom25,  LIGSITEcsc

11,  Fpocket21,  Depth12, and the CAVITATOR algorithm as part of  APoc18.
Energy-based methods rely on calculation of phenomena such as hydrogen bonding and pi-stacking to locate 

regions of the protein where ligands are likely to bind. These methods utilize probe molecules and chemical 
moieties to generate potentials for locating binding sites. Some examples of energy-based methods include: 
 AutoSite14,33,  PocketFinder6,  SiteHound34, Q-SiteFinder35, and  FTSite36.

The idea of sequence conservation has been incorporated into other methods, such as the upgrade from LIG-
SITE to  LIGSITEcsc by including a re-ranking of top predicted pockets using sequence  conservation11. Propensity-
based methods rank potential binding pockets on a by-atom basis (in the context of likelihood of interacting with 
a bound ligand) and tally up scores of predicted pockets to either rank novel pockets (e.g.  LISE37,38) or re-rank 
pockets from other methods (e.g. STP  algorithm39, Hirayama’s  method40).

Machine-learning methods have been the primary focus of many recent developments, which incorporate 
any number of previously established physicochemical parameters into a machine-learning context. These meth-
ods utilize computational prediction algorithms ranging from relatively simple Random Forest decision trees 
to sophisticated neural networks trained on dozens of physicochemical parameters. An example is Gutteridge 
and Thornton’s neural network  method41, which predicts the likelihood of a residue being catalytic in nature, 
where neural network inputs consist of: solvent accessibility, type of secondary structure, depth, cleft the residue 
resides in, as well as conservation score and residue type.  LIBRUS42 is a support vector machine learner which 
primarily utilizes sequence-based information, but performed poorly. Similarly,  LigandRFs43 utilizes random 
forest ensembles to predict binding sites purely from sequence information. Though it was one of the best 
sequence-based performers, the authors note that structure-based methods still outperform sequence-based 
ones, even with the help of machine  learning43. Some of the newest developments in this area include  DeepSite44, 
 DeepCSeqSite45,  Kalasanty46, and UTProt Galaxy  pipeline47. These methods all utilize 3D convolutional neural 



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15856  | https://doi.org/10.1038/s41598-020-72906-7

www.nature.com/scientificreports/

networks with various information involving sequence, distances, and other physicochemical parameters to 
characterize putative binding pockets.

There are also newer methods deemed as ‘meta-analyses’ which combine multiple methods and multiple 
types of methodology, with some variety of a re-scoring algorithm to try and achieve the best facets of each type 
of method they use. Some examples include  ConCavity13 which uses 3 methods and  MetaPocket48 which uses 8 
methods. While robust, these methods are only available as webservers and cannot be seamlessly integrated into 
many method pipelines. Also, users have limited options to customize parameters for their purposes.

Template-based methods are typically among the best performers during large-scale benchmarking exercises 
such as the contact prediction section of the Critical Assessment of Protein Structure Prediction (CASP)49. The 
“LBS-prediction” section and its separate assessment in CASP has not appeared since CASP round  X50,51. The 
Continuous Automated Model EvaluatiOn (CAMEO) webserver where users may test their server-based auto-
mated methods is also of importance for  benchmarking52. Template-based methods have been excluded from 
our comparisons, as utilizing libraries of sequence-based template information would inevitably lead to the use 
of holo structure knowledge to solve the binding site locations in apo structures.

For this work, we elected to use seven methods: SURFNET, Ghecom,  LIGSITEcsc, Fpocket Depth, AutoSite, 
and Kalasanty. The first five of the methods are geometry-based, while AutoSite is energy-based, and Kalasanty is 
machine-learning-based. Choosing methods was based on two primary factors. First, the availability of source-
code to be installed and used in house was required, as using web-servers for large amounts of data was not a 
viable option. For instance, the source code for  CAVITATOR18 was not readily available, and the source code for 
 DeepCSeqSite45 was a limited demo at the time of this work’s completion. Secondly, we excluded methods that 
had shown poor performance in previous benchmarks, as detecting performance differences between different 
structures of the same target is further complicated when the methods are not performing well in general. Our 
choice of methods is by no means exhaustive and is simply intended to provide a set of base information as to 
how LBS-prediction methods perform on different types of structures.

Results and discussion
Dataset properties. The most recent release of Binding  MOAD8 was clustered using a very strict sequence 
identity cutoff to obtain relevant holo structures, and matching apo structures were obtained from the PDB as 
described in the “Methods” section. Upon filtering for proteins with at least two holo structures and two apo 
structures and reducing all families to a maximum of ten structures for each apo/holo state (see “Methods” sec-
tion), this dataset reduces to 304 different protein families, represented by 1446 holo structures and 1082 apo 
structures. This dataset is available online as the file LBSp_dataset.tar.gz at https ://Bindi ngMOA D.org/Home/
downl oad.

The protein families with the most holo structures prior to family size reduction are carbonic anhydrase 
II followed by trypsin, with 174 and 120 holo structures, respectively. The protein families with the most apo 
structures before size reduction are lysozyme followed by ribonuclease-A, which had 280 and 79 apo structures, 
respectively. This redundancy is accounted for in two major ways. First, when describing prediction assessment 
for each protein family, the value will be given as an average, median, maximum, or minimum for the entire 
family as one value to represent all contained structures. Second, families with more than 10 of either type of 
structure are reduced to the 10 most diverse (via RMSD) representatives for prediction calculations. For example, 
the carbonic anhydrase II family has 174 holo structures, and all of the ligands for the 174 structures are used 
to build the UBS, so all structures are truly represented; however, only the 10 most diverse holo structures are 
used in the prediction calculations to save computational time. This process is detailed in the “Methods” section. 
The results of this family size reduction are 2528 protein structures (1446 holo, 1082 apo) which are actually 
tested with every one of the seven LBS-prediction methods. This data is provided as part of the Supplementary 
Information; Table S1 lists the results of each LBS-prediction method on each of the structures in our dataset.

