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1 |  BACKGROUND

Hepatocellular carcinoma (HCC) is the most common type 
of primary liver cancer, the sixth most common cancer in the 
world, and the second leading cause of cancer deaths world-
wide.1 It is estimated that more than 700 000 people die of this 
cancer every year.2 It is the most common malignant tumor 
in China and the leading cause of cancer deaths among men.3 

Hepatitis B virus, hepatitis C virus, and alcohol abuse are the 
main causes of HCC.4 Liver resection and liver transplantation 
are effective methods for the treatment of liver cancer. However, 
since most patients are diagnosed at an advanced stage, only 
15% of patients are candidates for surgery, and the 5-year sur-
vival rate of potentially curative surgery is only approximately 
33%–50%.5 Therefore, we need a deeper understanding of the 
molecular-level mechanisms causing HCC.
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Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is ex-
tremely harmful to human health. In recent years, N6-methyladenosine (m6A) RNA 
methylation in eukaryotic mRNA has been increasingly implicated in cancer pathogen-
esis and prognosis. In this study, we downloaded the expression profile and clinical infor-
mation of 307 patients from The Cancer Genome Atlas database and 64 patients from the 
Gene Expression Omnibus (GEO) database, and univariate Cox analysis revealed that 
METTL14 was a prognostic m6A RNA methylation regulator. For further study on the 
related genes of METTL14, weighted gene co-expression network analysis was used to 
find the relationship between METTL14 and gene expression, and univariate Cox analy-
sis and least absolute shrinkage and selection operator (LASSO) methods were used to 
identify hub genes that may be associated with HCC prognosis. The results indicated that 
cysteine sulfinic acid decarboxylase, glutamic-oxaloacetic transaminase 2, and suppres-
sor of cytokine signaling 2 were key genes affecting the prognosis of HCC patients, and 
m6A methylation of these mRNAs may be regulated by METTL14. Finally, a nomogram 
was constructed based on the hub gene expression levels, and its prediction accuracy 
and discriminative ability were measured by the C-index and a calibration curve. In con-
clusion, METTL14, an m6A RNA methylation regulator, may participate in the malig-
nant progression of HCC by adjusting the m6A of cysteine sulfinic acid decarboxylase, 
glutamic-oxaloacetic transaminase 2, and suppressor of cytokine signaling 2, and these 
genes are useful for prognostic stratification and treatment strategy development.
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N6-methyladenosine (m6A) is the most abundant inter-
nal modification of mRNA and long noncoding RNA in 
most eukaryotes.6 N6-methyladenosine plays an important 
role in regulating mRNA splicing, translation, and stability.7 
It is methylated on the sixth position of N on adenosine, 
mainly in the CDS region and 3′ untranslated regions re-
gion of the mRNA, affecting mRNA stability, translation 
efficiency, variable splicing, and localization. m6A mainly 
modifies the RNA structure by dynamic regulation of 
"writers" (methyltransferase), "erasers" (demethylase), and 
"readers" (m6A-binding proteins that recognize and bind to 
the m6A site on mRNA).8 In "writers" of m6A RNA meth-
ylation regulators, studies have shown that methyltransfer-
ase like 3 (METTL3) (RNA demethylase 3) and METTL14 
(RNA demethylase 14) have 43% identity and are homo-
logues.9 In recent years, it has been found that METTL3 can 
maintain myeloid leukemia through m6A-dependent trans-
lational control10 and plays an important role in promoting 
the translation of the human lung cancer gene.11 As a homo-
logue of METTL3, studies have also shown that METTL14 
can positively regulate the primary microRNA 126 process 
in an m6A-dependent manner to inhibit the metastatic po-
tential of HCC.12 These studies have shown that m6A plays 
an important role in the development of tumors.

