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Abstract

When differentially expressed genes are detected from samples containing different types of cells, only a very coarse
overview without any cell type-specific information is obtained. Although several computational methods have been
published to estimate cell type-specific differentially expressed genes from bulk samples, their performance has not been
evaluated outside the original publications. Here, we compare accuracies of nine of these methods, test their sensitivity to
various factors often present in real studies and provide practical guidelines for end users about when reliable results can be
expected and when not. Our results show that TOAST, CARseq, CellDMC and TCA are accurate methods with their own
strengths and weaknesses. Notably, methods designed to detect cell type-specific differential methylation were comparable
to those designed for gene expression, and both types outperformed methods originally designed for other tasks. The most
important factors affecting the accuracy of the estimated cell type-specific differentially expressed genes are (i) abundance
of the cell type (rare cell types are harder to analyze) and (ii) individual heterogeneity in the cell type-specific expression
profiles (stable cell types are easier to analyze).
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Introduction
When a condition causes gene expression changes in a mixed
tissue sample containing different types of cells, the changes
can originate from either altered cell type composition or altered
expression in some of the cell types. For example, in the context
of type 1 diabetes it is an open debate if the pancreatic beta
cells are dead (altered composition) or if they have, at least
initially, just stopped insulin production (altered expression) [1–
3]. Computational deconvolution is a free alternative to single
cell and fluorescence-activated cell sorting (FACS) analyses to
obtain cell type-specific information from readily analyzed bulk
samples. Besides financial motivation, it also has the advantage
of being applicable to old datasets, which are possibly very
difficult to re-analyze in an experimental manner.

There are many publicly available tools for computational
deconvolution [4–6], and they have different input requirements
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and goals. In deconvolution, the bulk expression of a gene is
typically considered as a linear combination of its expression
levels from different cell types present in the sample, i.e. E = S·C,
where E is the observed bulk expression matrix with genes as
rows and samples as columns, S is a cell type-specific expression
matrix indicating how strongly each pure cell type (columns)
expresses each gene (rows), and C is a cell type proportion
matrix with cell types as rows and samples as columns. ‘Com-
position deconvolution’ (e.g. [7–12]) aims to estimate cell type
composition (either proportions C or abundances) in different
bulk samples, whereas ‘expression deconvolution’ (e.g. [13–18])
estimates cell type-specific gene expression profiles S (csGEPs).
‘Complete methods’ (e.g. [19–22]) do both tasks simultaneously.

As mentioned above, the cell type-specific expression
profiles might be altered by some factors (e.g. age, gender,
disease) and, in such case, the assumption of the matrix S
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containing csGEPs as columns is overly simplistic. An important
subtask related to expression deconvolution is to explore cell
type-specific differentially expressed genes (csDEGs) between
conditions. This can be done at three levels: associating
differentially expressed genes (DEGs) detected from the bulk
data with different cell types, identifying directly csDEGs, or
defining csGEPs for each sample separately, i.e. personalized S.
Personalizing cell type-specific expression is a very ambitious
goal and there are only few tools available, with restrictions
in their applicability. For example, ISOpure [23] is related to
purifying tumor samples from the effect of immune cells,
whereas CIBERSORTx [24] provides the personalization option
only for datasets of limited size. Associating bulk findings with
cell types is a more relaxed goal and, for instance, CellCODE [25]
offers this option among other related functions. The downside
of investigating bulk findings is that if cell type composition is
also altered between sample groups, bulk findings are likely to
contain plenty of genes that are strongly expressed by the cell
type(s) with altered proportion rather than genes with altered
expression in some cell types. Another issue is that genes altered
in dominating cell types are likely to mask the DEGs of rare cell
types at the bulk level, as discussed in [25]. Notably, csGEPs refer
to columns of matrix S and the term is frequently used instead of
S in this article. The issue with the term S is that it is technically
no longer a matrix, but a three-dimensional tensor or a list of
matrices if it is defined for samples or sample groups separately.

Identifying csDEGs is a more relaxed goal than fully person-
alized S, but it provides more detailed insights than associating
bulk DEGs with cell types. Few methods have been developed for
the task [17, 25–27], but they have not been systematically inves-
tigated in the literature. Although composition deconvolution
and expression deconvolution methods have been empirically
compared [18, 28–30], there are no guidelines for selecting and
using methods to identify csDEGs. Here, we address this issue
by comparing nine different approaches, namely TOAST, csSAM,
LRCDE, CARseq, Rodeo, qprog, CellDMC, TCA and DESeq2, from
different practical perspectives, investigate which factors affect
the accuracy and how much and offer insight when the end user
can expect good results and when not.