The biologically relevant ligands that occupy the holo structures in this dataset are diverse and represent 
many different classes of molecules. The average molecular weight (MW) of the ligands is 374 g/mol with 80% 
of ligands less than 500 g/mol and 95% less than 800 g/mol. This large range in molecular size helps with build-
ing diverse UBSs. The distribution of UBS sizes and number of each residue type represented across all binding 
sites are presented in Fig. 1a and b.

The proteins and their binding sites are fairly rigid as a whole dataset, in terms of  Cα RMSD. Exhaustive  Cα 
RMSD calculations were completed for all 304 protein families, for both the global backbone and specifically 
for those residues characterizing the UBS of the family. The maximum and average RMSDs for all 304 protein 
families are presented in Fig. 2. In the most focused-case (Fig. 2c), 68% of the protein families display negligible 
amounts of backbone motion throughout their UBS.

LBS prediction. Predictive power is assessed using two metrics in this work: F scores and Matthew’s Corre-
lation Coefficients (MCCs). Justification for this type of analysis and description thereof can be found in “Meth-
ods” section. Comparison between performance of different methods, or of different sets of data (apo vs. holo), 
will be represented by p values from Wilcoxon rank-sum tests. The Wilcoxon rank-sum (also known as the 
Mann–Whitney test) was chosen because it requires no prior knowledge of the shape of the distribution nor its 
symmetry about the mean or median. The F scores and MCCs provide a good description of the relative success 
of these algorithms, but the absolute case of failure is based on whether or not a method produced a predicted 
binding site containing none of the residues in common with our definition of the UBS. This is not to say that 
only accounting for at least one residue in a given site should be commended, but rather that predicting one cor-
rect residue or more implies the algorithm is close to the “correct” location on the binding surface of the protein.

https://BindingMOAD.org/Home/download
https://BindingMOAD.org/Home/download


4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:15856  | https://doi.org/10.1038/s41598-020-72906-7

www.nature.com/scientificreports/

Here, we interject that our analysis is based on the classical approach of using p < 0.05 to denote statisti-
cally significance between sets or distributions of data. This approach has been called into question in our 
 community53, and so we provide all p values in full instead of truncating them at the 0.05 threshold. While 
investigating beyond that 0.05 threshold holds the temptation of meaningful information, we instead strive to 
gain additional insight by having a large and robust dataset. Representing all 304 unique proteins in multiple 
structures of both the bound and unbound forms will yield a more robust approach than many past studies which 
have adhered to apo-holo protein pairs.

Biounit files for all 2528 protein structures were prepared as described in the “Methods” section. All structures 
were submitted to each of the seven LBS-prediction methods and the top predicted pocket of each method was 
analyzed. For the methods that yield a grid representation of the binding site rather than actual binding-site 
residues (AutoSite,  LIGSITEcsc), the binding sites were back-calculated using a distance cutoff of 4.5 Å unless 
a different cutoff was specified in the citation for the method (8 Å for  LIGSITEcsc

11). Any structures which did 
not yield any predicted pockets were assigned zero values for MCC, precision (P), recall (R, also referred to as 
sensitivity or true-positive rate), and F score, after they were inspected to ensure the programs completed their 
calculations properly. The procedure for dealing with structures that resulted in errors for the various methods, 
as well as a list of these very few structures, is provided in the “Methods” section. Analysis metrics were then 
calculated for the rest of the resulting structures using in-house parsing scripts.

Apo versus holo structures. Our analysis of the predictive power for the seven LBS-prediction methods 
begins with presenting distributions of F scores for all methods (Table 1, Fig. 3) These are distributions of the 

Figure 1.  (A) Distribution of the sizes of unified binding sites for the 304 protein families in this dataset, as % 
frequency. (B) Distribution of amino acid composition of the 304 unified binding sites.
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Figure 2.  Analyses of maximum and mean backbone RMSD for each protein family. Each point represents 
the maximum or mean observed in one protein family, and the number of points of each section is labeled in 
black (numbers in parenthesis are points with values > 3.5 Å). (A) The maximum backbone RMSD across the 
apo-apo pairs is compared to the maximum of the holo-holo pairs; 206 proteins display RMSD ≤ 1 Å for both 
groups. (B) The mean backbone RMSD across the apo-apo pairs is compared to the mean of the holo-holo pairs; 
247 proteins display RMSD ≤ 1 Å for both groups. (C) The maximum UBS RMSD across the apo-apo pairs is 
compared to the maximum of the holo-holo pairs; 206 proteins display RMSD ≤ 1 Å for both groups. (D) The 
mean UBS RMSD across the apo-apo pairs is compared to the mean of the holo-holo pairs; 235 proteins display 
RMSD ≤ 1 Å for both groups.

Table 1.  Median of family median F scores and MCCs for apo and holo datasets for all seven LBS-prediction 
methods. Wilcoxon p values are the same as those found in Figs. 3 and 4. The bold values are the only ones that 
meet the statistical limit of p < 0.05.

