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Gastrointestinal cancer is a leading cause of cancer-related mortality and remains a major
challenge for cancer treatment. Despite the combined administration of modern surgical
techniques and chemoradiotherapy (CRT), the overall 5-year survival rate of
gastrointestinal cancer patients in advanced stage disease is less than 15%, due to
rapid disease progression, metastasis, and CRT resistance. A better understanding of the
mechanisms underlying cancer progression and optimized treatment strategies for
gastrointestinal cancer are urgently needed. With increasing evidence highlighting the
protective role of immune responses in cancer initiation and progression, immunotherapy
has become a hot research topic in the integrative management of gastrointestinal cancer.
Here, an overview of the molecular understanding of colorectal cancer, esophageal
cancer and gastric cancer is provided. Subsequently, recently developed
immunotherapy strategies, including immune checkpoint inhibitors, chimeric antigen
receptor T cell therapies, tumor vaccines and therapies targeting other immune cells,
have been described. Finally, the underlying mechanisms, fundamental research and
clinical trials of each agent are discussed. Overall, this review summarizes recent advances
and future directions for immunotherapy for patients with gastrointestinal malignancies.

Keywords: gastrointestinal cancer, colorectal cancer, gastric cancer, esophageal cancer, immune checkpoint
inhibitor, immunotherapy
INTRODUCTION

Gastrointestinal (GI) cancers are among the top 10 most prevalent and deadliest tumors worldwide,
accounting for 26% of global cancer incidence and 35% of all cancer-related deaths (1). To date,
surgical resection remains the primary treatment option for patients with colorectal cancer (CRC),
gastric cancer (GC) and esophageal cancer (EC). Despite advances in adjuvant and neoadjuvant
chemoradiotherapy (CRT), a fair number of patients still develop distant metastases and therapy
resistance (2). To improve the prognosis of GI cancers, new therapeutic strategies are urgently
needed. Over the last few decades, immune-targeted therapy has emerged as a revolutionary option
for cancer treatment (3); however, the regulatory role of the immune system underlying GI cancers
remains to be clarified. Fortunately, with the development of immunotherapy, cancer
org August 2021 | Volume 12 | Article 7059991
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immunotherapy mainly based on checkpoint inhibitors has
shown great prospects in clinical research, which shows the
importance of immunotherapy in cancer treatment.

In this review, we first provide an overview of GI in terms of
the epidemiology, molecular pathogenesis and standard therapy
regimens. In subsequent sections, we outline the functional and
molecular basis of oncoimmunology, with an emphasis on novel
immune checkpoint targets and examples of applications in both
laboratory research and clinical trials. We hope that this review
will bring new insight into cancer immunotherapy for
oncologists and immunologists.
GASTROINTESTINAL CANCERS:
A GENERAL OVERVIEW

Esophageal and Gastric Cancer
The esophagus and stomach are part of the upper GI tract, which
is part of the digestive system. As two major types of EC,
esophageal squamous cell carcinoma (ESCC) occurs more
commonly in the upper or middle part of the esophagus, while
esophageal adenocarcinoma (SCC) occurs in the lower part of
the esophagus. GC can develop in any part of the stomach and
can spread throughout the stomach and to other organs, such as
the small intestines, lymph nodes, liver, pancreas and colon (4).
EC and GC are listed as the seventh and fourth most prevalent
cancers worldwide (5). Based on estimates from 2018, 36.4% of
digestive cancers, including stomach, liver and esophageal
cancers, in China have a very poor prognosis, and the 5-year
overall survival (OS) rate is quite low (less than 35% from 2013 to
2015) (6).

In general, surgery plays a key role in the treatment of GC as well
as EC at an early stage. Moreover, systemic therapy of advanced,
metastatic esophageal and gastric cancer utilizes a combination of
multiple cytotoxic chemotherapeutic agents. Combination
chemotherapy with a platinum and fluoropyrimidine doublet,
such as FOLFOX, CAPOX, cisplatin/5-fluorouracil (5-FU), or
cisplatin/capecitabine, is a common regimen with the addition of
trastuzumab for the treatment of HER2-positive disease (5, 7, 8).
Other agents, such as irinotecan or taxanes, can be utilized with
fluoropyrimidines, platinum and/or ramicurumab or applied as
monotherapy for those unfit for combination regimens (9, 10).
Colorectal Cancer
In recent decades, the incidence rate of CRC has shown an upward
trend worldwide, especially in developing countries. In China, CRC
has an incidence rate exceeding 14.2/100,000, a mortality rate
exceeding 7.4/100,000 and a 5-year prevalence exceeding 52/
100,000. In addition, the prevalence rate of CRC is obviously
higher in senior citizens aged over 60 (11). Currently, traditional
therapies for CRC include endoscopic and surgical local excision,
downstaging preoperative radiotherapy and systemic therapy,
extensive surgery for locoregional and metastatic disease, local
ablative therapies for metastases, palliative chemotherapy, targeted
therapy, and immunotherapy. Although these new treatment
Frontiers in Immunology | www.frontiersin.org 2
options have doubled the OS for advanced disease to 3 years, the
best survival rates still occur in patients without metastasis.
THE RATIONALE FOR IMMUNOTHERAPY
IN GASTROINTESTINAL CANCER