In this study, we downloaded the expression profiles and 
clinical data of The Cancer Genome Atlas (TCGA)-LICH 
and GSE11 6174. By using univariate Cox analysis meth-
ods, we identified prognostic m6A RNA methylation regu-
lators. Furthermore, we determined hub genes that may be 
regulated by m6A RNA methylation regulators and are as-
sociated with HCC prognosis by constructing co-expression 
network analysis (WGCNA) and lasso regression analysis 
(least absolute shrinkage and selection operator [LASSO]); 
then, based on the combination of selected hub genes, risk-
score models were constructed to evaluate their prognostic 
applications in HCC. Our results suggest this 3-gene signa-
ture and nomogram might help effectively predict the over-
all survival (OS) of HCC patients. The close relationship 
between these hub genes and m6A RNA methylation regu-
lators can also provide new ideas for HCC research.

2 |  PATIENTS AND METHODS

2.1 | Data collection

The mRNA expression data and corresponding clinical infor-
mation of patients with HCC were obtained from TCGA cohort 
and the Gene Expression Omnibus (GEO). This study included 
the expression profiles of 307 patients with complete follow-up 
data in the TCGA database and 64 samples from the GSE11 
6174 dataset. The TCGAbiolinks package and GEOquery 
package were used to download the TCGA and GEO data.13,14

2.2 | Identification of prognostic m6A RNA 
methylation regulators

In this study, we included many m6A methylation regulators, 
such as “writers”: METTL3, METTL14, WT1-associated 
protein, KIAA1429 (also known as VIRMA), RNA-binding 
motif 15 (RBM15), and zinc finger CCCH domain-contain-
ing protein 13 (ZC3H13); “readers”: YTH domain-containing 
1 (YTHDC1), YTH domain-containing 1 (YTHDC2), YTH 
m6A RNA-binding protein 1 (YTHDF1), YTH m6A RNA-
binding protein 2 (YTHDF2), and heterogeneous nuclear 
ribonucleoprotein C (HNRNPC); and “erasers”: fat mass- 
and obesity-associated protein (FTO) and α-ketoglutarate-
dependent dioxygenase alkB homolog 5 (ALKBH5). To 
investigate the differential expression of m6A RNA meth-
ylation regulators in tumors and normal tissues, we analyzed 
the mRNA expression profile of TCGA-liver hepatocellular 
carcinoma (including 48 normal samples and 307 tumor sam-
ples). Cluster analysis was performed on m6A RNA methyla-
tion regulators, and heatmaps and violin maps were presented 
to show differences. The pheatmap R package and the vioplot 
R package were used for drawing the plots. Furthermore, for 
the TCGA data, we used univariate Cox analysis to identify 
m6A-related genes associated with HCC prognosis and fur-
ther validated them using GSE11 6174 data (m6A regula-
tory genes with a P value <.05 were considered statistically 
significant).

2.3 | Co-expression network construction and 
identification of clinically significant modules

The co-expression network was constructed by the “WGCNA” 
package in R.15 In the TCGA set, genes with variances greater 
than all variance quartiles were selected, and those genes with 
larger variances and larger mean variations in different samples 
were considered. The expression data profile of the selected 
genes was qualified, and the samples were clustered to detect 
outliers. Gene clustering modules were identified based on the 
clinical features (including the expression of the m6A regulatory 
genes that we selected before) and topological overlap matrix-
based dissimilarity.16 Then, the correlations between module 
eigengenes and clinical traits were calculated to identify the 
relevant modules. Highly relevant modules were considered 
significant.

2.4 | Identification of hub-genes and risk-
score model construction

Next, we selected modules of interest in which the genes in 
the modules were defined to be highly correlated with cer-
tain clinical features. Next, we used univariate Cox analysis to 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
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screen for genes that were significantly associated with prog-
nosis in the module (P  <  .001 was considered significant), 
and LASSO was used for further analyses. ClusterProfiler 
R package was used for Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses of screened genes, and P  <  .05 was considered 
a statistically significant difference. The TCGA samples 
were randomly divided into two groups: 154 samples were 
tested internally, and 153 samples were internally verified. 