Method Apo F Holo F Wilcoxon p: F score Apo MCC Holo MCC Wilcoxon p: MCC

Surfnet 0.23 0.23 0.90 0.22 0.23 0.63

Ghecom 0.48 0.54 0.20 0.50 0.53 0.17

LIGSITEcsc 0.49 0.52 0.56 0.47 0.50 0.60

Fpocket 0.42 0.53 0.04 0.43 0.52 0.03

Depth 0.40 0.42 0.32 0.38 0.40 0.17

AutoSite 0.36 0.45 0.13 0.34 0.42 0.10

Kalasanty 0.49 0.51 0.12 0.48 0.54 0.11
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family median F scores, divided into the subcategories of apo structures and holo structures. Though it is interest-
ing that the holo structures have higher F scores across most methods, it is important to note that the Wilcoxon 
rank-sum analysis of apo versus holo distributions yields p > 0.05 for all methods except for Fpocket (p = 0.04). 
We note that the large populations with F scores of zero for Ghecom,  LIGSITEcsc, Fpocket and AutoSite are 

Figure 3.  Distribution of family median F scores of apo and holo protein structures for (A) Surfnet (p = 0.90), 
(B) Ghecom (p = 0.20), (C)  LIGSITEcsc (p = 0.56), (D) Fpocket (p = 0.04), (E) Depth (p = 0.32), (F) AutoSite 
(p = 0.13), and (G) Kalasanty (p = 0.12).
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structures that either do not predict the correct binding site as their #1 predicted site or structures where no site 
is predicted at all (a rare occurrence, see “Methods” section). Additionally, we note that these figures are of the 
family median values. At first glance, Ghecom,  LIGSITEcsc, Fpocket, AutoSite, and Kalasanty all appear to have 
similar rates of zero-score occurrences (17–20% of the data). However, many of these families have an average F 
score > 0, indicating that there is success in at least one of the structures within a given family. 

While Fpocket does appear to have a slight performance preference for holo protein structures, the other six 
methods show no statistically distinguishable preference for apo or holo structures. This implies that the pre-
dictive power for most of these methods is not heavily impacted by the presence or absence of a pre-organized 
binding site with a ligand in the starting structure. The same trend is observed when using MCCs as the evalu-
ation metric of predictive power (Table 1, Fig. 4). Only Fpocket (p = 0.03) has a statistically significant (p < 0.05) 
correlation between predictive power and structure type (holo vs. apo), again suggesting that holo structures 
perform slightly better with this method, but the trend is weak. CavBench’s assessment showed equal performance 
of Apo and Holo protein structures in non-redundant binding site detection for Fpocket and for  Ghecom22.

For both MCC analysis and F scores, two primary patterns of predictive power are observed. Surfnet and 
Depth appear to have a higher likelihood of mid-level predictive power (F score < 0.7, MCC < 0.6), while also 
having a much lower rate of complete failure (zero-scores). The other five methods appear to have a more bimodal 
distribution of scores, either accurately predicting a relatively large portion of the binding site or failing com-
pletely in their top predicted site (18–22% of protein families).

Variability across protein structures. Perhaps the wildly varying performance of the different methods 
could be attributed to specific structures or proteins. To probe this idea, the failed prediction cases were assessed 
more closely. Of the 2528 protein structures (1446 holo, 1082 apo) processed with these methods, only six struc-
tures failed catastrophically (zero correct binding site residue predictions, R = 0) in every one of the seven meth-
ods. Given the size of the whole dataset, that ~ 0.2% failure rate is very low. There were 1215 structures for which 
at least one method failed to predict any part of the binding site (R = 0). However, 974 of those 1215 structures 
have at least 50% of their binding site predicted (R > 0.5) by at least one other method. The performance of many 
structures appears to be dissimilar between the methods. Exhaustive comparison of the resulting F scores and 
MCCs for each individual PDB structure between every combination of the seven LBS-prediction methods was 
performed, resulting in correlation  R2 < 0.1 for every comparison. This suggests that the performance of any 
structure with one method provides no indication of how that structure will perform with another method. This 
variability (most PDB structures doing very well with one method, yet failing with another) compromises the 
analyses of how to improve LBS-prediction methods in general.

. Another analysis for the success of each method is to view the F-scores and MCCs as a by-family compari-
son between the two structure types (i.e. how do the apo structures of a given protein perform relative to the 
holo structures of the exact same protein?). Using family medians for the representative family data points, and 
family minima/maxima as error bars, the predictive power of the seven methods is presented for the F scores 
in Fig. 5 and MCCs in Fig. 6. Interestingly, family maxima and minima span the gamut of performance for 
each method for nearly all of the 304 protein families in both F scores and MCCs. This is to say: for most of the 
protein families in this study, there are structures for which each method will accurately predict the majority 
of the ligand-binding site, as well as structures where the same method completely fails to identify any portion 
of the same binding site as the top predicted site. This observation is true for both the apo and holo states of 
the proteins and has serious implications for benchmarking LBS-prediction methods, as the choice of protein 
structures greatly influences outcome. This inherent variability makes it impossible to rank methods and points 
to a need for greater consistency on the part of the methods, as well as community effort towards more robust 
and commonly utilized benchmarking datasets.

cryptic sites. The authors of  CryptoSite20 annotated 84 examples of known cryptic binding sites. Cryptic 
binding sites require notable protein rearrangement to become apparent, embodying the concepts of induced-fit 
and conformational selection. Extending this idea to the computational paradigm, cryptic sites are not as easily 
identifiable by pocket detection algorithms when using their apo structures, according to the authors. Our data-
set in this work shares 30 of the same PDB structures (13 holo, 17 apo) with the CryptoSite set. Moreover, 35 of 
the 304 protein families in our dataset are represented in the CryptoSite set, as determined by sequence identity 
and inspection (see “Methods” section). In 31 of those 35 families, we are investigating the same “cryptic” bind-
ing site as CryptoSite, as determined by < 0.5 Å distance between bound ligands between our holo structures and 
the ligand contained in the designated holo structure from CryptoSite.

. The performance of those 31 families when compared to the remaining 273 families in our dataset was 
nearly identical, overall. Assessing the difference in distribution of family median performance scores for the 31 
overlap families vs the remaining 273 families yielded p values > 0.1 for both F score and MCC, for both the apo 
protein values and holo protein values. The CryptoSite authors defined accurate predictions of cryptic sites to 
require sensitivity (recall) values of > 0.33. Using that threshold, 99.3% and 99.7% of our apo and holo protein 
structures, respectively, have successful predictions from at least one method.