The immune system exists within the body, and the execution of
immune function is performed by the entire immune system.
The immune system consists of immune organs, immune cells
and immune molecules. These cell types surrounding cancer
cells, including fibroblasts, endothelial cells, immune cells, and
extracellular molecules, which include cytokines, hormones,
cellular matrix, and growth factors, constitute the tumor
microenvironment (TME) (12). According to relevant reports,
some immune components in the TME can regulate the
occurrence and development of tumors, and these components
constitute the tumor immune microenvironment (TIME), which
is expected to become a promising target for cancer
immunotherapy (13–15) (Figure 1).
Components of the TME
Tumor Cells
Although many improvements in molecularly directed therapies
have been achieved, the prognosis of GI cancers remains poor
(12). Breakthroughs in the immune checkpoint blockade offer
potential therapeutic avenues, particularly with tools to
overcome the mechanisms of immunosuppression in the TME.
Currently, extensive publications highlight critical roles of the
TIME in GI cancers, including CRC and GC (16, 17). As an
important determinant of tumor progression and outcome in GI
cancers, the TIME can shape cancer cell phenotypes and therapy
responses through interplay with cancerous cells via chemokine
and cytokine signaling or direct contact (18–20). Several reports
have revealed that tumor progression and metastasis are
subjected to not only genetic alterations within tumor cells but
also the TIME elements. In brief, CD4+ T helper cells, CD8+
CTLs, NK cells, M1 macrophages, and DCs have been shown to
be associated with a good prognosis (21). Conversely, CD4+
FOXP3+ Th2 cells, M2 macrophages, and myeloid-derived
suppressor cells (MDSCs) have been attributed to a poor
outcome (18).
Immune Cells
Tumor-infiltrating lymphocytes (TILs) are immune cells that
have migrated to tumor tissue and the local microenvironment.
This population is indicative of an immune response generated
by the patient against the malignancy. TIL populations across GI
tumors generally contain T lymphocytes, particularly CD8+
cytotoxic T lymphocytes (CTLs) (12). In EC cells, blocking the
programmed cell death 1 (PD-1)/programmed cell death ligand
1 (PD-L1) and TGF-b signaling pathways can synergistically
restore the function of antigen-specific CD8+ T cells and the
capacity of antitumor T cells (22). In addition, functional
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MAGE-A3-specific CD8+ T cells have an independent
prognostic effect on the survival of patients with ESCC (22).
Recent studies have demonstrated that higher numbers of CD3+,
CD8+, or CD45RO+ T cells in tumor tissue are significantly
correlated with a superior disease outcome in patients with GC,
and an imbalance in Th1 and Th2 cells can lead to an
immunosuppressive state dominated by Th2-type cells (23).
The Th1/Th2 cell ratio in peripheral blood in GC can be used
to predict postoperative prognosis (24). Similarly, the type,
density, and location of immune cells in CRC also have
prognostic value that is superior to and independent of those
of the tumor node metastasis (TNM) classification (25). In
addition to T cells, there are many other immune cell types
that infiltrate GI cancers.

Tregs, as a subtype of CD4+ T cells, can inhibit effector T cells
via a series of chemokine signaling (26). FOXP3+ Tregs, a
subtype of Tregs, their roles are ambiguous. Some studies have
shown that a high density of FOXP3+ Tregs is beneficial to the
prognosis of CRC after undergoing chemo or chemoimmunotherapy
(27). On the other hand, it has been shown that Tregs in the
esophageal mucosa and peripheral blood of patients with
esophageal cancer increase significantly (28).

DCs, on the one hand, express MHC Class II and can present
their antigenic peptides to CD4+ T cells. They activate effector
Frontiers in Immunology | www.frontiersin.org 3
T cells to attack tumors and play a crucial role in shaping the host
response to cancerous cells. GC patients with good DC
infiltration had lower lymph node metastases and lymphatic
invasion and better 5-year survival rates (78%) than patients with
less DC infiltration (29). On the other hand, activated DCs help
in the expansion of Tregs, consequently leading to regulation of
immune responses and thereby tumor immune escape (30).
Meanwhile, DCs also stimulate the formation of M2
macrophages, thereby increasing the secretion of IL-10 and
TGF-b (31), which reduces the expression of IL-12 expressed
by DCs and inhibits the activation of adaptive responses (32).

Tissue-resident macrophages are present prior to the
development of any malignancy (33, 34). Tumor-associated
macrophages (TAMs) can differentiate into two distinct
subtypes, M1 and M2. M1 macrophages secrete IL-6 and IL-12
to mitigate resistance during tumor development; they can also
be activated by IFN-g to secrete TNF to kill cancer cells, while
M2 macrophages secrete growth factors that promote
neoangiogenesis and tumor proliferation (35). In various types
of cancers, increased numbers of TAMs are often related to a
poor prognosis. However, the roles of TAMs in CRC remain
controversial. According to some reports, on the one hand, a
high density of TAMs predicts a better postoperative outcome
(36), and on the other hand, TAMs also secrete cytokines that
FIGURE 1 | Modulation of the tumor immune microenvironment. The figure shows that immune cells in TME regulate tumor growth through cytokines and other
regulatory factors. TGF-b, transforming growth factor b; IL, interleukin; NK cells, natural killer cells; TNF, tumor necrosis factor; IDO, indoleamine 2,3-dioxygenase;
CAFs, cancer-associated fibroblasts; Treg cells, regulatory T cells.
August 2021 | Volume 12 | Article 705999
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favor tumor development (37), which indicates that the impact
of TAMs on CRC needs to be further explored. Additionally, in
accordance with some studies, TGF-b and other growth factors
secreted by cancer-associated fibroblasts (CAFs) promoted the
proliferation of CRC cells through the Smad2/Smad4 pathway
(38) and MAPK/PI3K/AKT pathway (39).

Neutrophils are similar to TAMs in classification. Neutrophils
differentiate into N1 and N2 according to their polarization state.
N1 has antitumor activity, which directly kill tumor cells by
releasing reactive oxygen species (ROS) and reactive nitrogen
species (RNS) (40, 41) and can also recruit M1 macrophages and
promote T cell activation. In contrast, N2 has tumor-promoting
activity, promoting angiogenesis and inhibiting the function of
NK cells by releasing matrix metalloproteinase 9 (MMP9) (42).
In addition, N2 recruits M2 macrophages and Treg cells and
suppresses the function of CD8+ T cells, as well as other native
neutrophils (43). Neutrophil extracellular traps (NETs) activate
Toll-like receptor 9 on CRC cells through the MAPK pathway,
which leads to the growth, migration and invasion of CRC
cells (44).