Results
Here we evaluate nine methods for identifying csDEGs: tools for
the analysis of heterogeneous tissues (TOAST) [26], cell type-
specific significance analysis of microarrays (csSAM) [17], linear
regression cell type-specific differential expression (LRCDE) [27],
cell type aware analysis for RNA-seq data (CARseq) [31], robust
deconvolution (Rodeo) [18], quadratic programming (qprog)
[32], CellDMC [33], tensor composition analysis (TCA) [34] and
DESeq2 [35]. Among these, TOAST, csSAM, LRCDE and CARseq
are originally developed for detecting csDEGs from RNAseq
data, whereas Rodeo and qprog are originally developed for
expression deconvolution but we test here their utility to identify
csDEGs. Methods CellDMC and TCA are originally designed for
methylation data and DESeq2 represents a model not developed
for deconvolution purposes of any kind. It can still be applied by
defining cell type proportions and interaction terms of them and
disease status as covariates. Further details about the methods
and how any expression deconvolution method can be used for
identifying csDEGs are available in section ‘Tested methods’.
Besides accuracy, we tested the sensitivity of the methods to
different factors (e.g. individual heterogeneity of csGEPs and
outlier samples in the data), and how the end user can evaluate
whether the obtained results are accurate.

We utilized three semi-simulated datasets addressed as
GSE60424, EMTAB9221 and GSE124742 in these tests. The
datasets were constructed by first generating csGEPs with
realistic individual variation and DEGs between two sample
groups, 100 samples each. For the evaluation purposes, these
csGEPs were then combined into bulk samples by calculating
their sum weighted by the cell type proportions. As gold standard
csDEGs, we considered DEGs identified using the csGEPs (false
discovery rate (FDR) ≤ 0.05). Datasets GSE60424 and EMTAB9221
are based on data from blood samples with different numbers of
cell types present in them, whereas dataset GSE124742 involves
measurements from pancreatic tissue samples. Further details
regarding the datasets are available in section ‘Test data’.

Accuracy of estimated csDEGs and effect of cell type
abundance

To evaluate the accuracy of the estimated csDEGs, we considered
the overlap between the estimated csDEGs and the gold standard
csDEGs. Among the tested methods, LRCDE detected over 5000
csDEGs with FDR ≤ 0.05 from all tested semi-simulated datasets
and all cell types. The contrast to the other tested methods
was considerable; typically the methods identified fewer csDEGs
than present in the corresponding gold standard. The opposite
extreme was csSAM, which did not produce any detections with
FDR ≤ 0.05 from any cell type from any of the datasets. The exact
numbers of significant findings from the different methods and
cell types are available in Table S1.

Because of the large variation in the number of significant
detections, we compared the top most significant findings to the
gold standard. The size of the evaluated top list was defined as
the number of detections in the gold standard. Table 1 lists the
overlaps between the known and estimated csDEGs in the dif-
ferent cell types and datasets. Notably, when the FDR cutoff 0.05
was used instead of the fixed top list size, the methods typically
had high precision and low recall (Section 1 in Supplementary
text), suggesting that the estimated csDEGs were correct, but
many true csDEGs remained undetected.

For dataset GSE60424, methods TOAST, CellDMC and TCA had
the best performance. For dataset EMTAB9221, CARseq and TCA
were the most accurate ones. For dataset GSE124742, TOAST,
Rodeo, qprog, and CellDMC showed the best performance.
Overall, LRCDE and DESeq2 provided less accurate estimates
for csDEGs than the other methods, but otherwise differences
between the methods’ performances were moderate as shown
in Table 1.

Relative performance between the methods is not the only
conclusion that can be drawn from the accuracies reported in
Table 1. When the accuracies are compared against the cell type
proportion information (Section 2 in Supplementary text), it can
be seen that the cell type proportions affected the accuracy of the
results, i.e. csDEGs from rare cell types were harder to detect than
those from abundant ones. As shown in the Supplementary text,
NK cells, B cells, and delta and acinar cells had the lowest average
proportion in datasets GSE60424, EMTAB9221 and GSE124742,
respectively. These cell types had also the lowest accuracies in
the corresponding datasets (Table 1). In the case of acinar and
delta cells in the GSE124742 data (both with average proportion
of only 3%), delta cells were likely harder to analyze than acinar
cells because they are endocrinal cells like alpha and beta cells,
whereas acinar cells are from exocrinal pancreas, i.e. they likely
differ more from alpha and beta cells. In Section 2 of Supple-
mentary text, the effect of cell type abundance is investigated in
a more systematic manner as we altered the average proportion
of T cells in dataset EMTAB9221 and evaluated how the accuracy
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Table 1. The proportion of overlapping genes between the known and estimated cell type specific differentially expressed genes. The top list
size, i.e. the number of gold standard detections, is indicated in the parenthesis after the cell type name. DESeq2 is designed for raw counts so
it is not run for dataset GSE60424 based on normalized data and TCA threw errors we could not resolve for dataset GSE124742 so those results
are missing too