Though we did not observe statistically different performance of cryptic binding pockets compared to the rest 
of our dataset, we have annotated the overlap with the CryptoSite set accordingly. The full dataset download for 
this work is appropriately separated, and the annotations of its contents (Supplementary Information Tables S1 
and S2) are also labelled accordingly.

Relationships between method performance and structural data. Was it possible that the perfor-
mance of a given crystal structure in any LBS-prediction method was related to the overall quality of that struc-
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ture? Structure quality was assessed in two ways: structure resolution and Cruickshank Diffraction Precision 
Index (DPI)54. There is some redundancy here, as resolution is used in the calculation of DPI, but DPI is a far 
more complete measure of X-Ray crystal structure quality. Across all comparisons of F score versus resolution, 
F score versus DPI, MCC versus resolution, and MCC versus DPI, the highest correlation  R2 value obtained was 
0.03. This implies no correlation between structure quality and the performance of the structures in any of the 
LBS-prediction methods showcased here.

Figure 4.  Distribution of family median Matthews Correlation Coefficients (MCCs) of apo and holo protein 
structures for (A) Surfnet (p = 0.63), (B) Ghecom (p = 0.17), (C)  LIGSITEcsc (p = 0.60), (D) Fpocket (p = 0.03), (E) 
Depth (p = 0.17), (F) AutoSite (p = 0.10), and (G) Kalasanty (p = 0.11).
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Figure 5.  Family median F scores of apo and holo protein structures for (A) Surfnet, (B) Ghecom, (C) 
 LIGSITEcsc, (D) Fpocket, (E) Depth, (F) AutoSite, and (G) Kalasanty where the error bars are constructed from 
the family minima and maxima. Line: y = x. 
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As an additional metric of quality, unresolved residues were considered. For these experiments, the UBS 
were examined across all structures within a family, and any missing (unresolved) residues were noted. Residues 
outside of the binding sites were not tallied in this process. There were 61 families in the dataset which had at 
least one structure with at least one UBS residue missing. The performance of the structures in those families 
were compared on a per-family basis, i.e. the structures without any missing residues versus the structures with 
at least one residue missing. Structure type (apo or holo) was not considered for this analysis. Of the 61 families 
with missing residues, only 19 showed any statistically significant difference in performance.

If unresolved residues were problematic in this analysis, their impact would likely appear in the performance 
metrics of every method we tested. Instead, 12 of the 19 families only showed statistically significant performance 
differences for one method, and they were not always the same method: AutoSite (3 families), Surfnet (1 family), 
Depth (3 families),  Ligsitecsc (1 family), Ghecom (4 families). Fpocket and Kalasanty did not show any differences 
for performance in any family. Of the remaining 7 family cases, 6 of the families showed differences with only 
two methods, and the last case showed significant differences with five of the seven methods.

Most interestingly, the impact of these structures with missing residues is not always negative. The family of 
Concanavalin A, which showed statistically significant performance differences for six methods (the most of any 
of these families), has three apo structures (1apn, 1dq2, 1enq) which are missing some residues in the binding 
site and seven apo structures without any missing residues, as well as 10 holo structures which are not missing 
any residues. The performance of the five methods (Surfnet, Ghecom, Ligsite, Depth, and AutoSite) improves 
on the structures which have missing residues, in every case.

Structures missing UBS residues were uncommon, and those structures causing any significant difference on 
the performance of any of the methods were exceedingly less common still. As such, we elected to not exclude any 
of these data, as missing residues appear to have an overall miniscule impact on the performance of the methods.

Relationships between method performance (F scores/MCC) and other structural features were examined. 
Protein family Min/Max/Average/Median F and MCC values for every method were compared to family Min/
Max/Average/Median global  Cα RMSD, maximum family UBS  Cα RMSD, UBS size, Cruickshank DPI, and 
resolution for both apo and holo proteins. The resulting 896 comparisons yielded  R2 values between 0 and 0.03, 
showing no correlation for any method with any physical property of either the apo or holo proteins. As an 
example, Figs. S1 and S2 in the Supplementary Information show the comparisons between family maximum 
RMSD vs family median F score and MCC score, respectively, which show no relationship between the full extent 
of protein flexibility and performance for any of the LBS-prediction methods.

conclusions
The predictive power of the seven LBS-prediction algorithms did not appear to correlate with the ligand-bound 
state (apo vs. holo) of the protein structure being used. This implies that, contrary to historical belief, apo 
structures can perform as well as, or better than, holo structures. Previous studies have been mixed on the issue 
of apo versus holo  structures5,6,22, and the behavior described here is attributed specifically to our dataset. Our 
complete data for this manuscript is provided in the Supplementary Information covering all calculated P, R, 
F, and MCC value for all individual PDB structures (Table S1 in the Supplementary Information) and giving 
median MCC and median F for the whole protein families (Table S2). In order to extend this idea to other com-
putational methodology, more high-quality datasets need to be made available to the community which have 
proper representation of apo structures.

Our UBS definition may be deemed too generous, and it may aid methods that tend to “over-predict” binding 
sites, which is a somewhat expected problem with LBS-prediction methods. This is mostly due to the nature of 
binary classification, where many false positives are extracted when a model is pushed towards 100% recall rate. 

Figure 5.  (continued)
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The top-10 LBS-prediction methods in round IX of  CASP55 had an average MCC of 0.62 for the 129 targets in 
that round. While we cannot directly compare to this value, as the datasets and methods being tested are not 
similar, it does give a reference value for what state-of-the-art methods are capable of in competition. Due to 
this, the lack of F scores and MCCs with values close to 1 is unsurprising. The average MCC of our methods was 
0.38 for Apo structures and 0.44 for Holo structures, both of which are below what we initially expected for the 
average performance of these methods.