B lymphocytes play an important role in tumor immunity
and cancer biology. However, several studies have revealed that B
lymphocytes can take part in carcinogenesis and tumor
progression by producing antibodies to facilitate chronic
inflammation in the TIME (45, 46). Moreover, regulatory B
cells can also restrain antitumor responses mediated by T cells in
cancer (47). Regulatory B cells (Breg cells), a novel subset of B
lymphocytes, appear to facilitate tumor growth and progression
via the production of IL-10 to suppress the activity of CD8+ T
cells in squamous carcinoma (48). In CRC, the presence of B cells
seems to be detrimental to prognostic outcome (49).

NK cells are unique in that they have both innate and
adaptive immune properties. NK cells participate in the
antitumor immune response through the production of
proinflammatory cytokines, which recruit and induce the
proliferation of other immune cells (12). Activated NK cells
can directly kill some tumor cells and virus-infected cells. In EC,
expanded NK cells had high cytotoxicity against ESCC cells,
especially those with the epithelial-mesenchymal transition
phenotype (50). In another investigation, a higher NK cell
density was shown to be significantly related to a higher
survival rate in GC, especially for advanced patients (51).

Cytokines/Chemokines
Cytokines are important players in the tumor microenvironment,
and cytokines/chemokines are used to establish connections
between various immune cells, such as IL-6 (52), IL-10 (53),
IL-12 (54), IL-35 (55), epidermal growth factor (EGF), vascular
endothelial growth factor (VEGF), tumor necrosis factor alpha
(TNF-a) (56), interferon g (IFN-g) (57), indoleamine-2,3-
dioxygenase (IDO) (58), and transforming growth factor beta
(TGF-b) (59). For example, IL-10 and TGF-b switch
macrophages from a M1-like (proinflammatory or classically
activated) state to a M2-like (anti-inflammatory or alternatively
activated) state. M1 macrophages induce antitumor immune
signaling and correlate with tumor killing capacity. Conversely,
M2 macrophages exhibit protumor effects and contribute to
Frontiers in Immunology | www.frontiersin.org 4
fibrosis and the production of matrix proteins (60) as well as
angiogenesis, metastasis, and the suppression of adaptive
immunity (61, 62). Human CRC cell lines cultured in vitro are
able to polarize macrophages toward the M2 phenotype (63). In
GC patient samples, M2 macrophages in the stroma may be
correlated with the presence of a lesion (64). The CCL2-CCR2
axis in esophageal carcinogenesis contributes to immune evasion
and tumor promotion through the PD-1 signaling pathway (65).
At the same time, the activity of NK cells and effector T cells was
suppressed due to the increased secretion of cytokines such as
IL-10, TGF-b, EGF and VEGF (50).

Cells in the Extracellular Matrix (ECM)
Unlike strictly defined immune cells, fibroblasts are present
within the stromal microenvironment and serve to produce
extracellular matrix (ECM) proteins in particular collagen.
They actively manufacture and respond to cytokines in
cooperation with immune cel ls within the stromal
microenvironment. Fibroblasts are also associated with
epithelial cell polarity, proliferation, and, to some extent,
tumorigenic potential. CAFs have been shown to drive
increased tumor growth compared to normal fibroblasts (66).
They contribute to cancer cell survival and progression via a
series of nutrient-rich ECM proteins or ECM-degrading
proteases, resulting in persistent chronic inflammation within
the tumor microenvironment and enhanced epithelial
mesenchymal transition (EMT) of tumor cells (67, 68).

Recent studies have demonstrated that CAFs have the capacity
to produce proinflammatory cytokines, which disrupt the normal
cytokine balance to stimulate tumor growth by initiating
angiogenesis and inhibiting CTLs (69, 70). Additionally, CAFs
have been shown to secrete high levels of the proinflammatory
cytokines IL-1b, IL-8, IL-10, tumor necrosis factor-alpha (TNF-a),
monocyte chemoattractant protein-1 (CCL2), stromal derived
factor-1 (CXCL12) and interferon-beta (IFN-b) (71). The crucial
role of CAFs in tumorigenesis has been addressed by genetic
analyses showing that their gene expression profiles are very
different from those of normal breast fibroblasts. Moreover, the
expression profiles of CAFs obtained from tumors with poor versus
good prognosis are also very different (72). Good-outcome
fibroblasts were associated with immune modulators involved in
the Th1 immune response. This includes the expression of T cell
receptor complexes (CD8a, CD247, and CD3D), MHC class I
protein binding and granzyme A/B activity. The poor-outcome
stroma had increased levels of hypoxia and angiogenesis and
decreased chemokines that stimulate NK migration and T cell
survival (73).

Mechanisms of Tumor Immune Escape
One role of the immune system in mediating tumorigenesis is called
“cancer immune editing”, and it can be classified into 3 stages:
elimination, stalemate, and escape. The elimination stage includes
innate and adaptive immune responses to specific tumor-related
antigens and is characterized by the effector functions of T cells, B
cells and NK cells mediated by cytokines, including IFN-a, IFN-g
and IL-12. The stalemate stage of immune killing is mediated by the
adaptive immune system and the persistence of a small number of
August 2021 | Volume 12 | Article 705999
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malignant clones. The escape stage involves malignant clones
gaining the ability to evade surveillance carried out by the
adaptive immune system.

