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Abstract
Microglia are prominent immune cells in the central nervous system (CNS) and are critical

players in both neurological development and homeostasis, and in neurological diseases when

dysfunctional. Our previous understanding of the phenotypes and functions of microglia has

been greatly extended by a dearth of recent investigations. Distinct genetically defined subsets

of microglia are now recognized to perform their own independent functions in specific condi-

tions. The molecular profiling of single microglial cells indicates extensively heterogeneous reac-

tions in different neurological disorders, resulting in multiple potentials for crosstalk with other

kinds of CNS cells such as astrocytes and neurons. In settings of neurological diseases it could

thus be prudent to establish effective cell-based therapies by targeting entire microglial net-

works. Notably, activated microglial depletion through genetic targeting or pharmacological

therapies within a suitable time window can stimulate replenishment of the CNS niche with

new microglia. Additionally, enforced repopulation through provision of replacement cells also

represents a potential means of exchanging dysfunctional with functional microglia. In each set-

ting the newly repopulated microglia might have the potential to resolve ongoing neuroinflam-

mation. In this review, we aim to summarize the most recent knowledge of microglia and to

highlight microglial depletion and subsequent repopulation as a promising cell replacement ther-

apy. Although glial cell replacement therapy is still in its infancy and future translational studies

are still required, the approach is scientifically sound and provides new optimism for managing

the neurotoxicity and neuroinflammation induced by activated microglia.
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1 | INTRODUCTION

Microglia are highly specialized and dynamic cellular components of

the central nervous system (CNS) originating from embryonic precur-

sors in the yolk sac, comprising approximately 10% of the total glial

cell number in the adult brain (Ginhoux et al., 2010; Labzin, Heneka, &

Latz, 2017; Li & Barres, 2017). Microglia have traditionally been con-

sidered to be in a resting and quiescent state in physiological condi-

tions. With the advent of elegant two/multiple photon microscopy

image techniques, genetic and molecular targeting tools, we now

appreciate that in normal conditions microglia have a ramified mor-

phology, are maintained by diverse signals from neurons and can con-

tinuously move their dendrites, which allows for constant active

screening of the surrounding microenvironment (Kierdorf & Prinz,

2017; Nimmerjahn, Kirchhoff, & Helmchen, 2005).

Microglia are long-lived cells with a relatively low turnover. By

genetically labeling microglia in pathogen-free mice it was recently

determined that microglia can survive during the whole lifespan of an

animal, and can thus exert crucial long-lasting influences on neurode-

generative disorders (Fuger et al., 2017). However, it is well†Xing-Mei Zhang and Robert A. Harris jointly supervised this work.
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documented that microglia can be self-regulated without contribution

from peripheral myeloid cells and their turnover is tightly controlled

by the coupling of apoptosis, with approximately 1% murine microglia

dying in 1 day and the whole population of cells renewing several

times throughout life (Askew et al., 2017; Tay et al., 2017). Although

significant species differences in microglial biology such as microglial

density were noted, this finding also concords with observations in

humans, a recent study highlighting that more than 96% of human

microglia can be slowly renewed throughout life (Reu et al., 2017).

Microglial cells are believed to play multifunctional roles in both

inflammatory and physiological contexts (Grabert et al., 2016; Thomp-

son & Tsirka, 2017). In the healthy brain microglia efficiently monitor

CNS homeostasis and have a marked impact on neural development.

In order to actively survey the CNS they have recently been demon-

strated to require the proper activity of tandem-pore domain

halothane-inhibited K+ channel 1, which is the main K+ channel

expressed in microglial cells (Madry et al., 2017). In several pathologi-

cal conditions such as epilepsy, single-cell RNA sequencing of hippo-

campal microglia indicated that microglia undergo dramatically

transcriptomic alterations (more than 2,000 differentially expressed

genes) and immunological activation during early time points, particu-

larly regarding mitochondrial activity and metabolic pathways (Bosco

et al., 2018). As such they play an indispensable role in the inflamma-

tory cascade. Some studies based on comprehensive single cell RNA

sequencing experiments have reported that microglia do not vary con-

siderably in the whole brain (Keren-Shaul et al., 2017; Matcovitch-

Natan et al., 2016). However, a recent study provides further novel

evidence that CD11b+ microglia in the circumventricular regions are

actually maintained in the activated state even during physiological

conditions (Takagi, Furube, Nakano, Morita, & Miyata, 2017). Micro-

glia in this specific region not only display the amoeboid morphology

rather than the ramified form, but also express high protein levels of

activation markers in the healthy mouse brain (Takagi et al., 2017).

This recent report is consistent with the view that while microglia

are uniformly distributed throughout the CNS they appear to perform

characteristic functions in specific regions (De Biase et al., 2017; Mar-

shall, Deleyrolle, Reynolds, Steindler, & Laywell, 2014). Indeed,

genome-wide transcriptional studies have reported that the bio-

energetic and immunoregulatory functions of microglia varied consid-

erably in different anatomical regions, evidenced by cerebellar and

cortical microglia displaying distinct gene expression profiles under

steady-state conditions (Grabert et al., 2016). More specifically, a

recent study provides convincing evidence of an epigenetic mecha-

nism involved in the clearance activity of microglia that differs region-

ally in the adult brain (Ayata et al., 2018). Variations in microglial

profiles may also depend on the specific diseases states (Mastroeni

et al., 2017), significantly altered transcripts having been reported in

the hippocampus of Alzheimer's disease (AD) and in the substantia

nigra of Parkinson's disease (PD), respectively (Mastroeni et al., 2017).

It is now well accepted that alterations in microglial activity and

dysregulated microglial-induced neuroinflammation have dual effects

on many neurological diseases (Du et al., 2017; Salter & Stevens, 2017).