In closing, none of the 304 binding sites that we have characterized in this work appear to be cryptic bind-
ing pockets under the definitions put forth by Cimermancic and  coworkers20. Of the 1082 apo structures in our 
dataset, only two had no effective predictions across all of the seven prediction methods. Those two structures 
both belonged to families where the other apo structures had successful predictions with at least one of the 
seven methods.

Methods
Dataset construction. The dataset used in this study is available as the file LBSp_dataset.tar.gz online at 
https ://Bindi ngMOA D.org/Home/downl oad. Holo structures were derived from Binding  MOAD8, a source of 
high quality protein–ligand complexes that have a maximum of 2.5 Å resolution. Biologically relevant ligands 
are differentiated from opportunistic binders (e.g. salts, buffers, phosphate ions) in the crystal structures of Bind-
ing MOAD, making curation of relevant ligand structures straightforward. Furthermore, use of Binding MOAD 
excludes covalently bound ligands. Structures with more than one biologically relevant ligand were excluded 
from this study in favor of binary protein–ligand complexes to ensure that only one pocket was being analyzed 
in each protein. Any structures containing additional molecules in their binding site, such as additives, were also 
excluded.

Holo structures were then clustered by 100% sequence identity in both directions, without replacement (to 
ensure a non-redundant dataset). A subsequent 95% sequence identity clustering of those families was then 
performed to suggest any families that should be merged due to simple N or C terminal amino acid additions. 
Sequence identity between structures was determined using  BLAST56. Any families differing in protein core 
sequence were kept separate.

Apo structures were then cultivated from the PDB using the same bidirectional 100% sequence identity 
BLAST procedure, requiring better than 2.5 Å  resolution57. Structures were screened for bound molecules, and 
only those containing acceptable additives or no additives at all were kept. Acceptable additives were restricted 
to HET groups of 5 atoms or less and a MW of 100 Daltons or less. Each HET group was inspected for chemical 
appropriateness.

Finally, proteins that did not have at least two holo structures and two apo structures were excluded from 
the dataset at this point.

family size reduction. After construction of the UBS (described below), but before binding-site predic-
tion, protein families with more than 10 structures of a single type (apo, holo) were reduced to 10 of those type 
of structures utilizing the following procedure: Exhaustive pairwise RMSDs were calculated for each family 
(every possible apo-apo, apo-holo, and holo-holo combination) using Gaussian weighted RMSD methodology 
developed previously in our  laboratory58. Matrices were constructed for holo-holo pairs, and separately apo-
apo pairs, for families in need of reduction. These matrices were then utilized in PAM clustering (Partitioning 
Around Medoids) in the R statistical package to determine the 10 most diverse structures to represent a family 
at  hand59. For example, the largest family (family 1) of Lysozyme had to be reduced from 280 apo structures to 
10 apo structures (utilizing a 280 × 280 pairwise RMSD matrix).

Theoretically, because the entirety of the holo structure set is used to construct the UBS prior to this data 
reduction, their influence on the outcome of the experiment remains. This reduction was only intended to reduce 
computation time for the prediction methods. These methods reduced the dataset from 2369 holo and 1679 apo 
structures, to 1448 holo and 1026 apo structures. Lastly, due to poor binding site resolution in structure 1HNK, 
which resulted in having 10 binding site residues unresolved, its entire family (two apo, two holo) was removed 
from the dataset. This results in the final dataset of 304 protein families, with 1446 holo and 1082 apo structures.

Dataset overlaps. Kalasanty was trained using the majority of the sc-PDB60. Without an explicit list of 
which structures were used, we made the assumption that any structure contained in the sc-PDB was used in 
their training. For this overlap, we simply considered which PDB IDs from our dataset of 2528 structures existed 
within sc-PDB. The result was 395 structures, representing 135 of our 304 sequence-unique protein families.

By direct PDB ID comparison, we shared 30 structures (13 holo, 17 apo) with CryptoSite. We also opted to 
find matching sequences between our dataset and CryptoSite. This was accomplished using  BLAST56 with a 
sequence identity cutoff of 90% between our 304 protein families and all of the 186 PDB structures listed within 
CryptoSite. After visual inspection of an RMSD alignment, 35 total sequences were deemed to be the same pro-
tein (≥ 90% sequence identity) in each of the pairings. However, only 31 of our protein families were represented 
in the CryptoSite dataset. The binding sites being investigated in the remaining 4 families were different in our 
dataset than those identified as cryptic in the CryptoSite set.

file choice, setup, and preparation. These steps were taken prior to any binding-site calculations. The 
first biounit model containing the relevant ligand of the corresponding PDB structure was used by default for 
each structure. Only one copy of the appropriate binding chain(s) was kept in order to prevent mapping the same 
sites multiple times across many multimeric copies of the proteins. All hydrogens were removed from the files. 
All ligands and waters were removed from the files.

https://BindingMOAD.org/Home/download
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Figure 6.  Family median MCCs of apo and holo protein structures for (A) Surfnet, (B) Ghecom, (C) 
 LIGSITEcsc, (D) Fpocket, (E) Depth, (F) AutoSite, and (G) Kalasanty where the error bars are constructed from 
the family minima and maxima. Line: y = x. 



13

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:15856  | https://doi.org/10.1038/s41598-020-72906-7

www.nature.com/scientificreports/

All protein systems were renumbered utilizing the pdbSWS database prior to binding site calculation and 
 assembly61. In the cases where this would result in more than one numbering pattern inside of a family, one 
structure’s numbering was applied to the other structures. If this was not possible and there was no method to 
renumber a structure to the same pattern as the rest of its family apart from manual processing, it was discarded 
from the dataset out of consideration for reproducibility.