Expression of METTL14 and the other clinicopathological 
variables was not statistically significantly different between 
the two groups. In the internal training set (n = 154), LASSO 
regression was used to screen for HCC prognosis-related 
genes based on lambda.min (the lambda corresponding to 
the smallest mean error), and the hub genes were selected. 
Lasso was analyzed with the "glmnet" package in R. The hub 
gene expression values weighted by the coefficients from the 
LASSO regression generated a risk score for each patient. The 

F I G U R E  1  The study was conducted 
as described in the flow chart. TCGA, The 
Cancer Genome Atlas
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Survminer R package was used to find the optimal cutoff for 
the risk score, while receiver operating characteristic (ROC) 
and Kaplan-Meier curves were used to assess the prognostic 
capacity of the risk scores. Finally, the Spearman's coeffi-
cients of prognostic m6A RNA methylation regulators with 
hub genes were calculated. Based on the expression level of 
METTL14, we used the tertile method to divide the samples 
into three groups (low, medium, and high expression) and 
compared the expression of each gene in the high-expression 
group and the low-expression group (P < .05).

2.5 | Building and validating a 
predictive nomogram

A nomogram can be used to predict cancer prognosis.17 
In the TCGA and GEO datasets, all prognostic hub genes 
identified by LASSO were included to build a nomogram to 
investigate the probability of 3- and 5-year OS of patients 
with HCC. To assess the discrimination and accuracy of the 
nomogram, the concordance index (C-index) was calculated 
and a calibration curve was plotted.

F I G U R E  2  A, Forest map of univariate Cox analysis in HCC (METTL14 is associated with prognosis and is shown as a protective factor in 
both TCGA and GSE11 6174). B, There are significant differences in the expression levels of different genes in normal samples and tumor samples, 
and METTL14 in normal samples is significantly higher than that in tumor samples. GEO, Gene Expression Omnibus; HCC, hepatocellular 
carcinoma; N, normal tissues; T, tumor tissues; TCGA, The Cancer Genome Atlas

F I G U R E  3  METTL14 showed higher 
expression in normal tissues

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
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3 |  RESULTS

The study was conducted as described in the flow chart 
(Figure 1).

3.1 | Identification of prognostic m6A RNA 
methylation regulators

Univariate Cox analysis was performed to identify the m6A 
genes associated with the prognosis of HCC patients (a forest 
map was used to display the m6A regulators with P < .05). Based 
on univariate COX analysis, we found that high expression of 

METTL14 is associated with a better prognosis in patients with 
HCC. METTL14 showed P < .05 in the TCGA and GEO data-
sets, and HR < 1, which can be considered a protective factor 
positively affecting the prognosis of HCC patients (Figure 2A).

3.2 | Differential expression of m6A RNA 
methylation regulators

In the TCGA set, 48 cases were normal samples and 307 cases 
were tumor samples. Heatmaps and violin maps were drawn ac-
cording to the different gene expression levels. According to the 
results, we can conclude that METTL14 had lower expression in 

F I G U R E  4  A, Clustering of 307 tumor samples and clinical information (where the number/stage is larger, the darker color is shown). B, 
The scale-free index calculated under different β and the average connectivity calculated under different β (the numbers in the figure indicate the 
corresponding soft threshold power. The approximate scale-free topology can be achieved at a soft threshold power of 5). C, Gene clustering tree 
diagram. Based on the common topological overlap, each color module represents a module that contains a set of highly connected genes
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the tumor samples than in the normal samples. VIRMA, METTL3, 
and HNRNPC showed higher expression in tumors than in normal 
tissues, while METTL14, ZC3H13, YTHDC1, YTHDC2, and 
FTO showed higher expression in normal tissues (Figure 2B).

As shown in the violin plot (Figure 3), the expression 
of METTL3, METTL14, KIAA1429, RBM15, ZC3H13, 
YTHDC1, HNRNPC, FTO, and ALKBH5 in normal tissues 
is obviously different from that in tumor tissues, and the dif-
ferences had significance (P  <  .05). METTL14, RBM15, 
ZC3H13, YTHDC1, FTO, and ALKBH5 showed higher ex-
pression in normal tissues.