Although the microglial field is intensively researched at present, less is

still known about how microglia can be precisely targeted for optimal

therapeutic efficacy. The concept of glial replacement therapy using

progenitors has recently been proposed (Cartier, Lewis, Zhang, & Rossi,

2014; Shen, Li, Bao, & Wang, 2017; Srivastava, Bulte, Walczak, &

Janowski, 2017). In this review we will introduce and discuss a new

experimental paradigm to specifically control the excessive activation

of microglia in vivo using fully differentiated and pre-activated cells,

and provide a rationale for its translation into clinical practice.

2 | MULTI-TASKING MICROGLIA: A FRIEND
FOR BRAIN HOMEOSTASIS

Microglia can perform diverse functions to maintain overall tissue integ-

rity during steady-state conditions (Colonna & Butovsky, 2017; Kabba

et al., 2017; Mosser, Baptista, Arnoux, & Audinat, 2017; Prinz, Erny, &

Hagemeyer, 2017). Indeed, a growing body of evidence convincingly

demonstrates that microglia are recognized for acting as “busy bees”

and maintain an expanding array of functions during both early brain

development and adult homeostasis (Figure 1). In particular, microglia

can secrete a broad range of protective neurotrophic substances such as

brain-derived neurotrophic factor (BDNF), vascular endothelial growth

factor, neuronal growth factor (NGF), insulin-like growth factor-1 (IGF-

1), platelet-derived growth factors and transforming growth factor-β

(TGF-β) (Butovsky et al., 2014; Parkhurst et al., 2013; Shibata & Suzuki,

2017; Wlodarczyk et al., 2017), thus ensuring appropriate neuronal net-

work development and maintenance as well as enhancing memory and

learning (Molteni & Rossetti, 2017; Parkhurst et al., 2013). There is a

widespread consensus that microglia are also in active intimate contact

with neighboring neuronal and non-neuronal cells, thereby regulating

neuronal proliferation, migration and differentiation and refining the

neural circuits (Frost & Schafer, 2016; Mosser et al., 2017).

In order to perform these above-mentioned functions a diverse

array of receptors including TAM receptors, glutamate receptors, and

purinergic receptors are used by microglia to efficiently communicate

with other cells (Fourgeaud et al., 2016; York, Bernier, & MacVicar,

2017). Among these complex systems the CX3CL1/CX3CR1 and

CD200-CD200R axes play key roles in microglia–neuron contact

(Eyo & Wu, 2013; Kierdorf & Prinz, 2017; Limatola & Ransohoff, 2014;

Mecca, Giambanco, Donato, & Arcuri, 2018). Indeed, the CX3CR1−/−

mouse exhibited profound alterations in both morphology and connec-

tivity of the mature newborn hippocampal granule neurons (Bolos et al.,

2017). The CD200−/− mouse exhibits an activated microglial phenotype

accompanied by high expression of CD11b and CD45 (Hoek et al.,

2000). Concurrently, microglia are critically involved in neural repair

through phagocytic scavenging, such as clearing dead tissues, ingesting

plaques, and apoptotic cells (Michell-Robinson et al., 2015).

Furthermore, microglia participate in synaptogenesis by producing

neurotrophic substances, such as BDNF, as well as eliminating excessive

presynaptic and postsynaptic elements through synaptic pruning via the

activation of the complement pathway (Masuda & Prinz, 2016;

Sominsky, De Luca, & Spencer, 2017; Stevens et al., 2007; Um, 2017).

In addition to the complement-mediated mechanism, astrocyte-derived

interleukin (IL)-33 is also physiologically required to maintain synapse

homeostasis by modulating microglial synapse engulfment (Vainchtein

et al., 2018). Microglia are involved in regulating and shaping both excit-

atory and inhibitory synapses, such as γ-aminobutyric acid-expressing
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and glycinergic synapses (Cantaut-Belarif et al., 2017; Um, 2017). Con-

versely, early evidence obtained from CX3CR1 gene-deleted mice indi-

cated that reduced numbers of microglial cells during brain development

could impair the processes of synaptic pruning, resulting in a significantly

higher density of dendritic spines and immature synapses (Paolicelli

et al., 2011; Shibata & Suzuki, 2017). During adult neurogenesis, micro-

glia actively contribute to regulate the dynamics, maintenance, and func-

tions of synapses of adult-born neurons (Reshef et al., 2017).

In addition to their well-described immunological roles, newly

emerging neurobiological functions of microglia are currently being rec-

ognized and studied. It has been recently determined that a subpopula-

tion of transiently activated microglia, identified in early postnatal white

matter region, can directly contribute to the maintenance of oligoden-

drocyte progenitor numbers and subsequent myelinogenesis in the

mouse, since a decreased oligodendrocyte progenitor number was

noted following injection of the selective colony-stimulating factor

1 receptor (CSF-1R) inhibitor BLZ945 that effectively depletes micro-

glia (Hagemeyer et al., 2017). Other recent observations provide evi-

dence that microglia actively regulate neurovascular homeostasis, such

as forming new blood vessels and the vascular branching of the retina

and hindbrain (Arcuri, Mecca, Bianchi, Giambanco, & Donato, 2017;

Brandenburg et al., 2016; Dudvarski Stankovic, Teodorczyk, Ploen,

Zipp, & Schmidt, 2016; Zhao, Eyo, Murugan, & Wu, 2018). In a histori-

cal perspective remarkable progress has been made in deciphering

many aspects of microglial biology. Further in vivo studies are still war-

ranted to characterize and explore the versatile features of microglia.

3 | THE ROLE OF MICROGLIA IN
NEUROLOGICAL DISEASES: FRIEND OR FOE?