Renumbering structures was necessary because some structures were numbered differently (especially com-
mon when going between apo and holo structures). Protein numbering becomes critically important in the case 
of UBSs, where it is necessary to harvest residue data from the UBS when there are no ligands present to define 
the site (apo structures).

After binding sites were identified (detailed in the following section), the files were reduced to contain only 
the chain(s) involved with a single copy of a binding site.

Binding site identification and compilation of the “union” binding site (UBS). The binding site 
was defined to include all protein residues within 4.5 Å of any biologically relevant ligand for each protein, 
which should capture both hydrogen-bonding and van der Waals interactions. Hydrogen atoms were not con-
sidered during this 4.5 Å calculation (for either the protein or the ligand). Most of the crystal structures for a 
given protein had different ligands bound, so many could have a slightly different set of residues near the ligand. 
Therefore, the summation of all sets of residues in all complexes for each protein was used to identify the “union” 
binding pocket for that protein, i.e., unified binding site (UBS).

Responding to computational errors. Structures which resulted in errors when submitted to a particu-
lar method were very uncommon, and most of the time reformatting the PDB file in some manner alleviated 
the issues (eg. the multiple residue conformation issue detailed in the AutoSite section below). Structures which 
produced errors for the various methods are provided below in Table 2. Notably, none of these structures were 
problematic with more than one method. Importantly, failures of 3n5k and 1su4 with Surfnet occur due to the 
algorithm attempting to generate an interaction array which is larger than a hard-coded threshold value. We 
opted to not edit the source code to fix this error.

Responding to empty prediction files. For all but two methods (Fpocket and Kalasanty), structures 
yielding no predicted pockets were an extremely rare occurrence (Table 3). Fpocket yielded no predicted pockets 
for 40 different structures (17 apo, 23 holo). Kalasanty yielded no predicted pockets for 198 different structures 
(93 apo, 105 holo). Yielding zero pockets resulted in a score of zero for precision, recall, F score, and MCC. These 
failures were double checked by-hand as single command-line submissions, to ensure no other issues were tak-
ing place.

Assessment metrics. Statistical tests (correlation  R2, t-tests, distribution analysis, and Wilcoxon rank-sum 
where appropriate) were completed using the software package  JMP62. Receiver Operator Characteristic (ROC) 
curves are a classic method for analysis of these types of data. However, it has been thoroughly discussed that 
analyzing ROC curves for performance of functional residue prediction can be highly  misleading42,63.

We have therefore chosen to assess methods utilizing metrics intended for binary classification events revolv-
ing around the four elements of the resulting confusion matrix: True Positives (TP), False Positives (FP), True 
Negatives (TN), and False Negatives (FN).

Figure 6.  (continued)
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The scoring of each algorithm’s site prediction follows: Any residue predicted to be part of the binding site 
which was present in our UBS definition was denoted TP. Any residue predicted to be part of the binding site 
which was not in our UBS definition was denoted FP. Any remaining residues in the USB definition not accounted 
for in an algorithm’s predicted binding site were denoted FN. All remaining residues (which were not predicted 
as part of the binding site and not part of our UBS definition) were denoted as TN. The total number of residues 
present in each individual structure was taken into account for these calculations, as different structures of the 
same protein will commonly have different numbers of terminal residues resolved.

Both precision (P) and recall (R) analyses, as well as Matthew’s Correlation Coefficients (MCCs), have proven 
to be useful in the assessment of prediction  methods13,25,64. As such, we use MCCs, as well as F scores, which 
are calculated from precision and recall (Eqs. 1–4), as metrics to represent the predictive power of the various 
methods.

Precision is value between 0 and 1 where 1 is a perfect score, representing the likelihood of a method’s predic-
tions to be correct. Recall is a value between 0 and 1 where 1 is a perfect score, representing what percentage of 
the true correct answer is represented by the true positives predicted by the algorithm. The F score is a value that 
represents the harmonic mean of precision and recall. In our analysis, F score values were presented instead of P 
or R values because they simplified the predictive power of a method into a single number for easier comparison 
between different methods or data types (holo vs. apo).

Precision and recall do not account for true negatives in any way and are thus blind to the relative ratio of 
possible answers that could be derived; in this case, this alludes to the size of the binding site in relation to the 
size of the protein. While going as far as rewarding methods for correct true negatives (metrics such as accuracy) 
would be disadvantageous to the purpose of this work, MCCs are a good medium where correct true negatives 
are not rewarded, and false positives are still punished albeit less severely. The MCC also has the advantage of 
being one stand-alone metric, where precision and recall need to be condensed to an F score to provide a single 
figure. Both P/R and MCCs have been used in LBS-prediction benchmarks in the past. We will present both F 
scores (representing P and R) as well as MCCs for a more robust analysis.

prediction method parameters. Depth is a geometric method based on the relationship between solvent 
accessible surface area and molecular  depth12,64. Molecular depth is defined as the distance between a molecule 
(as an average of the distances of all of its constituent atoms) and bulk solvent. In the case of binding-site pre-
diction, this is the depth of amino acid residues in the protein sequence from the bulk solvent outside of the 
globular protein. The unique characteristic of this method is its iterative solvation/resolvation technique used to 
determine what solvent is bulk solvent before the molecular depth calculations.

Depth was run with these conditions set in the parameters file: detection threshold of 0.8, cavity size of 4.2, 
resolvation cycles set to 5, solvent shell size of 4.2 Å, 25 depth cycles, minimum number of required solvent 
neighbors set to 4, ASA resolution of 92, ASA probe radius of 1.4 Å, and USE_MSA set to 1. A web version 
of DEPTH, as well as a download mirror for the software can be found at: https ://cospi .iiser pune.ac.in/depth /
htdoc s/intro .html.