3.3 | Co-expression network construction

As described above, this study calculated the variance of the ex-
pression of each gene in all samples, and genes with variances 
greater than all variance quartiles were selected for a total of 4842 
genes. After building a hierarchical clustering tree by 4842 genes 
in 307 tumor samples, 4 samples were considered to be outliers 
and were rejected. Rehierarchical clustering of the remaining 303 
samples with sample clinical information (Figure 4A) was then 
conducted. To construct a scale-free network, we need to choose 
the appropriate weighting factor β while moderately retaining the 

F I G U R E  5  Correlation heatmap of different modules with various clinical phenotypes. Each row in the figure corresponds to a gene module, 
and each column corresponds to a clinical phenotype. The numbers in brackets indicate the P value, and the numbers without the brackets indicate 
the correlation

F I G U R E  6  Functional enrichment analysis of 124 selected genes. KEGG, Kyoto Encyclopedia of Genes and Genomes
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average connectivity of each gene node. We finally chose β = 5 to 
construct the co-expression network (Figure 4B). After determin-
ing the β value, a total of 10 modules were identified (Figure 4C).

3.4 | Correlation between 
modules and phenotypes

Based on the correlation of each module and clinical phe-
notype, modules that were significantly associated with 
prognosis and METTL14 expression were selected. The tur-
quoise and yellow modules have a significantly higher cor-
relation with METTL14 expression (positive values indicate 
a positive correlation, negative values indicate a negative 
correlation) and have a stronger correlation with the patient's 
OS time and pathologic stage. This suggests that the genes 
in the two modules may be regulated by METTL14 and play 
a role in the prognosis of patients with HCC (Figure 5).

3.5 | Hub genes identification

To further identify the prognostic genes regulated by 
METTL14, we selected turquoise and yellow modules for 
the next study for a total of 1534 genes. A preliminary selec-
tion of prognostic genes was made by univariate Cox, where 
a P <  .0001 was used as a cutoff for screening prognostic 
genes, and 124 genes were selected.

The 124 selected genes were analyzed by clusterProfiler 
R package for GO and KEGG pathway analysis. In biolog-
ical process terms of GO analysis, the genes were mainly 
enriched in "chromosome segregation," "sister chroma-
tid segregation," "mitotic nuclear division," "mitotic sister 
chromatid segregation," "organelle fission," "regulation of 
chromosome segregation." In cell component terms, differ-
entially expressed genes (DEGs) were mainly enriched in 
"chromosome, centromeric region," "kinetochore," "spin-
dle," "condensed chromosome," "midbody," "cell division 
site," "cell division site part," "intercellular bridge," "mi-
tochondrial matrix." In molecular function terms, DEGs 
were mainly enriched in "coenzyme binding," "microtubule 
binding," "vitamin binding," "motor activity," "carboxylic 
acid binding," "organic acid binding," "pyridoxal phosphate 
binding," "vitamin B6 binding." KEGG pathway analysis 
demonstrated that 124 selected genes were significantly en-
riched in "Pyruvate metabolism," "Cell cycle," "Complement 
and coagulation cascades," "Carbon metabolism," "Oocyte 
meiosis," "Tyrosine metabolism," "Fatty acid degradation," 
"Valine, leucine and isoleucine degradation," "Cysteine and 
methionine metabolism," "Progesterone-mediated oocyte 
maturation" and "Phenylalanine metabolism," etc (Figure 6).

Then, 307 TCGA samples were randomly divided into 
an internal training set and an internal testing set. The table-
one R package was used to describe the clinical information 
difference between the internal training set and the internal 
testing set. The results showed that expression of METTL14 
and the other clinicopathological variables was not signifi-
cantly different between the two groups (Table 1). The 64 
samples of the GSE11 6174 were treated as the external test-
ing set.

In the internal experimental group, a total of 124 prognos-
tic genes were screened for the two modules using LASSO 
analysis (optimal lambda value 0.1086875). The results 
showed that cysteine sulfinic acid decarboxylase (CSAD), 
glutamic-oxaloacetic transaminase 2 (GOT2), and suppressor 
of cytokine signaling 2 (SOCS2) are real hub genes that are 
associated with patient prognosis (Figure 7).