Apart from beneficial roles in the development of CNS, microglia can

be widely involved in various types of neurological disorders, including

stroke (Guruswamy & ElAli, 2017; Kronenberg et al., 2017), multiple

sclerosis (MS) (Bogie, Stinissen, & Hendriks, 2014; Luo et al., 2017),

AD (Hansen, Hanson, & Sheng, 2017; Sarlus & Heneka, 2017), PD

(Subramaniam & Federoff, 2017), sleep disorders (Nadjar, Wigren, &

Tremblay, 2017), amyotrophic lateral sclerosis (ALS) (Geloso et al.,

2017; Liu & Wang, 2017), Huntington's disease (H. M. Yang, Yang,

Huang, Tang, & Guo, 2017), epilepsy (Eyo, Murugan, & Wu, 2017;

Zhao, Liao, et al., 2018), gliomas (Hambardzumyan, Gutmann, & Ket-

tenmann, 2016; Schiffer, Mellai, Bovio, & Annovazzi, 2017), Prion dis-

eases (Aguzzi & Zhu, 2017; Obst, Simon, Mancuso, & Gomez-Nicola,

2017), psychiatric disorders (Mondelli, Vernon, Turkheimer, Dazzan, &

Pariante, 2017; Prinz & Priller, 2014; Setiawan et al., 2018; Singhal &

Baune, 2017), neuropathic pain (Inoue & Tsuda, 2018; Peng et al.,

2016), adrenomyeloneuropathy (Gong et al., 2017), and traumatic

brain injury (Donat, Scott, Gentleman, & Sastre, 2017). In general,

microglia can be rapidly activated depending upon different stimula-

tory contexts and environmental changes through diverse molecular

and cellular programs, subsequently transforming into the activated

state and enhancing the expression of the Toll-like receptors which

sensitively bind microbial structures (Arcuri et al., 2017).

In addition to these morphological changes, activated microglia

can acquire an altered gene expression pattern toward functionally

distinct phenotypes. Once provoked, microglia produce pro-

inflammatory cytokines and chemokines, such as IL-1, IL-6, IL-23,

interferon gamma-γ (IFN-γ), CC chemokine ligand 2 (CCL2) and tumor

necrosis factor-α (TNF-α) (Natoli et al., 2017; Nicolas et al., 2017;

Smith, Das, Ray, & Banik, 2012), which are toxic to neighboring neu-

rons and other glial cells such as astrocytes and oligodendrocytes.

Nevertheless, activated microglia are more than simply destructive, it

being widely recognized that immunoregulatory microglia are required

for regulating brain repair and regeneration by secreting anti-

inflammatory factors, such as IL-4, IL-10, IL-13, and TGF-β (Cherry,

Olschowka, & O'Banion, 2014; X. Jin & Yamashita, 2016).

Despite that microglia are necessary for repairing the CNS in nor-

mal conditions, activated microglia suppress the processes of brain

repair by inhibiting the differentiation of oligodendrocyte precursor

cells into myelinating oligodendrocytes via distinct mechanisms

FIGURE 1 The multi-tasking microglia in the CNS. Microglia can perform diverse functions to maintain overall tissue integrity at steady-state

conditions including: Enhancing memory and learning, maintaining oligodendrocyte progenitors and contributing to the myelinogenesis, actively
screening the surroundings, involving in neural repair by phagocytic scavenging, remodeling the brain circuits through synaptic pruning and
neuronal plasticity, and sprouting vessels
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including heat shock protein 60 production, NO-dependent oxidative

damage and TNF-α signaling (Li, Zhang, et al., 2017; Pang et al., 2010).

Following pathological alterations, extracellular adenosine triphos-

phate, a source of energy metabolism, produced by dead and injured

neurons can in turn activate microglia via purinergic receptors (Liu &

Wang, 2017). Excessive activation of microglia can induce mitochon-

drial damage and decrease mitochondrial oxygen consumption

depending on the degree of their activity, thus influencing total brain

energy metabolism and exacerbating disease states (Ghosh, Castillo,

Frias, & Swanson, 2017). Activated microglia can also be viewed as a

major source of reactive oxidative stress through the release of reac-

tive oxygen species and reactive nitrogen species, which cause oxida-

tive damage to neurons and exacerbate the inflammatory cascade.

Moreover, excessively activated microglia have detrimental

effects on neurogenesis, contribute to neuronal death and aggravate

long-term neurological deficits by hindering axonal regeneration

(Kitayama, Ueno, Itakura, & Yamashita, 2011; Papageorgiou et al.,

2016; Rodriguez et al., 2017). In vivo, microglia may even have a func-

tional interaction with peripherally derived immune cells in the circula-

tion in healthy subjects (Kanegawa et al., 2016). A recent exciting

study has reported that activation of microglia plays a central role in

inducing neurotoxic reactive astrocytes through production of IL-1α,

TNF, and C1q. The reactive astrocytes induced by activated microglia,

termed A1, lose their homeostatic functions and consequently con-

tribute to the death of neurons and differentiated oligodendrocytes

(Liddelow et al., 2017). In addition, activated microglia have been

shown to inhibit anti-inflammatory TGF-β signaling by downregulating

TGF-β-regulated gene expression and this prolongs chronic microglial

dysfunction, partly through the NF-κB signaling pathway (Affram,

Mitchell, & Symes, 2017). In this way microglial cells may prevent a

return to normal homeostatic function. Conversely, if chronic inflam-

mation mediated by persistent dysfunction of microglia remains after

injury, this could lead to further extensive tissue damage, neuronal

loss and cognitive deficits (Donat et al., 2017). In summary, although

microglia are essential for the development and normal function of

the CNS, dysregulated microglia contribute to disease severity in vari-

ous neurological pathologies.

4 | SUBSETS OF MICROGLIA: MORE THAN
PRO-INFLAMMATORY AND
IMMUNOREGULATORY

Similar to macrophages in the periphery and other organs, microglia

exhibit differential activation states generally associated with pro-

inflammatory or immunoregulatory functions (Mecha, Carrillo-Salinas,

Feliu, Mestre, & Guaza, 2016). The former contribute to neuroinflam-

mation and neuronal injury through secretion of pro-inflammatory

and neurotoxic mediators, whereas the latter exert crucial influences

on tissue repair through production of anti-inflammatory cytokines

(Tang & Le, 2016). We have argued that it is functional states and not

in vitro induced surface marker expression phenotypes that should be

used to describe activated myeloid cells (Mills, Harris, & Ley, 2015),

and the classification of M1 and M2 functionally polarized states for

microglia is now considered less valid (Ransohoff, 2016). Despite this

conceptual development, at least nine subgroups of macrophage acti-

vation states based on transcriptome-based network analysis have

been proposed (Xue et al., 2014). It has been mostly ignored that

novel subpopulations of macrophages such as CD169+ macrophages

and T cell receptor positive (TCR+) macrophages may play different

roles during specific conditions (Chavez-Galan, Olleros, Vesin, & Gar-

cia, 2015).