to detect csDEGs changed along the cell type proportion. Those
results support the importance of cell type proportion and none
of the methods had accuracy above 0.5 when the average pro-
portion was decreased to 0.2. Cell type proportion has also been
shown to affect the accuracy of estimated csGEPs in expression
deconvolution [18].

Running time

Although most of the methods were fast to run (maximum
few minutes), CARseq and especially expression deconvolution

methods Rodeo and qprog were more time consuming. For ref-
erence, the running times with dataset EMTAB9221 for different
methods were

TOAST: 3.18 s,
csSAM: 3.43 min,
LRCDE: 4.51 s,
CARseq: 1.37 h,
Rodeo: 1.74 min,
qprog: 13.21 s,
CellDMC: 28.83 s,
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TCA: 2.12 min and
DESeq2: 2.27 min.

Notably, as described in section ‘Tested methods’, the running
times of expression deconvolution methods Rodeo and qprog
need to be multiplied by the number of random samplings for
P-value estimation (1000 in this study) to get the full time
required for detecting csDEGs. Despite making the approaches
slow, the P-value estimation step can not be neglected as
demonstrated in Section 3 of Supplementary text.

Individual variation affects the accuracy

Next, we investigated how the individual variation in csGEPs
over samples affects the accuracy of detecting csDEGs. We set
the coefficient of variation, i.e. ratio of standard deviation and
mean, to a fixed level by controlling the standard deviation
of the gene when constructing the csGEPs for the bulk data.
Coefficients of variation of 0.1, 0.5, 1, 1.5, 2 and 2.5 were tested
in dataset EMTAB9221, and they were the same for all genes. To
investigate the effect of individual variation in only one cell type,
we also generated data where only the coefficients of variation
within monocytes were controlled while other cell types had
their original, measured standard deviations varying from one
gene to another. As this test was computationally intensive, only
methods TOAST, csSAM, CellDMC and TCA were considered.

Our results show (Figure 1) that individual heterogeneity had
a tremendous impact on the accuracy with all the tested meth-
ods. The impact was milder yet still considerable when only
one cell type was altered (Figure 1B, D, F and H), which indi-
cates that one very heterogeneous cell type can also weaken
the results from other cell types. Similar conclusions can be
drawn from dataset GSE124742 (Section 4 of Supplementary
text). The measured coefficients of variation over samples had
medians (over genes) of 0.93 (neutrophils), 0.48 (monocytes), 0.77
(B cells) and 0.40 (T cells) in dataset EMTAB9221 (see Section
4 of Supplementary text for coefficients of variation from all
cell types and datasets). The lower coefficients of variation in
T cells compared to B cells probably explain the difference in the
accuracy of csDEGs detected from them (Table 1) for all the tested
methods.

How to estimate whether the results are reliable

Our observations this far highlight the cell type proportions and
internal variation over samples as important factors affecting
the accuracy of the results. In addition, we tested multiple other
potentially important factors, but according to our observations,
their impact was minor compared to cell type proportion and
individual variation. These include imbalanced sample groups
(Section 5 in Supplementary text), definition of the present cell
types (Section 6 in Supplementary text), and noise from very rare
cell types (Section 7 in Supplementary text). Although the input
matrix C reveals the rare and therefore difficult to analyze cell
types, individual variation in csGEPs is less straightforward to
investigate. Here we provide guidelines on how to approach that
issue.