The understanding of the mechanisms of tumor immune escape
changes with each passing day, and the established mechanisms are
as follows. First, there can be a lack of a specific antigen or an
alteration in antigen processing. In a study of SCC cell lines and
tumor tissues, levels of MIR125a-5p andMIR148a-3p were found to
be increased, reducing levels of ATP binding cassette subfamily B
member 3 (TAP2) and MHC I, both of which are required for
antigen presentation (74). Tumor cells lack the expression of major
MHC I molecules or lose the intracellular processing mechanism,
enabling the transfer of tumor antigens to the surface of tumor cells
for T cells to recognize (75). The high expression of MHC I
molecules in SCC is related to markers of the adaptive immune
response and significantly decreased OS time in patients (74).
Second, tumors can promote the formation of an immune-
tolerant microenvironment by affecting the levels of cytokines,
such as by increasing the secretion of IL-6, IL-10 and TGF-b or
by consuming IL-2. The changes in these cytokines in EC cells
promote the infiltration of Treg cells, MDSCs and other types of
cells, thus suppressing the function of cytotoxic T cells (76). Third,
tumors can upregulate the expression of PD-1 and PD-L1 to induce
peripheral T cell depletion (77). Finally, many oncogenic cell
signaling pathways were originally thought to be used only to
accelerate cell division and growth, but they are now thought to
be factors mediating immune escape. For example, constitutively
activated KIT signaling in GI tumors can lead to overexpression of
indoleamine-2,3-dioxygenase (IDO), thus increasing Treg cell
infiltration and promoting tumor growth; furthermore, melanoma
cells activated by b-catenin/Wnt signaling can inhibit DC-mediated
antigen presentation and prevent CD8+ T cell infiltration (78).
IMMUNOTHERAPEUTIC STRATEGIES
IN GASTROINTESTINAL CANCER:
THE CURRENT SCENARIO AND
FUTURE PERSPECTIVES

Immunotherapy refers to the activation of the body’s immune
system to fight against tumor cells. It manipulates the immune
system to target cancer antigens or break the barriers of T cell
infiltration. Immunotherapy methods mainly include cytokines,
immune checkpoint inhibitors, CAR T cell treatments, tumor
vaccines, and treatments involving other immune cells in the TME.

Activating the Immune Response -
Cytokines
Several cytokines impede cancer cell growth via direct
antiproliferative or proapoptotic actions or by indirectly
enhancing the cytotoxic effect of immune responses against
cancer cells. For example, autocrine IL-10 activity on CD8+ T
lymphocytes has been shown to be crucial for prolonging the
effector activity of cytotoxic CD8+ T cells (79, 80). This concept
has been evaluated in a phase I clinical trial in advanced treatment-
refractory tumors (NCT02009449) using IL-10 conjugated with
Frontiers in Immunology | www.frontiersin.org 5
PEG to increase its half-life. The administration of PEGylated
cytokines (termed pegilodecakin) resulted in partial responses in
patients with uveal melanoma, renal cell carcinoma (RCC) and
CRC (81). In addition, CCR5 is the receptor for both CCL3 and
CCL5, while CCR2 binds to CCL2. In patients with metastatic CRC,
CCR2/CCR5 inhibitors, coupled with either chemotherapy or
nivolumab, suppressed myeloid cell recruitment by blocking the
activity of these chemokines (82). Another paradigmatic case is
IFN-a, first discovered in 1957, which induces antitumor efficacy by
directly augmenting NK cell-mediated killing and acting on T and B
lymphocytes to modulate their activity and/or survival.

Immune Checkpoint Inhibitors
Immune checkpoints play key roles in the innate immune system
by ensuring that immune cells are capable of distinguishing self-
antigens from exogenous antigens. In the TME, tumors often
display self-antigens and escape immune surveillance. By
blocking the interaction between immune cells and tumor cells
expressing immune checkpoint molecules, checkpoint inhibitors
allow the immune system to recognize tumor-associated antigens
and consequently destroy malignant cells. As shown in Figure 2,
when CTLA-4 and LAG-3 are bound by their corresponding
monoclonal antibodies, T cells become activated and differentiate
and proliferate; TIM-3 and PD-1 on T cells and PD-L1 on tumor
cells are bound by their corresponding antibodies, which
prevents T cell death, inhibits tumor cell evasion and promotes
tumor cell apoptosis (Figure 2).

CTLA-4
As the first inhibitory receptor identified, CTLA-4 is mainly located
on activated T lymphocytes and is also highly expressed in several
types of cancer (83). There is a competitive interaction between
CD28 and CTLA-4 in binding with CD80/CD86 molecules. CTLA-
4 transmits an inhibitory signal to T cells, whereas CD28 transmits a
stimulatory signal. A recent study revealed that the combined
consideration of CTLA-4 expression and the platelet-lymphocyte
ratio (PLR) has potential prognostic value for people suffering from
ESCC (84). Therefore, it is not surprising that CTLA-4-targeted
agents have shown great potential in the treatment of many cancers.
In clinical trials, the tumor response rates of two anti-CTLA-4
agents, ipilimumab and tremelimumab, were approximately 10%
(85). A large phase II clinical study explored the efficacy and safety
of nivolumab ( ± ipilimumab) in the treatment of advanced CRC.
The results revealed that most patients with microsatellite
instability-high (MSI-H) metastatic CRC (mCRC) benefited from
the nivolumab + ipilimumab regimen, and the regimen was well
tolerated, but whether the combination therapy is superior to either
drug as monotherapy therapy is still uncertain (86).

PD-1 and PD-L1/L2
PD-1 is one of the crucial immune checkpoint receptor proteins on T
cells, B cells and NK cells and can bind to PD-L1 and/or PD-L2,
which are located on the surface of multifarious tumor cells as well as
hematopoietic cells. The combination of PD-1 and PD-L1/L2
expressed on tumor cells can dramatically inhibit the apoptosis of
tumor cells, promoting the depletion of peripheral effector T cells and
catalyzing the transformation of effector T cells into Treg cells (87).
August 2021 | Volume 12 | Article 705999
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In 2017, the US Food and Drug Administration (FDA) approved
pembrolizumab for the treatment of unresectable or metastatic
MSI-H or mismatch repair deficient (dMMR) CRC that
progressed following treatment with fluoropyrimidine, oxaliplatin,
and irinotecan. This approval was based on results from the phase II
CheckMate-142 trial (88), in which the objective response rate
(ORR) was 28% in mCRC patients who received prior
fluoropyrimidine, oxaliplatin, and irinotecan; in the trial, 1 patient
had a complete response (CR), and 14 patients had partial responses
(PRs). Furthermore, the expression of PD-L1 in cancer cells and the
TME may contribute to the development of EBV-associated GC,
and PD-L1 overexpression predicts large tumor size, lymph node
metastasis, and poor prognosis in GC (89). A recent study presented
at the American Society of Clinical Oncology (ASCO) meeting
revealed that an anti-PD-1 monoclonal antibody could significantly
prolong the OS of PD-L1-positive patients with advanced EC
regardless of whether it was used alone or in combination with
chemotherapy; furthermore, the antibody was highly safe (90, 91).