We are beginning to recognize that activated microglia are also

quite plastic cells that may differentiate into a plethora of subsets and

perform various functions in response to different stimuli and environ-

mental changes such as obesity, diet, alcohol, and even the host

microbiota (Chunchai, Chattipakorn, & Chattipakorn, 2017; Erny et al.,

2015; Hanamsagar & Bilbo, 2017; Henriques et al., 2017; Johnson,

2015; Mathys et al., 2017; Menzel et al., 2017). In support of this, it

has recently been reported that microglia can even respond to micro-

bial challenges during embryogenesis, and that the absent status of a

microbiome has a quite different impact on both age- and sex-specific

microglial gene expression (Thion et al., 2017). Furthermore, emerging

data have indicated that mixed activation states are evident in later

active lesions of MS whereby the activated microglia did not express

purinergic receptor P2RY12, which is a novel and specific marker for

homeostatic microglia (Zrzavy et al., 2017). Microglial cells may also

display distinct activation patterns in the setting of AD, recently evi-

denced by different morphological properties between plaque-

associated and plaque-distinct microglia using three-dimensional cell

analysis in an AD animal model (Plescher et al., 2018).

Newly emerging phenotypes of microglia continue to be

described and investigated. Specifically, the existence of disease-

associated microglia during pathological states, for example in the

APP-PS1 mouse and the CX3CR1 knockout mouse, has been indi-

cated at the ultrastructural level by transmission electron microscopy

(Bisht, Sharma, Lecours, et al., 2016). Even though such disease-

associated microglia express microglial markers, such as CD11b, IBA1,

and TREM2, this specific subset of cells has been suggested to be

strikingly different from normal microglia since they exhibit signs of

oxidative stress and transpire to be phagocytically hyperactive with

highly ramified processes during pathological states. Such disease-

associated microglia can also cause abnormal interactions with synap-

ses and lead to cognitive decline and learning deficits (Bisht, Sharma,

Lacoste, & Tremblay, 2016; Bisht, Sharma, Lecours, et al., 2016). Inter-

estingly, another unique neonatal white matter-associated CD11c+

microglial subset has been described that specifically contributes to

myelination and neurogenesis during postnatal brain development by

producing neuroprotective IGF1. Although these repopulating

CD11c+ microglia were evident following genetic adult microglial

depletion using CX3CR1CreER iDTR mice, the newly repopulated

CD11c+ microglia did not exhibit a neurogenic gene expression profile

characteristic of the neonatal CD11c+ microglial subset (Bennett &

Barres, 2017; Wlodarczyk et al., 2017). Consistently, the same

research group also determined that CD11c+ microglia and CD11c−

microglia have different roles in the contexts of cuprizone-induced

demyelination, experimental autoimmune encephalomyelitis (EAE) and

neuromyelitis optica-like disease models (Wlodarczyk et al., 2015).

Moreover, another unique type of disease-associated microglia

has been discovered in AD mice (through using massively parallel
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single-cell RNA sequencing) that perform protective functions by

restricting progression in neurodegenerative diseases (Keren-Shaul

et al., 2017). TREM2 is a receptor for the activation of disease-

associated microglia and the TREM2 signaling pathway has been con-

sidered as a common microglial activation pathway in several neuro-

degenerative conditions and aging (Deczkowska et al., 2018;

Krasemann et al., 2017). Compared with normal microglia the disease-

associated microglia progressively increase lipid metabolism and

expression of phagocytic genes, and are specifically localized around

AD plaques, thereby engulfing neurotoxic proteins and protecting

against neurodegenerative diseases (Keren-Shaul et al., 2017). How-

ever, recent discoveries using unbiased weighted co-expression net-

work analysis have shed light on another distinct pro-inflammatory

subpopulation of disease-associated microglia in the context of AD

(Rangaraju et al., 2018).

Currently, it is still unknown whether other disease-associated

microglia subsets in different neurological disorders exist or not, or

indeed whether specific subtypes are common to several neurological

disease states. However, we are optimistic that further studies

employing comprehensive combined transcriptome, proteomic and

metabolomic approaches will define a wider spectrum of microglia

subsets in different neurological disorders and facilitate targeting

microglia with unprecedented precision (Haimon et al., 2018; Rangar-

aju et al., 2018). Thus further studies are warranted to characterize

the scope of intrinsic mechanisms of disease-associated microglia dur-

ing diverse disease conditions.

5 | DEPLETING MICROGLIA IN DISEASES:
THE FRIEND IN NEED MAY NOT ALWAYS BE
DESIRABLE INDEED

A novel CX3CR1CreER R26Confetti multiple reporter system has been

used to demonstrate that microglia can regulate their cell number by

clonally forming a cluster at the site of local injury (Madore, Baufeld, &

Butovsky, 2017; Tay et al., 2017). As described above, reactive micro-

glia can lead to tissue damage, exacerbate deleterious effects and

potentially contribute to neurodegeneration (Leyns & Holtzman,

2017). As it follows that microglia play a central role in many neuro-

logical disorders (Salter & Stevens, 2017; Wendeln et al., 2018), then

microglia-directed therapy, including specific microglia depletion strat-

egies, can be regarded as a promising immunotherapy for neurological

diseases (Du et al., 2017; Feng et al., 2017; Rice et al., 2015). In order

to specifically deplete microglia in an injured CNS, many approaches

including pharmacological inhibition (e.g. targeting the CSF-R1 recep-

tor with PLX5562) and genetic targeting have been developed

(Waisman, Ginhoux, Greter, & Bruttger, 2015), and we have previ-

ously reviewed the outcomes of these approaches (Han, Harris, &

Zhang, 2017; Lund, Pieber, & Harris, 2017).