Although the end user does not have direct knowledge about
the sample heterogeneity of underlying S, some information can
be gained by investigating residuals |E − S · C|. In this analysis,
we compared the median relative residual of a dataset (see
section ’Test design’ for technical definition) to the accuracy of
the identified csDEGs. Although realistically these residuals do
not consist only of individual variation in csGEPs, but noise from

unanalyzed cell types also contribute into them, the relative
residuals still offered some guidance to estimate the accuracy
of the results as shown in Figure 2. Although it is hard to define
a strict median relative residual cutoff for accurate results, none
of the cell types had good accuracy when the relative residuals
exceeded 0.25 and quite dramatic reduction in the accuracy
happened already around cutoff 0.15. Whether the change in
residuals was from all cell types or from monocytes only did
not have a great impact on the association between the accuracy
and median relative residual for most cell types. Unsurprisingly,
monocytes were an exception for that.

Effect of outlier samples

As the bulk data to be analyzed can contain samples, whose
csGEPs drastically differ from those of the other samples, we
tested how sensitive the different methods are to such outlier
samples. For this purpose, one outlier case sample and five
outlier control samples were added into each dataset and the
accuracy of the detected csDEGs was evaluated.

Rodeo is designed to be robust against few outlier samples
and indeed with such samples it had the best performance in
datasets GSE60424 and GSE124742. In dataset EMTAB9221, TCA
and Rodeo were the top performers. The relative performance
of the other tested methods mostly did not change despite
the accuracies overall decreasing, except for CARseq, which
clearly suffered from the outliers in dataset EMTAB9221 and
csSAM, which tolerated them fairly well in dataset GSE124742
(Figure 3).

Additionally, we tested how well the methods tolerate dif-
ferent numbers of outlier samples. To evaluate this, we added
1—8 outlier samples to EMTAB9221. As shown in Figure 4, Rodeo
had also in this test the most robust performance, but with small
number of outliers, more accurate methods still outperformed it.
Notably, for most of the tested methods, accuracy of the detected
csDEGs was the most vulnerable to outliers in T cells, which is
the cell type with the highest accuracy (Figure 4). The other cell
types’ accuracies were more robust against outliers (Figure 4).

Pathway analysis

As pathway-level findings can be more robust than gene-level
results, we tested the reproducibility of the pathway-level results
using the estimated csDEGs. TOAST and CellDMC were excluded
from these tests as they do not provide fold changes (or csGEPs
for both sample groups separately) required for SPIA pathway
analysis, whose benefits have been shown in earlier compar-
isons [36, 37]. Here, we focused on cell types and datasets with
>10 significant pathway findings from the known csDEGs. This
left us with dataset EMTAB9221 (excluding B cells) and alpha
cells from GSE124742.

None of the estimated csDEG lists generated many false
positive findings, i.e. when there were only few, if any, gold stan-
dard findings, the number of findings from different methods
were also low. The precision and recall values for cell types and
datasets with more than 10 gold standard findings are listed
in Table 2. Even in these cases, the precision values tended to
be higher than the recall values, indicating that false negative
findings were more of an issue than false positive findings.
DESeq2 was the only method with recall higher or at least
comparable with precision in most cases. Overall, similarly to
the gene-level results, csSAM, CARseq, Rodeo, qrpog and TCA
outperformed LRCDE and DESeq2, though for T cells in dataset
EMTAB9221 DESeq2 had by far the highest recall value. The
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Figure 1. Proportion of overlapping genes between the known and estimated top csDEGs (y-axis) when the coefficients of variation (x-axis) over individuals was

controlled for each cell type. The experiment was done by controlling the standard deviations of all cell types (A, C, E and G), or only of monocytes (B, D, F and H),

whereas the other cell types had their original gene-specific deviation. The test was done with four methods, TOAST (A and B), csSAM (C and D), CellDMC (E and F) and

TCA (G and H).

significant pathway findings are presented and discussed in
Section 8 in Supplementary text.

Based on these observations, it seems that if many pathway
findings can be detected from the estimated csDEGs, both path-
ways and the csDEGs are likely accurate. However, the opposite
is not necessarily true: few or no pathway findings can indicate
either inaccurate csDEGs (e.g. csSAM estimates for NK cells
(GSE60424)), accurate csDEGs but no pathway findings as there is
not much to find (e.g. csSAM findings for beta cells (GSE124742)),
or accurate csDEGs but no pathway findings even if there would
be significant pathways (e.g. csSAM findings for neutrophils
(EMTAB9221)).