TIM-3
TIM-3 is a cell surface molecule expressed on DCs, monocytes, CD8
T cells and Th1 cells. The ligands of TIM-3 are frequently
overexpressed in tumor cells. TIM-3 is a negative regulator of the
antitumor immune response and has been proven to be associated
with the occurrence and development of several malignant tumors.
At both the mRNA and protein levels, the expression of TIM-3 in
ESCC is remarkably higher than that in matched adjacent normal
tissues; furthermore, researchers have found a close connection
between the overexpression of TIM−3 and poor survival in patients
with ESCC. Similarly, TIM-3 knockdown significantly inhibited the
Frontiers in Immunology | www.frontiersin.org 6
propagation, migration and invasion of ESCC cell lines. Further
research explored whether the depletion of TIM-3 could restrain
several signal transduction pathways, including the snail, p-GSK-3b
and p-AKT pathways (92). In addition, some studies have suggested
that the increased expression of TIM-3 on T cells may be partially
responsible for the development of GC by inducing the secretion of
IFN-g and TNF-a (93). Another study has shown that reduced
TIM-3 expression induced by genetic polymorphisms of TIM-3
may promote CRC invasion and metastasis (94). Taken together,
these findings show that TIM-3 is a critical mediator in the
progression of various cancers and may serve as a potential
therapeutic target.

LAG-3
LAG-3 is another membrane protein expressed on B cells, some T
cells, NK cells and TILs. LAG-3 can enhance the activation of Treg
cells and prevent T cells from proliferating and differentiating into
effector cells by binding with MHC II. In addition, some basic
research has shown that dual blockade of LAG-3 and PD-1 can
induce strong antitumor action (95). Furthermore, high expression
of LAG-3 is associated with an improved survival rate in patients
with ESCC or CRC and is being evaluated as a biomarker to predict
response to antitumor treatment. These results indicate that LAG-3
can be used as a marker of the immune response for patients with
ESCC or CRC (96, 97).

SIRPa
Signal regulatory protein-a (SIRPa) acts as an inhibitory receptor
and is expressed on myeloid cells such as macrophages, DCs, mast
cells and neutrophils. It interacts with the broadly expressed
FIGURE 2 | Mechanisms of immune checkpoint inhibitors. The left picture shows that the immune checkpoint molecules on T cells combine with the corresponding
ligands on cancer cells, resulting in immunosuppression of T cell. The right picture shows that immune checkpoint molecules bind to the corresponding antibody to
prevent T cell death. TCR, T cell receptor; MHC, major histocompatibility complex; TIM-3, T cell immunoglobulin 3; CTLA-4, cytotoxic T-lymphocyte-associated
protein 4; PD-1, programmed cell death 1; PD-L1, programmed cell death ligand 1; LAG-3, lymphocyte activation gene 3.
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transmembrane protein CD47, also called the “don’t eat me” signal.
In addition, the interaction between CD47 and SIRPa can help
tumor cells avoid phagocytosis in the TME (98). The biological and
preclinical relevance of the interaction of SIRPa and CD47 has been
extensively investigated. A recent study showed that blocking
SIRPa/CD47 signaling in ESCC cell lines could enhance the
phagocytosis of ESCC cells in a dose-dependent manner (99). In
addition, with the evolution of cancer immunotherapy, SIRPa/
CD47 immunotherapy to stimulate the innate immune system as a
cancer treatment has drawn increasing interest. Other reports have
confirmed that the high expression of CD47 is an independent
prognostic factor in GC, and the OS rate of patients with CD47-
positive tumors was significantly lower than that of patients with
CD47-negative tumors (100). Aberrant expression of CD47 has also
been reported to strongly promote the proliferation of tumor
cells (101).
CAR T Cell Treatments
Chimeric antigen receptor (CAR) T cell therapy includes T cell
modifications that enable activated T cells to recognize specific
tumor cell surface antigens independent of MHC and eventually
eliminate malignant cells (102). After many years of medical and
laboratory research as well as specific clinical trials, in 2017, the US
FDA approved the use of two CAR T cell therapies (103, 104). In
recent years, some laboratories have attempted to exploit EphA2.
CAR T cells recognizing EphA2 have demonstrated the capacity to
identify and attack ESCC cells in vitro. These findings open a new
avenue for future immunotherapies for ESCC (105). Coincidentally,
CAR T cell therapy has been widely used in the treatment of other
GI cancers and liver cancers. The HER2 gene plays an important
role in the occurrence and development of GC, which highly
expresses the protein p185; p185 shows negative expression in
healthy individuals, and thus, it could be used as an ideal target
for antitumor therapy with CAR T cells (106). Carcinoembryonic
antigen (CEA), a sensitive tumor biomarker, was found to be a
potent target for CAR T cell therapy for GI cancers (106). Therefore,
a great deal of research has been carried out on the treatment of
different cancers, such as liver cancer, cholangiocarcinoma and
pancreatic cancer. Combined treatment integrating CAR T cell
therapy with targeted therapies, such as therapies targeting CEA,
HER2, GPC3, MUC1, CD133, EpCAM or EGFR, has exhibited
great potential (107–110).
Targeted Therapy Mediating Immune Cells
NK Cells
NK cells are innate lymphocytes and play a pivotal role in host
immunity by killing virally infected and/or cancerous cells. Several
clinical studies have suggested NK cell-based immunotherapy as a
potential therapy for cancer. Inhibitory receptors, such as killer-cell
immunoglobulin-like receptors (KIRs) and CD94/NK group 2
member A (NKG2A), recognize human leukocyte antigen (HLA)
class I molecules on normal host cells. By lacking inhibitory receptor
ligands, tumor cells that have downregulated surface MHC-I
expression become susceptible to attack by NK cells. Current NK
cell-based cancer immunotherapy aims to reverse tumor-induced
Frontiers in Immunology | www.frontiersin.org 7
NK cell dysfunction and sustain NK cell effector functions (111). To
fight against tumors, NK cells can also bemodulated to target the cell
types responsible for maintaining the immunosuppressive TME,
including M2-polarized macrophages, MDSCs, Treg cells, and
fibroblasts (112). According to recent reports, adoptive cell therapy
(ACT) has become a powerful tool to improve host antitumor
activity (113), mainly including autologous NK cell transfer,
allogeneic NK cell transfer and CAR-engineered NK cells (114).
The three methods all artificially activate and expand NK cells in
vitro and then transfer the modified NK cells to patients. Under the
stimulation of some cytokines and costimulators, the antitumor
ability of NK cells has been significantly improved (113, 115), and
NK cells are expected to achieve staged success in the course
of immunotherapy.