In support of the hypothesis, microglial depletion has thus led to a

broad range of positive and neuroprotective outcomes in distinct dis-

ease conditions by reducing neuroinflammation (Table 1): ameliorating

EAE (Heppner et al., 2005; Lassmann & Bradl, 2017; Nissen, Thomp-

son, West, & Tsirka, 2018); enhancing remyelination in the cuprizone

demyelination model (Beckmann et al., 2018); attenuating neurological

abnormalities and brain edema in two stroke mouse models (Li, Li,

et al., 2017); reducing mRNA levels of proinflammatory cytokines such

as IL-1β and TNF-α induced by peripheral lipopolysaccharide injection

after microglial depletion (Xie et al., 2017); or acute binge ethanol

withdrawal with little negative effects on behavioral functions

(Walter & Crews, 2017). In one of our previous studies, we have indi-

cated that cranial irradiation can cause transient accumulation of

microglial cells followed by persistent inflammation and pronounced

expression of IL-1β and CCL2 in the hippocampus (Han et al., 2016).

Indeed, neuroinflammation induced by activated resident microglia as

well as infiltrating monocytes plays a pivotal role in hippocampal-

dependent severe cognitive dysfunction after both acute and long-

term irradiation (Feng et al., 2016) and microglial depletion can ame-

liorate these cranial radiation-induced cognitive deficits (Acharya

et al., 2016). Confirmed in another study, PLX5662-mediated deple-

tion can lead to protection from loss of dendritic spines, reduction of

CD11b+Ly6G−Ly6Chi monocytes in the blood, inhibition of monocyte

accumulation and ultimately prevention of radiation-induced cognitive

abnormalities (Feng et al., 2016). Furthermore, PLX5562 treatment

can also alleviate two different forms of Charcot–Marie–Tooth dis-

ease by reducing neuropathic features, axonal damage and promoting

hindlimb grip strength (Klein et al., 2015; Scherer, 2015). One more

study showed that microglial depletion by PLX5562 treatment pre-

vented the symptom of catatonia in structural myelin protein Cnp−/−

mouse by reducing neuroinflammation and neurodegeneration

(Janova et al., 2017).

Eliminating microglia in AD mice also provided beneficial outcomes

including reduced neuronal loss, improvement of memory functions

and partially preventing the progression of AD pathology, but had little

effects on amyloid levels and plaque loads (Asai et al., 2015; Dagher

et al., 2015; Olmos-Alonso et al., 2016; Spangenberg et al., 2016). One

recent study has indicated that microglial depletion in the CX3CR1CreER

DTR transgenic mouse can lead to enlargement of Aβ plaques and may

cause extensive neurite damage (Zhao, Hu, Tsai, Li, & Gan, 2017). How-

ever, early long-term pharmacologically microglial depletion could

finally inhibit plaque deposition and amyloid formation in the 5XFAD

mouse model of AD, together with a relatively low level of soluble

fibrillar oligomers in the brain (Sosna et al., 2018). Furthermore, the

administration of GW2580 (tyrosine kinase inhibitor) orally can regulate

inflammation of both the CNS and peripheral nervous systems in the

ALS animal model, attenuating motoneuronal cell death, slowing dis-

ease progression and extending life expectancy (Martinez-Muriana

et al., 2016). However, this has not been confirmed in other studies

using different approaches to deplete microglia (Gowing et al., 2008;

Spiller et al., 2018). A beneficial outcome of microglial depletion is also

evident in neuropathic pain by reducing the expression of pro-

inflammatory cytokines (Lee, Shi, Fan, West, & Zhang, 2018), which

was also confirmed in another study (Wang, Mao, Wu, & Wang, 2018).

Despite this intensive research, microglia depletion as a treatment

paradigm is still in its infancy. It is also of importance to note the dif-

ferences of microglia activation in different types of disease pro-

cesses. The findings mentioned above have to be interpreted with

caution until we are sufficiently knowledgeable. On the basis of the

above results, some critical issues need further investigation. For

example, microglial elimination has been shown to exacerbate brain
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neurotoxicity in the contexts of brain ischemia, PD and coronavirus

encephalitis (Jin et al., 2017; Szalay et al., 2016; Wheeler, Sariol,

Meyerholz, & Perlman, 2018; Yang et al., 2018). Most microglial

depletion studies have been performed using CSF-1R inhibitors sev-

eral weeks before inducing the animal disease models. However, it is

more reasonable from a clinical perspective to deplete the activated

microglial cells after disease onset. Furthermore, current research find-

ings employing CSF-1R kinase inhibitors (including PLX3397, PLX5562,

GW2580, and BLZ945) might target multiple cell populations other

than microglia (e.g. meningeal, perivascular and choroid plexus

macrophages and microglial progenitor cells) (Yang et al., 2018). Cau-

tious interpretation of pure microglial depletion effects using systemic

delivery of current available CSF-1R inhibitors is thus warranted.

Indeed, recent studies have reported that CSF-1R inhibition can deplete

IBA+ macrophages in the kidney (Chalmers et al., 2017). In addition,

CSF-1R inhibition can robustly decline the actions of nerve-associated

macrophages in the periphery (Klein et al., 2015). However, several

studies have identified some potential markers that are exclusively

expressed in microglia including Tmem119, P2RY12, Siglec-H and Sal1,

permitting distinction of resident microglia from other myeloid cells

TABLE 1 The outcomes and physiological effects of microglial depletion in different disease conditions

Depletion ways Disease conditions Outcomes Physiological effects References

CD11b-HSVTK EAE (MS) Beneficial Ameliorates clinical manifestations and reduces
infiltrating cells

Heppner et al. (2005)

PLX5622 EAE (MS) Beneficial Improves mobility by increasing mature
oligodendrocytes

Nissen et al. (2018)

BLZ945 Cuprizone model (MS) Beneficial Enhances remyelination in the striatum and cortex Beckmann et al. (2018)

PLX3397 Intracerebral hemorrhage Beneficial Attenuates neurological abnormalities and brain
edema