Discussion and conclusions
Not a single method can be claimed as the best one, but TOAST,
CARseq, CellDMC and TCA had the highest accuracies. In case of
over four outlier samples with altered csGEPs, Rodeo has more
reliable performance. In the original publication introducing
CARseq, it was validated with raw counts, which might explain
why its performance compared to the other tested method was
better in datasets EMTAB9221 and GSE124742, which are based
on raw counts, than in GSE60424, which is based on normalized
csGEPs. TCA is an accurate and fairly robust method, but it threw
errors in some occasions. The observation that it performed well
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Figure 2. Accuracy of the csDEGs (y-axis) as a function of median relative residual

(x-axis) for all cell types in dataset EMTAB9221. The multiple data points with

very similar median relative residuals were from the ten randomly generated

datasets with a fixed coefficient of variation.

in sample deviation tests with small coefficients of variation
but threw errors with larger variation suggests that the method
does not tolerate noisy data with large heterogeneity between
the samples. All methods excluding LRCDE tend to detect too
few rather than too many csDEGs if FDR cutoff 0.05 is used, but
the detections are mostly correct (i.e. high precision). Our results
show that accurate csDEGs can be achieved if (i) the individual
variation is moderate, which can be evaluated using residuals,
and (ii) cell type proportion is not low. Other tested factors such
as imbalanced sample groups, definition of cell types present in
the samples, and minor noise from rare cell types had weaker
influence on the accuracy. Pathway analysis from the estimated
csDEGs can serve two purposes. Firstly, if there are fairly many
(e.g. more than five) significant pathway detections, the findings
are likely accurate and conclusions about underlying biological
processes can be drawn as in any pathway analysis. Secondly,
sufficiently many pathway findings indicate that the estimated
csDEGs used as an input for the pathway analysis are accurate.
However, in case there are no pathway findings, no conclusions
can be drawn from that.

Notably, when estimating the accuracy of the results from the
information the end user can access, we used residuals relative
to bulk expression to make our conclusions robust against the
overall magnitude of the bulk expression values. Also, in order
to prevent possible issues caused by different depth of the mea-
sured transcriptomes, only 10 000 genes with the highest median
expression in the bulk data were used to calculate the median
residual. With these precautions, our cutoffs for the median
residual should generalize well for other studies. However, for
instance, samples from tissues with very few expressed genes
might not follow the rough pattern described here.

Estimating the level of individual variation within cell types
is not the only application for the residuals. It is not obvious
whether the bulk data to be analyzed contains outliers, because
a sample with a heavily altered cell type composition likely has
a bulk expression profile clearly distinct from the rest of the
samples. However, it is still not an outlier in a sense that it
causes difficulties for the tested methods, unless the csGEPs are
also altered. The residuals contain the variation originating from
csGEPs instead of C, so investigating them can reveal the possible
outlier samples: if the residuals of one or few samples are of
greater magnitude than those of the rest of the samples, they
can be identified as outliers and excluded from the bulk data
and the input matrix C. The definition of an outlier is a distinct
topic of its own. Finally, the selected method to estimate csDEGs
needs to be run again without those outliers in the data.

We are unsure why results from dataset GSE60424 were less
accurate than those from the other datasets despite having the
lowest coefficients of variation (Section 4 in Supplementary text)
over the samples for the different cell types. The dominating
cell type (neutrophils) has higher internal variation than the
other cell types present in the samples, but the same is true
for alpha cells in dataset GSE124742, so that is not likely the
key explanation. Also, the dataset has more cell types than
the other test datasets (six versus four), but reducing them
by combining T cells or considering NK cells as noise did not
increase the accuracy. Another possible reason is that the ran-
domly generated csDEGs in GSE60424 are weaker than those
based on real observed differences within cell types in the
other two datasets (section ‘Test data’). However, the number
of detected gold standard csDEGs was typically similar to the
other datasets, which weakens this explanation. Finally, one
explanation could be the very dominating role of neutrophils,
which leaves the proportions of the other cell types quite low
(Section 2 in Supplementary text).

The main limitation of this study is that all our test data are
semi-simulated, because cell type-specific datasets with enough
sample donors were not publicly available, yet sample size has
been shown to affect the accuracy of the estimated csDEGs
and expression deconvolution [18, 27, 38]. Although we did our
best to ensure realistic challenge in our test data, it is possible
that some issues present in real measured data are missing.
Such missing factors could be related to e.g. technical biases
in some of the samples, which are attempted to be neutralized
in normalization. In the context of deconvolution, the question
of normalizing the bulk data is two-edged. One the one hand,
the effect of such biases should be normalized for, but on the
other hand, if a sample has particularly much cells with low
overall expression level (e.g. neutrophils), its low total expression
should not be normalized to a similar level to other samples.
The semi-simulated test data prevents us from reliably testing
the effect of normalization on the accuracy of the estimated
csDEGs. It would be interesting to know if one normalization
approach is generally better than the other options, or if different
methods benefit from different normalizations. The magnitude
of the normalization effect on the accuracy would also be of
interest. In the literature, it has been suggested that transcripts
per million (TPM) is a favourable normalization for composi-
tion deconvolution [39], but for expression deconvolution and
especially estimating csDEGs the question is still open to our
knowledge.