Based on the expression level of METTL14, we used 
the tripartite method to divide the samples into three 
groups (low, medium, and high expression) and compared 
the expression of hub genes in the two groups with high 
expression in Q1 and low expression in Q3. The results 
showed (Figure 8) the following: In the low-expression and 

T A B L E  1  There was no significant difference between the two 
groups of clinical phenotypes

  Training set Testing set P value

n 154 153  

Gender = male (%) 105 (68.2) 104 (68.0) 1

residual_tumor (%)     .121

R0 140 (92.1) 130 (87.2)  

R1 7 (4.6) 7 (4.7)  

R2 1 (0.7) 0 (0.0)  

RX 4 (2.6) 12 (8.1)  

Pathologic_stage (%)     .68

Stage I 71 (50.0) 71 (49.7)  

Stage II 36 (25.4) 29 (20.3)  

Stage III 2 (1.4) 1 (0.7)  

Stage IIIA 26 (18.3) 30 (21.0)  

Stage IIIB 3 (2.1) 4 (2.8)  

Stage IIIC 3 (2.1) 6 (4.2)  

Stage IV 1 (0.7) 0 (0.0)  

Stage IVB 0 (0.0) 2 (1.4)  

OS_time (median 
[IQR])

640.50 
[391.25, 
1228.00]

615.00 
[344.00, 
1091.00]

.442

OS_event = 0/1 (%) 111/43 
(72.1/27.9)

100/53 
(65.4/34.6)

.252

RFS_events = 0/1 (%) 77/77 
(50.0/50.0)

86/67 
(56.2/43.8)

.329

RFS_time (median 
[IQR])

420.00 
[184.00, 
747.75]

393.00 
[201.00, 
816.00]

.956

METTL14 (mean (SD)) 9.76 (0.54) 9.68 (0.46) .174

Abbreviations: OS, overall survival; RFS, relapse free survival.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116174
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F I G U R E  7  A, Distribution of least absolute shrinkage and selection operator (LASSO) coefficients for 124 genes. B, Partial likelihood 
deviation of the LASSO coefficient distribution. Vertical dashed lines indicate lambda.min and lambda.1se

F I G U R E  8  Differences in hub gene expression among high, moderate, and low METTL14 expression groups
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high-expression groups of METTL14, the expression of 
hub genes was significantly different; in the Q1 group with 
high expression of METTL14, the hub genes were often 
highly expressed; and in the Q3 group with low expres-
sion of METTL14, they often had low expression. In both 
the TCGA and GEO datasets, a significant correlation was 
found between the expression of METTL14 and that of the 
hub genes (P < .05) (Figure 9).

3.6 | Risk scores

Three genes were identified and subsequently used to con-
struct a prognostic gene signature. The risk score = −(0.178
77930 × CSAD + 0.10997478 × GOT2 + 0.04458126 × SO
CS2), and we used the Survminer R package to find the op-
timal cutoff for the risk score, while ROC and Kaplan-Meier 
curves were used to assess the prognostic ability of the risk 
scores.

We plotted the risk score distribution, the time-depen-
dent ROC curve and the survival analysis of the internal 
training set, internal testing set, and external testing set 

(Figure 10). The area under the ROC curves (AUCs) of 
the OS prognostic model were as follows: 12 month AUC: 
0.748, 36  month AUC: 0.647, 60  month AUC: 0.669; 
12 month AUC: 0.777, 36 month AUC: 0.776, 60 month 
AUC: 0.764; and 12 month AUC: 0.768, 36 month AUC: 
0.670, 60 month AUC: 0.743. Collectively, our results in-
dicated a good performance of the three-gene signature for 
survival prediction.