Li, Li, et al. (2017)

PLX5622 Charcot–Marie-tooth Beneficial Improves axonal integrity and muscle weakness Klein et al. (2015)

PLX3397 AD Beneficial Improves the spatial and emotional memory deficits Sosna et al. (2018)

GW2580 AD Beneficial Prevents the progression of AD pathology Olmos-Alonso
et al. (2016)

PLX5622 AD Beneficial Improves the hippocampal-dependent tasks Dagher et al. (2015)

PLX3397 AD Beneficial Improves contextual memory deficits but not Aβ
pathology

Spangenberg et al. (2016)

CX3CR1CreDTR AD Not clear Leads to enlargement of Aβ plaques but not number
of plaques

Zhao et al. (2017)

PLX3397 AD Beneficial Inhibits the propagation of tau and reduces the
excitability

Asai et al. (2015)

GW2580 ALS Beneficial Attenuates motor neuron cell death and extends life
expectancy

Martinez-Muriana
et al. (2016)

CD11b-HSVTKmt ALS No effect Has little effect on motor neuron degeneration and
reflex scores

Gowing et al. (2008)

PLX3397 ALS Harmful Reduces evoked compound muscle action potentials Spiller et al. (2018)

PLX5622 AUD Beneficial Enhances induction of anti-inflammatory genes Walter et al. (2017)

PLX5622 Catatonia Beneficial Alleviates catatonic signs and reduces white matter
inflammation

Janova et al. (2017)

PLX5622 Radiation-induced memory
deficits

Beneficial Prevents memory deficits by inhibiting monocyte
accumulation

Feng et al. (2016)

PLX5622 Radiation-induced memory
deficits

Beneficial Attenuates microglial activation in the irradiated
hippocampus and ameliorates radiation-induced
cognitive deficits

Acharya et al. (2016)

PLX5622 Neuropathic pain Beneficial Alleviates both mechanical and cold allodynia Lee et al. (2018)

LEC Neuropathic pain Beneficial Reduces initiation rather not maintenance of
neuropathic pain

Wang et al. (2018)

PLX3397 Neuronal injury Beneficial Improves recovery by modulating inflammatory
signals

Rice et al. (2015)

PLX5622 POCD Beneficial Reduces hippocampal pro-inflammatory cytokines
and inhibits CCR2-expressing cells infiltration

Feng et al. (2017)

PLX3397 Cerebral ischemia Harmful Promotes leukocyte infiltration and exacerbates brain
infarction

Jin et al. (2017)

PLX3397 Cerebral ischemia Harmful Causes neuronal death and increases infarct size Szalay et al. (2016)

PLX3397 PD Harmful Increases MPTP neurotoxicity and augments
neurodeficits

Yang et al. (2018)

PLX5622 Coronavirus encephalitis Harmful Delays virus clearance and promotes immune cells
infiltration

Wheeler et al. (2018)

AUD = Alcohol use disorder; MS = Multiple sclerosis; EAE = experimental autoimmune encephalomyelitis; AD = Alzheimer's disease; ALS = Amyotrophic
lateral sclerosis; PD = Parkinson's disease; MPTP = 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; TDP43 = TAR DNA-binding protein 43; LEC =
Liposome-encapsulated clodronate; POCD = Postoperative cognitive decline.
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(Bennett et al., 2016; Butovsky et al., 2014; Buttgereit et al., 2016;

Konishi et al., 2017). These markers, together with the Cre/loxP tech-

nology, may make it possible to deplete microglia with exquisite preci-

sion in the near future.

Last but not the least, the potential side-effects of microglial

depletion is another crucial aspect to be considered. Under non-sterile

conditions the depletion of microglia might induce at least a transient

immunodeficiency that could be harmful both with respect to CNS

infection and also in disrupting normal CNS homeostatic functionality

in unaffected brain areas. Indeed, the removal of immunomodulatory

microglia producing and responding to TGF-β could be expected to be

a traumatic event in itself. The selective replacement of dysfunctional

or aberrantly activated microglia in affected areas would thus be the

most efficient approach. Most studies have indicated that no obvious

behavioral consequences in adult mice following microglial depletion,

despite extensive neuronal loss in the brain (Dagher et al., 2015;

Elmore, Lee, West, & Green, 2015; Elmore et al., 2014; Rice et al.,

2017). Microglial depletion in the adult wide-type C57BL/6 mouse

does not influence BDNF expression, the response of astrocytes and

leukocyte infiltration in the experimental setting of PD (Yang et al.,

2018). By contrast, neonatal microglial depletion during early life using

pharmacological strategies can have a persistent impact on related

motivated behavioral domains during adulthood (Nelson & Lenz,

2017). Furthermore, new tools to specifically deplete microglia by uti-

lizing genetic approaches are in great demand. In a recent study, we

have indicated that microglia can be efficiently depleted through the

administration of tamoxifen in both CX3CR1CreER DTA and

CX3CR1CreER DTR transgenic mice (Figure 2a) (Lund et al., 2018). This

system thus allows for depletion of microglia at different disease

stages by controlling the timing of tamoxifen provision.

6 | MICROGLIAL REPOPULATION
RESOLVES NEUROINFLAMMATION:
NEW CELLS, NEW FRIENDS

Basic and clinical research demonstrates that suppressing the immune

response by depleting autoreactive immune cells may re-establish the

immune balance (Wraith, 2017). Taking MS for example, monoclonal

antibodies (including Rituximab and Ocrelizumab) that selectively tar-

get and deplete CD20+ B cells have been approved for the treatment

of MS (Greenfield & Hauser, 2017; Hauser et al., 2017; Sabatino,

Zamvil, & Hauser, 2018; Salzer et al., 2016). Our colleagues have dem-

onstrated that relapsing–remitting MS patients with Rituximab as the

initial treatment have better relapse control and tolerability in compar-

ison with other disease-modifying drugs (Granqvist et al., 2018; Spel-

man, Frisell, Piehl, & Hillert, 2017). Available MS treatments mainly

resolve the peripheral inflammation but further specific and effective

cell-depletion therapies still represent a highly unmet medical need,

especially in chronic disease states.