NKT Cells
Natural killer T cells (NKTs) are unique T lymphocytes that have
the characteristics of conventional T cells and natural killer cells
(116). They play an important role in connecting the natural
immune system with the adaptive immune system and are also
an important intermediary for mediating the immune response and
tumor monitoring (117). It is usually composed of two parts,
namely, the invariant TCRa chain and the semivariant TCRb
chain, recognizing the lipid antigen presented by the nonclassical
MHC class I molecule CD1d (118). More importantly, the
activation of CD1d-dependent invariant natural killer T cells
(iNKT cells) can promote the release of cytokines such as IL-5,
IL-6, IL-10, IL-17, IL-21, TNF-a, TGF-b and granulocyte-
macrophage colony stimulating factor (GM-CSF) (116, 119, 120)
and indirectly activate the antitumormechanism. At present, several
cancer immunotherapies based on iNKT cells have been developed,
mainly including antigen-presenting cells (APCs) pulsed with a-
GalCer, the transfer of ex vivo–expanded and/or activated iNKT
cells, and iNKT cell–activating ligands (117). First, a clinical
experimental study has not indicated any major toxicity or severe
side effects in patients who have received repeated injection of the
tumor immunity agonist a-GalCer (121), implying its clinical value
in improving tumor immunity. In addition, patients with head and
neck squamous cell carcinoma, who were treated with the
combination of iNKT cells and a-GalCer-pulsed DCs, the
antitumor immunity was greatly improved (122, 123)
Macrophages
Tumor-infiltrating immune cells play an ambiguous role in tumor
development and progression. It has been extensively reported that
TAMs promote or inhibit the expansion and dissemination of
cancer cells depending on their functional states. Tumor-
infiltrating macrophages are mainly recruited by CCL2 or CSF-1,
and TAM depletion therapy (e.g., CCR2 or CSF1R antagonists) has
already been tested in clinical trials for malignant solid tumors
(124, 125). Some studies have also shown that CSF1R inhibitors
represent a promising combination partner for T cell-enhancing
immunotherapies (126, 127). Further investigation of the synergistic
effects of these agents with immunotherapies will lead to the
improvement of ongoing immunotherapeutic strategies. At the
same time, some cancer immunotherapies targeting TAMs are on
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the rise, and most of them follow the principle of directly reducing
the formation of TAMs or polarizing TAMs from the pro-tumor
phenotype (M2-like), which helps tumor development to an
antitumor phenotype (M1-like) (128). By preventing the
recruitment of TAMs or blocking the CSF1/CSF1R axis, the
survival rate of TAMs can be significantly reduced (129, 130), as
mentioned above. In addition, some studies have shown that the
polarization of TAMs to M1 macrophages can be promoted by
targeting antibody-dependent cellular phagocytosis (ADCP)
induced by the SIRPa/CD47 axis, thus enhancing the tumor
immune response (131). Finally, a possible strategy for cancer
treatment is the use of natural living macrophages as drug
delivery vehicles (128).

gdT Cells
As a subtype of T lymphocytes, gdT cells have a wide range of
antigen recognition abilities and can be used to recognize a series of
antigens, including mitochondrial ATPase, humanmutS homolog 2
and nonpeptide phosphoantigens (132–134), without using
traditional APC to mediate antigen recognition (135, 136). The
mechanism of antigen recognition depends on its peptide sequence.
Since the sequence of complementarity determining region 3
(CDR3) of the delta chain is longer and more varied, it is more
important in the process of antigen recognition (137). In addition to
expressing NK cell receptors such as NGG2D, it may be a bridge
between the innate immune system and adaptive immunity (138).
According to related reports, under certain conditions, gdT
lymphocytes may be activated in the late stage of the immune
response (139, 140), which shows cytotoxicity by secreting perforin
and granzyme and can also regulate the secretion of IFN-g and
TNF-a (141). Conversely, some cytokines may drive gdT
lymphocytes to remodel tumor-immunosuppressive functions;
thus, there is an urgent need to optimize gdT lymphocytes to
obtain new antitumor targets (142). A recent study demonstrated
for the first time that CAR-gdT cells obtained by modification
using CAR technology are able to migrate to tumor cells and cross-
express antigens (143), which opens a new avenue for cancer
immunotherapy research.
IDO1
IDO1 is the rate-limiting enzyme that participates in tryptophan
metabolism by converting the amino acid L-tryptophan (Trp) into
L-kynurenine (Kyn). This enzyme assists tumor cells in maximally
utilizing essential amino acids such as tryptophan in the TME to
support tumor growth. However, as immune cells lose tryptophan,
they lose their ability to fight cancer cells. Overexpression of IDO1
in tumor cells inhibits T cell function and impairs immune
surveillance, leading to immune escape (144). In addition, it has
been verified that the expression of IDO1 is associated with
prognosis in EC and could be used as a prognostic biomarker
(145). In a multivariate analysis, IDO1 expression was proven to be
an independent prognostic factor for developing recurrence (146).
Chen et al. reported that the enzyme activity of IDO1 directly
affected the radiosensitivity of CRC, and IDO1 inhibition made
CRC cells more sensitive to radiation-induced cell death and
protected the normal small intestinal epithelium from radiation
Frontiers in Immunology | www.frontiersin.org 8
toxicity, indicating that IDO1 inhibition enhances the radiotherapy
effect in CRC (147). According to relevant studies, IDO1 can also
cooperate with COL12A1 to promote GC metastasis. This new
discovery suggests that IDO1 and COL12A1 may be promising
targets for anticancer therapy in GC (148).