Fpocket21 is a pocket detection method based on alpha spheres and Voronoi  tessellation21. Alpha spheres are 
spheres that contact four atoms and do not contain any atoms. Alpha spheres are constructed from the atom 
coordinates after calculation of Voronoi vertices, atomic neighbors and vertex neighbors. Two size-thresholds 
are used for classification and removal of the alpha spheres before an additional polarity classifier is assigned. 
The characterized alpha spheres are then subjected to a number of different clustering steps to receive putative 
pockets which are then ranked using the size and polarity classifiers of their contained alpha spheres.

Fpocket settings were left at their default values for pocket detection. The defaults are: minimum alpha-
sphere radius (3 Å), maximum alpha-sphere radius (6 Å), minimum apolar neighbors for apolar consideration 
(3), minimum a-sphere per pocket (30), maximum first cluster distance (1.73 Å), maximum distance for single 
linkage clustering (2.5 Å), minimum number of neighbors close to each other (3), maximum distance between 
two pockets’ barycenter (4.5 Å), minimum proportion of apolar spheres in a pocket (0), number of Monte-Carlo 
iterations for the calculation of pocket volume (2500). Information about Fpocket, as well as a download mirror, 
can be found at: https ://fpock et.sourc eforg e.net/.

Ghecom (grid-based HECOMi finder) utilizes spherical solvent probes in a new  way25. The Van der Waals 
surface of a protein is mapped using solvent probes of varying radii. Utilizing the resulting grid information from 
the differently sized probes, the algorithm then incorporates mathematical morphology to simplify the protein 

(1)MCC =
(TP ∗ TN)− (FP ∗ FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)P =
TP

TP + FP

(3)R =
TP

TP + FN

(4)F = 2 ∗
P ∗ R
P + R

https://cospi.iiserpune.ac.in/depth/htdocs/intro.html
https://cospi.iiserpune.ac.in/depth/htdocs/intro.html
https://fpocket.sourceforge.net/
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surface and volume representations by only using small probes to describe areas where larger probes cannot 
reach. Ghecom was shown to reproduce the Connolly volumes derived from other methods.

Ghecom was run with large probes (mode = ‘P’), and the top binding site was defined as cluster #1 in the 
output clustered PDB file. The web version of Ghecom, as well as a download mirror for the software can be 
found at: https ://strco mp.prote in.osaka -u.ac.jp/gheco m/.

LIGSITEcsc is an update of the original LIGSITE  method11,65. The  LIGSITEcsc algorithm is a grid-based method 
where the protein is represented by its Connolly surface. The algorithm then scans for surface-solvent-surface 
(SSS) events and classifies solvent points which participate in greater than a user-specified threshold of SSS events 
as part of a pocket. These pocket-classified solvent points are then clustered to obtain putative binding pockets. 
If enabled, the final algorithm feature then re-ranks the three largest pockets according to residue conservation 
scores derived from the ConSurf-HSSP  database66.

LIGSITEcsc was run with the number of pockets set to 1 (−n 1), using ‘−i’ to direct to input files through a 
wrapping script, with the rest of the parameters set to their default values (1 Å grid space, SSS event threshold set 
to 6, surface density 0.5). As pockets are provided as a centroid atom of the surface cluster, residues within an 8 Å 
sphere were back-calculated to represent the binding pocket. This protocol is derived from that of the  authors11. A 
web version of  LIGSITEcsc and a download mirror can be found at: https ://proje cts.biote c.tu-dresd en.de/pocke t/.

SURFNET is one of the earliest LBS-prediction methods, published in  199510,67. The algorithm grows spheres 
along the protein surface such that they reach a size where they touch two atoms on their edges and contain 
no other atoms. Overlapping spheres as well as spheres with a radius smaller than a user-established threshold 
are then discarded, and the remaining spheres are clustered into cavities. The resulting clustered cavity with the 
largest volume is assumed to be the putative binding site.

Gap files were generated with the following parameters (N, N, Y, 4.5) for: None map-format, SITE records Not 
required for mask region, and Yes to requiring neighboring atoms for mask region with a 4.5 Å cutoff (the same 
cutoff used for defining the binding sites from the original ligands). Binding site residues were then extracted 

Table 2.  PDBids for structures which resulted in system errors for the various LBS-prediction methods. Apo 
structures are denoted in orange, holo structures are denoted in blue.

Surfnet Ghecom Ligsite Fpocket Depth AutoSite Kalasanty

3n5k 4ey1 3o4g None None 1a16 None

1su4 1g7b 1ve6 1e3z

1tym 2hu7 1h2j

4ajz 2ogz 1e43

2hu5 1tgb

2vb9

Table 3.  PDBids for structures which resulted in no predicted pockets for the various LBS-prediction 
methods.

Method (data) Structures with no pockets

Ghecom (Apo) 1g7b,4ey1

Ghecom (Holo) 1tym,4ajz

Ligsite (Apo) 1ve6,3o4g

Ligsite (Holo) 2hu5,2hu7,2ogz

Fpocket (Apo) 1aki,1b2d,1g7b,1guj,1mi7,1rnu,1u1t,1uoj,1yy6,1zz6,2rh2,2vjz,3a93,3az5,3w3b,4bwo,4f4t

Fpocket (Holo) 1a7x,1b0d,1j4h,1our,1tym,1uzv,1zt9,2boj,2oly,2olz,2z3h,3dcq,3ipe,3qe8,4ajx,4ajz,4b4q,4b4r,4joj,4jor,4lkd,4tun,4tz8

Depth (Holo) 2olz

AutoSite (Apo) 1b2d,1n40,1vie,2vjz

AutoSite (Holo) 1uof,1vif,2oly,2rk2,3lb2,4ajz

Kalasanty (Apo)