3.7 | Build a nomogram based on the 
hub genes

For the prediction of 3- and 5-year OS, we built a nomogram 
(Figure 11A). Calibration curves and the C-index were used 
to assess the discrimination and accuracy of the nomogram. 
In the TCGA dataset, the C-index was 0.7307009, and in 
the GEO dataset, the C-index was 0.67633229. The 3- and 
5-year survival probability calibration curves for the TCGA 
and GEO datasets show that the calibration curve is close to 
the ideal curve, indicating that the nomogram has good pre-
dictive effects (Figure 11B,C).

F I G U R E  9  Expression of METTL14 and hub genes showed a significant correlation. GEO, Gene Expression Omnibus; TCGA, The Cancer 
Genome Atlas
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F I G U R E  1 0  Risk score, heatmap of mRNA expression, time-dependent ROC analysis, and Kaplan-Meier curve of the 3-gene signature 
in the internal training set, internal testing set, and external testing set. A, Risk score, heatmap of mRNA expression, B, Time-dependent ROC 
analysis, and C, Kaplan-Meier curve of the 3-gene signature. AUC, area under the ROC curves; HCC, hepatocellular carcinoma; ROC, receiver 
operating characteristic
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4 |  DISCUSSION

In this study, we first evaluated the expression of METTL14 
in HCC, and the expression of METTL14 in tumor samples 

was found to be significantly reduced, which is consistent 
with the findings of a previous study. METTL14 can posi-
tively regulate the primary microRNA 126 process in an 
m6A-dependent manner to inhibit the metastatic potential of 

F I G U R E  1 1  A, Nomogram predicting OS for HCC patients. B and C, 3- and 5-y survival calibration curves of the TCGA dataset and GEO 
dataset. The 3-y survival probability curve is the blue line, the 5-y survival probability curve is the red line, and the ideal curve is gray. GEO, Gene 
Expression Omnibus; HCC, hepatocellular carcinoma; OS, overall survival; TCGA, The Cancer Genome Atlas
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HCC.12 METTL14, as an important m6A methyltransferase, 
has been identified as playing an important role in many 
physiological functions18-21 and is also related to the occur-
rence and development of a variety of cancers.12,22,23 In ad-
dition, METTL14 has become a new target for treatment in 
EBV-associated tumors.24

We finally identified three hub genes (CSAD, GOT2, and 
SOCS2) that may be regulated by METTL14. In previous 
studies, these three genes have been found to be involved in 
the development of many diseases, such as retinal abnormal-
ities.25-27 CSAD maintains its high expression when stimu-
lated in the precancerous liver,28 and gene polymorphisms of 
GOT2 are closely related to occupational exposure to liver 
injury,29 and in particular, GOT2 was found to be involved 
in many cancers, such as pancreatic tumors.30 Hong et al re-
ported that BRCA1 modulates aspartate biosynthesis through 
transcriptional repression of GOT2,31 while Maren Feist et al 
reported that GOT2 is a biomarker of lymphoma.32 Similarly, 
many studies have shown that SOCS2 plays an important role 
in inhibiting the progression of liver cancer.33-35 Previous 
studies have shown that our three hub genes play a large role 
in the development of tumors, and our study has further con-
firmed the relationship among these three hub genes and the 
m6A RNA methylation regulator.

The authors of a previous study have suggested that 
METTL3 could repress the expression of SOCS2 in HCC 
by an m6A-YTHDF2-dependent mechanism34 and that 
KIAA1429 plays a role in regulating ID2 expression by reg-
ulating m6A of ID2 mRNA.36 Similarly, METTL14 may par-
ticipate in the malignant progression of HCC by adjusting the 
m6A of CSAD, GOT2, and SOCS2; however, this remains 
to be verified by further experiments. To our knowledge, this 
three-gene signature and nomogram have been proposed by 
us for the first time, and it might be useful for prognostication 
and diagnosis of HCC.

5 |  CONCLUSION

In this study, we found that METTL14 may inhibit the pro-
gression of HCC by upregulating the expression levels of 
CSAD, GOT2, and SOCS2. The main mechanism might be 
via affecting the m6A process of the hub genes. In addition, 
we established a novel three-gene signature and nomogram 
to predict OS of HCC, which might be a useful prognostic 
and diagnostic classification tool of HCC.
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