Due to the self-renewal ability of microglia, following microglial

depletion by pharmacological therapies or genetic targeting the empty

CNS niche can be entirely repopulated within a relatively short period

without serious side-effects (Elmore et al., 2015; Han et al., 2017;

Varvel et al., 2012). In a previous pioneering study, Elmore and

colleagues indicated that rapid repopulation of microglial cells can be

noted after administration of the selective CSF-1R inhibitor PLX3397

(Elmore et al., 2014). They claimed that following cessation of

PLX3397 treatment the newly repopulated cells did not arise from

bone marrow-derived cells, but instead from local nestin+ microglial

progenitor cells in the brain parenchyma (Figure 2b) (Elmore et al.,

2014). However, Bruttger et al demonstrated that following partial

depletion (80%) in the CX3CR1CreER iDTR mouse, microglia proliferate

by themselves rather than from nestin+ microglial progenitor cells to

finally refill the niche (Figure 2d) (Bruttger et al., 2015; Jakel & Dimou,

2017). This mechanism has received further support (Askew et al.,

2017) including using elegant fate-mapping approaches, single-cell

RNA sequencing and parabiosis (Huang, Xu, Xiong, Sun, et al., 2018).

The recruitment of circulating precursors does not contribute to

the resident microglial pool in the healthy CNS (Ajami, Bennett, Krie-

ger, McNagny, & Rossi, 2011; Mildner et al., 2007). However, contra-

dictory findings have been reported by using the CD11b-HSVTK

transgenic mouse in which circulating monocytes have the ability to

potentially replace the adult CNS myeloid niche after microglial deple-

tion (Figure 2c) (Varvel et al., 2012) and the newly engrafted periph-

eral cells have a unique functional phenotype compared with resident

microglia (Cronk et al., 2018).

By contrast, two repopulating origins following microglial deple-

tion in the retina have been described (Huang, Xu, Xiong, Qin, et al.,

2018). One is the resident central-emerging microglia in the optic

nerve and the other is the extra-retinal periphery-emerging microglia

from the ciliary body/iris (Huang, Xu, Xiong, Qin, et al., 2018). Two

distinct resources including peripheral macrophages could also con-

tribute to robust microglial regeneration independently of irradiation

(Cronk et al., 2018). However, intrinsic regulatory mechanisms that

mediate the replacement of microglia-like cells after selective deple-

tion are not yet fully understood.

One recent study provided novel evidence that CX3CR1 signaling

may actively regulate microglial compensation in the retina since

CX3CR1−/− deficient mice had significantly lower numbers of repopu-

lated microglial during early recovery when compared to CX3CR1

signaling-sufficient mice (Zhang et al., 2018). Furthermore, we have

recently demonstrated that CNS repopulated monocytes required

TGF-β signaling to colonize the functional microglial niche following

microglia depletion in the CX3CR1CreER DTA transgenic mouse model

(Figure 2a) (Lund et al., 2018). Specific TGF-β signaling deficiency on

the new microglia-like cells led to development of progressive motor

disease similar to ALS-like symptoms (Lund et al., 2018).

In this context, the next critical question is whether the newly

engrafted microglia-like cells including local hyperproliferation and/or

bone marrow-derived cells could completely adapt the embryonically

seeded microglial phenotypes and functions. Even though they are

numerically and morphologically different from embryonically seeded

microglia, the newly repopulated cells can still perform the same general

functions as resident microglia including constantly surveying the micro-

environment and appropriately responding to the acute events (Varvel

et al., 2012; Zhang et al., 2018). Additionally, embryonically seeded

microglia and the newly repopulated cells may respond differently to

environmental stimuli, as evidenced by two distinct cell types showing

differential motilities in response to laser burn injury in vivo (Cronk
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et al., 2018). Using RNA sequencing it was determined that the gene

profiles of fully repopulated microglia had been little influenced by

administration of PLX5622 because no inflammatory related genes were

up-regulated or down-regulated during depletion and repopulation pro-

cesses (Huang, Xu, Xiong, Qin, et al., 2018). Consistent with this idea,

Elmore and colleagues determined that repopulated microglia have rela-

tively larger cell bodies than do resident microglia. These two types of

microglial cells shared the same level of mRNA gene expression as well

as similar responses to lipopolysaccharide stimulation (Elmore et al.,

2015). Furthermore, mice with repopulated microglia did not exhibit any

cognitive or behavioral abnormalities (Elmore et al., 2015).

More interestingly, the same research group further reported that

repopulated microglia have the ability to largely resolve the pro-

inflammatory response and promote functional recovery after brain

damage by replacing the active and highly swollen microglia with nor-

mal ramified microglia, downregulating the expression of reactive

microglial markers and reducing the levels of inflammatory-related

genes (Rice et al., 2017). Furthermore, peripherally derived microglia-

like cells remained transcriptionally and functionally distinct from

microglia arising through local proliferation (Cronk et al., 2018). Fur-

ther evaluations are needed to confirm if overall brain function can be

affected by mixed engrafted microglia-like cells during diverse neuro-

logical disease models.