Tumor Vaccines
Tumor vaccines are a therapeutic method that can help educate the
immune system to recognize cancer-related antigens and achieve
antitumor effects. Tumor vaccines mainly include whole-cell
vaccines, molecular vaccines and DC vaccines. DCs are one of the
most effective APCs found in humans thus far. In addition, DC
vaccines have achieved ideal results in clinical trials of malignant
melanoma and prostate cancer (149). Due to the lack of MHC
molecules and costimulatory molecules located on the surface of
tumor cells, T lymphocyte immunity cannot be activated. Therefore,
the immune response triggered by tumor vaccines mainly depends
on the primary processing and further presentation of antigens by
APCs, which is a key step in the development of effective adaptive
immunity. As a new treatment strategy, immunotherapy based on
tumor vaccines has received increasing attention in the treatment of
advanced EC and other GI cancers (124, 150).
CLINICAL APPLICATION OF
IMMUNOTHERAPIES IN
GASTROINTESTINAL CANCERS

Colorectal Cancer
Immunotherapies have been studied extensively in CRC due to a
better understanding of CRC subsets (particularly MSI/MMR
status) and how they respond to immune modulation. Initial
work on checkpoint inhibitors in CRC showed limited success.
Neither the CTLA-4 inhibitor tremelimumab nor the PD-1
inhibitor nivolumab showed an objective response in CRC
patients (151, 152). The Check-Mate-142 trial (phase II)
evaluated single-agent nivolumab and nivolumab plus
ipilimumab in patients with metastatic CRC with either MSI-H/
dMMRorMSS/pMMRstatus. This study first investigatedwhether
MSI-H tumors may be more responsive to immune checkpoint
inhibitor therapy (88). Subsequent studies investigated targeting
both CTLA-4 and PD-1 with ipilimumab/nivolumab in the
pretreated population. The results were encouraging in that
the ORR was 55%, the disease control rate for ≥ 12 weeks was
80%, and the progression-free survival (PFS) rates were 76 and
71% (9 and 12 months, respectively) (153). In the KEYNOTE-
164 phase II trial, pembrolizumab monotherapy achieved an
ORR of 28% and an excellent 1-year OS rate of 72% in heavily
pretreated patients with MSI-H mCRC (154) responses to
immune checkpoint inhibitors (155, 156).

Various regimens have been implemented to enhance
immunogenicity in MSS/pMMR mCRC. The combination of
atezolizumab and the MEK inhibitor conbimetinib showed
limited effectiveness in CRC patients at advanced stages
compared to regorafenib (157). A combination of FOLFOX
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and PD-1/PD-L1 inhibitors achieved an ORR of up to 50% and
increased PFS (from 14 to 16 months) (158, 159). Preliminary
data from the AVETUX trial demonstrated that a combination of
FOLFOX, cetuximab, and the PD-L1 antibody avelumab showed
a 75% ORR in patients with treatment-naïve microsatellite stable
(MSS) mCRC (160). In contrast, the combination of
atezolizumab (anti-PD-L1) with maintenance therapy with
fluoropyrimidines and bevacizumab failed to improve the PFS
of mCRC patients (161). In conclusion, all mCRCs should be
tested for their microsatellite status. In MSI-H/dMMR CRC,
checkpoint inhibitors should be used after therapy with
fluoropyrimidine, oxaliplatin, and irinotecan. Currently, the
value of checkpoint inhibitors in MSS CRC is still unclear.

Gastroesophageal Cancer
Compared to CRC, the application of immunotherapy has been
limited in gastroesophageal cancer due to tumor heterogeneity and
complex immunosuppressive mechanisms. Checkpoint inhibition
therapy showed some success in early trials, which is likely to be
related to a specific phenotype of GC and its histopathology (162).

According to the outcomes of the KEYNOTE-059 trial,
pembrolizumab has been approved by the FDA for the
management of refractory GC. In addition, a series of KEYNOTE
trials have been conducted in EC, including KEYNOTE-180,
KEYNOTE-181, and KEYNOTE-590 (90, 163, 164). Nivolumab,
based on the outcomes of ATTRACTION-2, was also approved in
heavilypretreated tumors in Japan (165).Checkmate-032confirmed
that the combination of ipilimumabwith nivolumabwas superior to
nivolumab monotherapy (166, 167). ATTRACTION-3 compared
nivolumab to chemotherapy in refractory OC and demonstrated
significant improvement in survival (medianOS 10.9months vs. 8.4
months; hazard ratio fordeath0.77, p=0.019) (168).Understanding
the role of immunotherapy in GC has been improved with a shift in
the classification of tumors, and four genomic subtypes of GC have
been identified. Similar to CRC, the MSI-H population in GC has
shown an encouraging response, as indicated by a subset analysis of
trials (169). The EBV subtype is evenmore promising (170), with all
Frontiers in Immunology | www.frontiersin.org 9
patients of this subtype responding to pembrolizumab
immunotherapy in a phase II trial (171). Meanwhile, there are still
ongoing trials to evaluate the efficacy of different available
immunotherapy agents, such as KEYNOTE-062 and KEYNOTE-
061 (Table 1).