Besides the methods tested here, there are few tools
to detect csDEGs that were excluded from this study for
various reasons. For example, BSEG-sc (utilizes csSAM) [40],
CellCODE [25] and PSEA [16] have input requirements that
make fair comparison between them and the methods tested
here difficult. Other reasons for exclusion include limitations
related to the number of present cell types (e.g. Dsection [14])
and restrictions about conditions or tissues under study (e.g.
DynamicDA [41]).

Materials and methods
Test data

As expression deconvolution requires more samples than
available in publicly available datasets with separated cell
types, we constructed semi-simulated data using three datasets,
GSE60424, EMTAB9221 and GSE124742, with 200 samples. In all
cases, the bulk data was constructed by first generating cell type
proportion matrix C and (for each sample separately) cell type-
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Figure 3. Accuracies when the datasets contain outlier samples: (A) GSE60424, (B) EMTAB9221 and (C) GSE124742.

specific expression profiles in S, and then combining them into
a bulk dataset. Thus, the bulk expression of gene i in sample j is
constructed as

Eij =
∑

t∈T

Ctj · Sj
it,

where T is a set of cell types present in the sample. Cell type
proportions C were initially randomly generated from normal
distribution (possible negative values set to 0) with the same
mean and standard deviation as in the measured C provided
with the original public data. Then each sample was scaled to
sum into 1, i.e. the random values were scaled into propor-
tions. Construction of S varied more over the datasets due to
differences in the original datasets as described below, but also

they imitate the realistic individual variation. Further technical
details about preprocessing the single cell datasets and detecting
and generating csDEGs are available in Section 9 of Supplemen-
tary text and the R codes to construct the data are available as
Supplementary codes.

Dataset GSE60424 is based on RNAseq data from individuals
with different autoimmune diseases available in Gene Expres-
sion Omnibus (GEO) with the same accession id [42]. In the
original data, FACS separated neutrophils, monocytes, B cells,
CD4 T cells, CD8 T cells and NK cells are analyzed from 20 human
donors with different health conditions. Similarly to generating
cell type proportions C, to ensure realistic individual variation in
csGEPs, we generated them from normal distribution with the
mean and standard deviation over the samples same as in the
measured TPM normalized csGEPs.
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Figure 4. Accuracies (y-axis) of different methods when different numbers of outlier samples (x-axis) are added into dataset EMTAB9221. Jittering in x-axis is added to

increase the readability of the figure.

Table 2. Precision (the first value) and recall (the second value) of the pathway detections. Precision value NA indicates no findings (dividing
with zero). The value in the parenthesis after the cell type name indicates the number of pathway detections from the known csDEGs. Method
TCA threw errors with dataset GSE124742 and methods TOAST and CellDMC do not provide fold changes (or group specific csGEPs to calculate
them) required for SPIA pathway analysis, so those results are missing

Dataset EMTAB9221 was built from single cell RNAseq data E-
MTAM-9221 [43] available in ArrayExpress. It contains cells from
whole blood of eight COVID-19 patients with different severity of
symptoms and healthy controls. The sample specific S was built
by first calculating the average expression profiles for each cell
type and sample donor and multiplying them by constant 2000
to increase the general magnitude of the expression values. Then
csGEPs of 200 artificial samples were generated from normal
distribution with means and standard deviations following the
measured csGEPs. For noise sensitivity test, we also generated a
bulk data including noise from cells of unknown type by adding
10-100 (randomly selected from uniform distribution) unknown
cells to the mixture.

Also dataset GSE124742 was constructed from single cell
RNAseq data and the original data is available in GEO under the

same accession id [44]. It contains measurements of pancreatic
samples from individuals with Type 1 diabetes, Type 2 diabetes,
Parkinson disease and healthy controls. From this study, we uti-
lized data from fresh cells from healthy controls and individuals
with Type 2 diabetes. We generated S for each artificial individual
by randomly selecting and adding 50 cells from each cell type.
Gamma cells were not included due to only 41 measured cells
in total. From this dataset, we generated also a bulk version
including gamma cells as noise, where the number of gamma
cells follows their observed proportion in the original data.