7 | ENFORCED MICROGLIAL
REPOPULATION: A NEW PROSPECT FOR
FIXING A DYSFUNCTIONAL NICHE

So microglial depletion can lead to natural repopulation of the empty

niche through either (a) hyperproliferation of remaining microglia,

(b) stimulation of microglial precursors, or (c) infiltrating of monocytes

FIGURE 2 Microglial depletion and repopulation by different approaches. (a) Microglia can be efficiently depleted by the administration of

tamoxifen in CX3CR1CreER DTA transgenic mouse. TGF-β signaling is required for the peripheral myeloid cells invading the brain to colonize the
functional microglial niche. (b) The nestin+ repopulated cells are transiently expressed after microglia depletion by CSF-1R inhibitor. Newly
repopulated microglia origin from resident microglial pool in the CNS rather than nestin+ progenitor cells as well as circulating monocytes.
(c) Circulating monocytes, which markedly expressed CD45 and CCR2, can replace the adult CNS myeloid niche after microglial depletion in
CD11b-HSVTK transgenic mouse. (d) Resident microglia proliferation mediated by IL-1R signaling can refill the microglial niche after partial
depletion in CX3CR1CreER iDTR transgenic mouse
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from the circulation. An interesting aspect of myeloid cell repopulation

with peripheral monocytes is that transcriptomic analyses reveal dif-

ferent outcomes in different tissues (Guilliams & Scott, 2017). Mono-

cytes can thus replace Kupffer cells in the liver (Scott et al., 2016) and

alveolar macrophages in the lung (van de Laar et al., 2016) with almost

identical cellular phenotypes, while in the CNS bone marrow

monocyte-derived microglia only become microglia-like cells, retaining

more than 2,000 differentially expressed genes compared to resident

microglia (Cronk et al., 2018). It is currently unknown why the CNS

should differ in this respect to other tissues, but indicates that envi-

ronmental cues must be tissue-specific and of varied instructional

consequence in different tissues (Bennett et al., 2018). It is also appar-

ent that the repopulation process is tightly regulated, cells only occu-

pying available tissue niches and the repopulation process (through

either surviving microglia proliferation or monocyte infiltration) being

halted through as yet undetermined mechanisms once the tissue is

full. In certain studies an “overshoot” of repopulating cell numbers

appears to be adjusted through selective loss of cells so that a homeo-

static numerical occupancy is achieved. The important concept herein

is that myeloid cell niches can be both efficiently depleted of resident

cells and that repopulating cells can occupy the available niche with

partial or total restoration of normal homeostatic functionality.

Microglial repopulation can arise from either bone marrow-

derived elements or local self-renewal proliferation to replenish the

empty niche in the CNS, which can be therapeutically targeted (Varvel

et al., 2012; Waisman et al., 2015). It is also important to note that the

therapeutic outcomes of the newly derived microglia can be funda-

mentally different during these two processes, as evidenced by recent

data indicating that bone marrow-derived microglia are functionally

distinct from yolk sac-derived microglia (Cronk et al., 2018). It follows

that there might be specific advantages depending on the disease

state. For example, if microglia are genetically dysfunctional, then self-

proliferation following depletion will not help. If the dysfunction

extends to all myeloid cells (e.g. TREM2 in Nasu-Hakola disease, ALS,

and X-linked adrenoleukodystrophy) then even repopulation by infil-

trating monocytes will also not be beneficial. As monocyte-derived

repopulating cells would have a potentially different response to sys-

temic stimuli compared to normal repopulating microglia, this is also

an issue to contemplate. In contrast, it has been shown that bone

marrow-derived cells are much more efficient in clearing amyloid beta

deposits compared to their endogenous counterparts (Kawanishi

et al., 2018; Simard, Soulet, Gowing, Julien, & Rivest, 2006) and so

monocyte repopulation would potentially be more efficient in AD.

A final scenario is enforced repopulation of pre-defined myeloid

cell through adoptive transfer. Natural microglia are excluded from

this scenario, but blood-derived monocytes or bone marrow-derived

macrophages, either unactivated, pre-activated or genetically modi-

fied, have potential, as do stem cell-derived myeloid cells. In order to

successfully generate a sufficient source of renewable microglia-like

cells, several different protocols using cultured human inducible plu-

ripotent stem cells (hiPSCs) have been recently established (Abud

et al., 2017; Pocock & Piers, 2018). Specifically, hiPSCs are cultured

with neuroglia differentiation media by supplement of CSF1 and IL-34

to differentiate into Tmem119+/P2RY12+ microglia-like cells that per-

form phagocytic functions (Muffat et al., 2016). Another well-

characterized method has been used to differentiate human and

murine hiPSCs into microglia-like cells through a hematopoietic

progenitor-like intermediate stage by adding defined factors and then

co-culturing with astrocytes (Pandya et al., 2017). A recently devel-

oped protocol for the derivation of microglia-like cells from human

monocytes could be the adoptive cell of most practical and functional

relevance (Sellgren et al., 2017).

Considering that we have demonstrated the beneficial action of

adoptively transferred immunomodulatory macrophages to prevent

pathogenesis in settings of both Type 1 Diabetes (Parsa et al., 2012)

and EAE (Zhang, Lund, Mia, Parsa, & Harris, 2014) and that other

FIGURE 3 Potential scheme of microglial replacement therapy. (a) Activated microglia can be harmful to neurons at inflammatory conditions.

(b) Selective ablation of microglia within suitable time window may reduce their deleterious effects. (c) Enforced repopulation through adoptively
transferring nonactivated microglia or pre-activated microglia with the desired activation phenotype (either stimulated or gene-modified) can
replenish the empty niche in the CNS. (d) The newly engrafted microglia can perform the normal functions and maintain overall tissue integrity
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researchers have consequently successfully therapeutically employed

our protocol in settings of spinal cord injury (Ma et al., 2015) and in

wound healing (Riabov et al., 2017) then conceptually an initial trans-

fer of immunomodulatory macrophages (either stimulated or gene-

modified) to halt the neuroinflammatory process could then be fol-

lowed by transfer of microglia-like cells. These approaches may pro-

vide a potential novel therapeutic angle for a wide array of

neurological disorders and we currently actively explore this potential.

We thus propose that an immunotherapy protocol comprising

total microglial ablation followed by the immediate enforced repopula-

tion of the available niche through the adoptive transfer of myeloid

cells could be considered as a means of replacing dysfunctional micro-

glia in neurodegenerative states such as ALS and AD (Figure 3).

8 | CONCLUDING REMARKS

Enforced microglia depletion and repopulation with fully differenti-

ated cells, termed microglia-replacement therapy, has great potential

as an intervention in many neurological disease states. Optimization

of timing between depletion and repopulation, long-term effects on

CNS homeostasis and long-term therapeutic efficacy in preclinical

models will provide a solid rationale for clinical translation.
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