1alv,1b2d,1bmz,1dq2,1ed8,1f41,1fz2,1fz7,1fz8,1g7b,1gmq,1gwg,1hfj,1ier,1ird,1l7l,1m47,1mi7,1mmi,1mso,1n1z,1nx
d,1ous,1oux,1pw9,1r13,1r14,1r7i,1sar,1tta,1u6j,1u94,1uoj,1w6l,1w8e,1yy6,1yze,2ajs,2cm3,2duo,2g4g,2gqv,2gt7,2i3u
,2i4e,2j46,2noy,2pol,2ptx,2rh2,2vjz,2wlc,2wld,2×88,2yf3,2yf4,2yf9,3a4d,3c95,3d5g,3d7p,3e8m,3enr,3exx,3f32,3gxm
,3kv7,3kx7,3o7s,3par,3q4j,3q6e,3rnt,3ssw,3vaf,3vag,3vaj,3wne,4b4p,4bwo,4clf,4ey1,4f4t,4i2g,4j0c,4k3s,4lse,4lsf,4lsh, 
4ovh,4usv,8rnt,9rnt

Kalasanty (Holo)

1alw,1eta,1ew8,1ew9,1fy5,1gic,1gmr,1i3h,1m49,1n20,1n22,1ona,1ovs,1rnt,1rsn,1tym,1uzv,1wav,1wpg,1wrp,1xgi,1xms,1
xvd,1xz3,1yvx,1zt9,2ajz,2boj,2bp6,2duq,2dur,2flm,2foj,2foo,2fop,2oly,2olz,2omg,2omi,2oz9,2r1x,2r1y,2r2b,2rk2,2roy,2sa
r,2wle,2wlf,2wlg,2wos,2yfd,2ys6,3bpc,3d1f,3d1g,3d5i,3dcq,3dh2,3eio,3f33,3f34,3f35,3f37,3f38,3hl8,3ikn,3ikp,3ikq,3ikr,3
imu,3iqf,3kw1,3paq,3qce,3qcf,3sy0,3t4y,3vq5,3vq8,3vqe,4ajx,4ajz,4akj,4b4q,4b4r,4bu4,4gcq,4hjt,4i87,4j0i,4k3m,4k3r,4l6
o,4lk7,4lkd,4lke,4lkf,4mjq,4mjr,4n94,4n97,4n9a,4usu,5cna,6rnt

https://strcomp.protein.osaka-u.ac.jp/ghecom/
https://projects.biotec.tu-dresden.de/pocket/
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from the generated gap files for each structure. SURFNET’s web portal can be found at https ://www.ebi.ac.uk/
thorn ton-srv/softw are/SURFN ET/.

AutoSite14,33 is an energy-based method which uses  AutoDock68 affinity maps computed with  AutoGrid469 
for three generic atom-type grids to identify binding  sites14. These maps are regularly spaced grids, and the 
three AutoDock generic atom types are hydrophobic (carbon, C), hydrogen-bond acceptor (oxygen, OA), and 
hydrogen-bond donor (hydrogen, HD). The computed affinity maps yield information about the sum of all 
interaction energies between each grid point and all receptor atoms in its local area. The algorithm then merges 
the three sets of high affinity points into a composite map by selecting the minimum value at each grid position. 
The resulting points are then clustered to find putative binding sites. Recent improvements help to merge closely 
spaced clusters into larger  pockets33.

AutoSite requires PDBQT format files, which are a proprietary file format for the AutoDock suite of tools. 
Before generating PDBQT files for the dataset, scripts were run to remove any multiple-occupancy resides from 
the initial biounit files (eg. ASER, BSER, where the two occupancies would sum to 1). The highest occupancy 
representation for each residue was kept. This process was necessary because the PDBQT file conversion process 
does not accommodate multiple occupancy residues well, and results in ATOM section lines with > 80 characters 
that are unreadable by any PDB parser.

The PDBQT files were then generated using Autodock 1.0 Tools. During the course of this project, AutoSite 
was updated. AutoSite 1.1 was run with default settings, and the top predicted binding site cluster was analyzed 
for each protein structure (XXXX_cl_1.pdb). Actual predicted binding site residues were back-calculated from 
these point clusters using a 4.5Å distance cutoff. The version of AutoSite 1.1 used here is part of AutoDockFR, 
which can be found at https ://adfr.scrip ps.edu/AutoD ockFR /downl oads.html A guide for preparing PDBQT files 
can be found at: https ://autod ock.scrip ps.edu/faqs-help/how-to/how-to-prepa re-a-recep tor-file-for-autod ock4.

Kalasanty is a machine-learning method which utilizes a 3D fully convolutional neural network which char-
acterizes protein binding pockets using physicochemical characteristics of protein atoms distributed across a 70 
Å cubic  grid46. The feature information used in their calculation describes: atom type, hybridization, number of 
bonds with other heavy atoms, number of bonds with other hetero atoms, encoding properties (hydrophobic, 
aromatic, acceptor, donor, and ring) of groups, and whether an atom belongs to a ligand or protein. These features 
are condensed into an 18-bit vectors for every grid cell of a 70 Å cubic grid with 2 Å spacing which is centered 
onto a protein. Kalasanty was trained on the majority of the sc-PDB60. The contents of the sc-PDB overlap with 
395 structures across 135 protein families in our dataset.

Kalasanty requires Mol2 format files for input, which were generated from our PDB files using  OpenBabel70. 
Their predict.py script was used to process all of our data. As this is a pre-trained machine-learning method, 
there are no parameters to change.

The prepublication version of Kalasanty was acquired from its Gitlab repository on 11/19/2019. The Git 
repository can be found here: https ://gitla b.com/chemi nfIBB /kalas anty.

Data availability
The dataset of PDB structures and UBS is available from the authors as the file LBSp_dataset.tar.gz at https ://
Bindi ngMOA D.org/Home/downl oad.
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