CONCLUDING REMARKS

In summary, this review systematically describes immunological
aspects of GI cancer and discusses the latest progress in cancer
immunotherapy.Although immune-targeted therapyhasgradually
become the mainstream strategy for cancer treatment, side effects,
drug resistance and a low response rate still represent challenges for
researchers and clinicians. In addition, because immunotherapy
may not benefit all the cancer types, there are some patient
populations who cannot receive immunotherapy. Based on the
above, we should strive to improve the understanding of tumor
immunology, and the curative effect should be emphasized in
further research. Over the next few decades, we expect to see the
advent of more effective immunotherapy, the development of
predictive biomarkers or more personalized treatment to help
patients who are less likely to respond to current treatments to
improve the treatment effect.
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TABLE 1 | Landmark trials of immunotherapy in GI.

Name of trial Title Interventions Phases

Colorectal Cancer
KEYNOTE 028 Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal

cancer
Drug:
Pembrolizumab

Phase
2

CheckMate 142 Nivolumab + ipilimumab combination in patients with DNA mismatch repair-deficient/microsatellite instability-high
metastatic colorectal cancer

Drug:
Nivolumab

Phase
2

CheckMate 142
(further analysis of
subgroup)

Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade Drug:
Nivolumab+
Ipilumumab

Phase
2

Gastroesophageal Cancer
ATTRACTION-2
CheckMate-032

A study of nivolumab by itself or nivolumab combined with ipilimumab in patients with advanced or metastatic solid
tumors

Drug:
Nivolumab

Phase
1-2

KEYNOTE-012
KEYNOTE-059

A study of pembrolizumab in participants with recurrent or metastatic gastric or gastroesophageal junction
adenocarcinoma

Drug:
Pembrolizumab

Phase
2

NCT01585987 An efficacy study in gastric and gastroesophageal junction cancer comparing ipilimumab versus standard of care
immediately following first line chemotherapy

Drug:
Ipilimumab

Phase
2

NCT01693562 A phase I dose-escalation and cohort expansion study of lirilumab (anti-KIR; BMS-986015) administered in
combination with nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients (Pts) with advanced refractory solid
tumors.

Drug:
MEDI4736

Phase
1-2
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GLOSSARY

GEJ gastric/esophagogastric junction
CRC colorectal cancer
EC esophageal cancer
GC gastric cancer
ESCC esophageal squamous cell carcinoma
SCC esophageal adenocarcinoma
CRT chemoradiotherapy
TNM tumor node metastasis
CAR-T chimeric antigen receptor-therapy
EGFR2 epidermal growth factor receptor 2
TAMs tumor-associated macrophages
IFN interferon
IL interleukin
TCR T cell receptor
BCR B cell receptor
MHC major histocompatibility complex
NK cell natural killer cell
DCs dendritic cells
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
LAG-3 lymphocyte activation gene 3
ASCO American Society of Clinical Oncology
TIM-3 T cell immunoglobulin 3
PD-1 programmed cell death 1
PD-L1 programmed cell death ligand 1
ACT adoptive cell therapy
NKT cell natural killer T cell
IDO indoleamine 2,3-dioxygenase
MSI microsatellite instability
MSS microsatellite stability
dMMR defective match repair
pMMR proficient match repair
ORR objective response rate
EBV Epstein-Barr virus
APC antigen-presenting cell
CMS 1-4 consensus molecular subtype 1-4
TGF-b transforming growth factor b

(Continued)
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TNF-a tumor necrosis factor a
GM-CSF granulocyte-macrophage colony stimulating factor
Mst1 macrophage stimulator 1
CCL2/
CCR2

C-C motif chemokine ligand 2/C-C motif chemokine ligand 2
receptor

CSF1R colony stimulating factor-1 receptor
KIRs killer-cell immunoglobulin-like receptors
NKG2A CD94/NK group 2 member A
HLA leukocyte antigen
TME tumor microenvironment
TIME tumor immune microenvironment
MDSCs myeloid derived suppressor cells
CDR3 complementarity determining region 3
ADCP antibody-dependent cellular phagocytosis
CEA carcino-embryonic antigen
HER2 human epidermal growth factor receptor-2
GPC3 complement C3 protein
EpCAM epithelial cell adhesion molecule
EGFR epidermal growth factor receptor
VEGF vascular endothelial growth factor
SIRPa signal regulatory protein-a
PLR platelet-lymphocyte ratio
TAP2 ATP binding cassette subfamily B member 3
ICI immune checkpoint inhibitor therapy
ECM extracellular matrix
TILs tumor infiltrating lymphocytes
CAFs cancer-associated fibroblasts
EGF epidermal growth factor
Breg cells regulatory B cells
Treg cells regulatory T cells
RCC renal cell carcinoma
CEA carcinoembryonic antigen
ROS reactive oxygen species
RNS reactive nitrogen species
MMP9 matrix metalloproteinase 9
NETs neutrophil extracellular traps
MSI-H microsatellite instability-high
iNKT cells invariant natural killer T cells
PFS progression-free survival
OS overall survival
August 2021 | Volume 12 | Article 705999

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Targeted Immunotherapies in Gastrointestinal Cancer: From Molecular Mechanisms to Implications
	Introduction
	Gastrointestinal Cancers: A General Overview
	Esophageal and Gastric Cancer
	Colorectal Cancer

	The Rationale for Immunotherapy in Gastrointestinal Cancer
	Components of the TME
	Tumor Cells
	Immune Cells
	Cytokines/Chemokines
	Cells in the Extracellular Matrix (ECM)

	Mechanisms of Tumor Immune Escape

	Immunotherapeutic Strategies in Gastrointestinal Cancer: The Current Scenario and Future Perspectives
	Activating the Immune Response - Cytokines
	Immune Checkpoint Inhibitors
	CTLA-4
	PD-1 and PD-L1/L2
	TIM-3
	LAG-3
	SIRPα

	CAR T Cell Treatments
	Targeted Therapy Mediating Immune Cells
	NK Cells
	NKT Cells
	Macrophages
	&gamma;&delta;T Cells
	IDO1

	Tumor Vaccines

	Clinical Application of Immunotherapies in Gastrointestinal Cancers
	Colorectal Cancer
	Gastroesophageal Cancer

	Concluding Remarks
	Author Contributions
	Funding
	References
	Glossary



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