Test design

To evaluate the accuracy of the results, we used csDEGs detected
by ROTS [45] from the known csGEPs in the generated samples
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with FDR cutoff 0.05 as a gold standard. Although the generated
csDEGs were known, due to the randomness in the data sim-
ulation process, not all of them are necessarily detectable from
the sample specific csGEPs, and therefore, only those that can be
identified with ROTS are considered as a gold standard. We then
calculated the overlapping proportion of these known csDEGs
and an equal number of top detections from the methods as a
measure of accuracy. Genes with median bulk expression 0 in
both sample groups were filtered out from each dataset before
the analyses. The same measure of accuracy was used in all
tests. Notably, DESeq2 is designed for raw counts, so it is not
run for dataset GSE60424 based on normalized csGEPs, and TCA
threw errors for dataset GSE124742, so those results are missing
as well.

To test the effect of individual variation in S, we investigated
how the accuracy changed when we controlled the variation
over the 200 samples. For this purpose, we constructed bulk data
otherwise similarly as in the accuracy test, but the coefficients
of variation of csGEPs over the samples were set to fixed levels
of 0.1, 0.5, 1, 1.5, 2 or 2.5. The same level was used for all genes,
which is not the case with real data. Coefficient of variation is
defined as standard deviation relative to the mean, and we set it
into the wanted level by controlling the standard deviation while
keeping the mean expression at its measured level. Ten random
samplings were done for each level of coefficient of variation
and the median accuracy obtained from them is reported. For the
sake of running time, this test was done only with TOAST, csSAM,
CellDMC and TCA, and Wilcoxon’s test was used when extracting
the gold standard. Datasets EMTAB9221 and GSE124742 were
utilized for this experiment, results from EBTAB9221 are reported
in this main manuscript and results from GSE124742 (reported
in the Supplementary text) are used to validate our conclusions.
We did this test so that the individual variation within all cell
types was regulated, and so that only one cell type (monocytes
in EMTAB9221 and beta cells in GSE124742) was controlled while
the rest had their measured standard deviations varying over the
genes.

When evaluating how the residuals can be utilized to eval-
uate the accuracy of the results, csSAM and data from indi-
vidual variation test was used. Data with all cell types’ inter-
nal variation controlled and data with only monocytes’ inter-
nal variation controlled were both used. Method csSAM pro-
vides the residuals readily as an output, but they can be also
calculated manually by subtracting re-constructed bulk S · C
from the measured one. Absolute values of the residuals were
used, as the direction of the unexplained effect was irrelevant
for this test. Different normalizations and other pre-processing
steps affect the general magnitude of the bulk expression val-
ues, so we used absolute residuals relative to the measured
bulk expression as a measure. Median of such relative resid-
uals was first taken over samples so that each gene has a
median relative residual and then a median over top 10 000
most expressed genes was used as a summary for the dataset.
Therefore, the median relative residual of a dataset is formally
defined as

medianG(medianR(|EG − SG · C|/EG)), (1)

where G is the set of top 10 000 most expressed genes in E, EG

and SG are submatrices of E and S containing only genes G, and
medianG and medianR refer to median over gene set G and median
over samples, respectively.

To evaluate the effect of outlier samples, we generated one
case sample and five control samples with altered csGEPs into
each dataset. The cell type proportions for these samples are
from the same distribution as the rest of the samples. For each
cell type and data set, the csGEPs for the outliers are generated
from normal distribution using randomly either lower or upper
limit for an outlier as a mean. The limits for an outlier were set
according to interquartile range (IQR) definition, i.e. the lower
limit is Q1 − 1.5 · IQR and the upper limit is Q3 + 1.5 · IQR, where
Q1 and Q3 are the first and the third quartile, respectively, and
IQR = Q3 − Q1. To evaluate the effect of the number of outlier
samples on the accuracy of detected csDEGs, we added 1, 2, 4, 6
or 8 outliers into the dataset EMTAB9221.

As pathway detections can be more robust than gene-level
ones, we tested their reproducibility as well. The pathway anal-
ysis was done with signaling pathway impact analysis (SPIA)
[46] as its input requirements are simple and it has performed
well in empirical comparison [36]. It requires fold changes of
DEGs and a complete list of analyzed genes as an input. The
fold changes were calculated for each cell type separately as
csGEPs for case samples divided by csGEPs for control samples.
In the gold standard, the sample group csGEPs were defined as
median over sample specific csGEPs for both sample groups,
and estimated csGEPs were readily at group-level instead of
sample-level.

Tested methods

We tested nine methods, all implemented into R packages:
TOAST (version 1.0.0), csSAM (version 1.4), LRCDE (version
1.0.1.0000), CARseq (version 0.0.0.9007), Rodeo (version 1.0),
qprog (CellMix version 1.6.2), CellDMC (EpiDISH version 2.2.2),
TCA (version 1.2.1) and DESeq2 (version 1.26.0). A cell type
proportion matrix C, sample group information and a bulk
expression matrix were provided as inputs for all of the methods.

Among the nine tested methods, four have been designed
to detect csDEGs. TOAST [26] is a versatile deconvolution tool
with various features not utilized in this study. For example, it
can take into account multiple different sample characteristics
(e.g. age, gender, disease status), it can perform reference free
composition deconvolution, and, besides RNAseq, it has been
evaluated with DNA methylation data as well. Methods csSAM
[17] and LRCDE [27] are both based on linear regression. In csSAM,
the significances of differences between sample group specific
estimated csGEPs are estimated by randomly sampling the group
labels, and in LRCDE, Welch’s two-sample t-test is utilized for
the task. Although csSAM is an old and widely cited tool for this
particular problem, LRCDE contains also a function to estimate
cell type proportions using a signature matrix. CARseq [31] is a
novel tool designed to detect csDEGs from count data. It uses
negative binomial distribution instead of commonly utilized
linear model.

Methods Rodeo and qrpog have been originally developed
for expression deconvolution, but we tested here their utility to
identify csDEGs. These two were selected into this study due to
their accurate performance [18], but any expression deconvolu-
tion method could be utilized for detecting csDEGs as follows

1. Estimate S for case and control samples separately using
any expression deconvolution method.

2. Calculate (absolute) difference between Scase and Scontrol. This
creates a difference matrix with the same dimensions
(genes as rows and cell types as columns) as in Scase and
Scontrol.
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3. For n times: randomly select the sample groups and do steps
1 and 2. Calculate how often the difference is greater than
the observed one in step 2. Let m be the number of times the
difference exceeds the observed one.

4. Calculate P value estimates as m/n. In this study n = 1000.
This creates P values for all genes in all cell types. Correct P
values into FDR values, if wanted.

Rodeo [18] is based on robust linear regression and its speciality
is tolerating some outlier samples in the dataset. Qprog is based
on quadratic programming and it was originally implemented
as a composition deconvolution method [32], but R package
CellMix [47] implements an expression deconvolution version of
it, which is used in this study.

CellDCM [33] and TCA [34] are developed to estimate cell type-
specific methylation profiles, but their input requirements can
be met also with RNAseq data. CellDMC utilizes EpiDISH algo-
rithm [48] and it has been demonstrated to identify also signif-
icant findings with opposite direction of regulation in different
cell types. TCA is based on generalization of matrix factorization
and it can consider several cofactors (e.g. age and gender) like
TOAST.

DESeq2 [35] is a diverse and widely used tool to analyze
RNAseq data without any particular focus on deconvolution or
related topics like detecting csDEGs. Normalization is an impor-
tant part of its workflow and, therefore, we have not utilized
it on dataset GSE60424, which is based on normalized csGEPs.
DESeq2 uses negative binomial generalized linear models and
it can accommodate for user defined covariates. Here, we have
used the cell type proportions and the interaction terms of them
and sample group as covariates. From the output, csDEGs are
then defined based on the significance of the interaction terms.

Key Points
• TOAST, CARseq, CellDMC and TCA have favourable

performance among the tested methods, if the data
does not contain many outliers.

• Methods designed for methylation data perform well
also on RNAseq data.

• The most important factors affecting the accu-
racy of the estimated cell type-specific differentially
expressed genes are (i) abundance of the cell type and
(ii) individual heterogeneity between the samples.

• Investigating residuals can reveal outliers and
whether the data is too heterogeneous for this
type of analysis.

Supplementary data
Supplementary data are available online at Briefings in Bioinfor-
matics.

Data availability
This study utilizes publicly available gene expression data with
either raw data and instructions to process it, or preprocessed
data downloadable from GEO or ArrayExpress databases. The
relevant accession ids are GSE60424 and GSE124742 for GEO data,
and E-MTAB-9221 for ArrayExpress data. The R codes to further
process the data are available as supplementary codes.
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