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a b s t r a c t

The quick diagnosis of the novel coronavirus (COVID-19) disease is vital to prevent its propagation
and improve therapeutic outcomes. Computed tomography (CT) is believed to be an effective tool
for diagnosing COVID-19, however, the CT scan contains hundreds of slices that are complex to
be analyzed and could cause delays in diagnosis. Artificial intelligence (AI) especially deep learning
(DL), could facilitate and speed up COVID-19 diagnosis from such scans. Several studies employed
DL approaches based on 2D CT images from a single view, nevertheless, 3D multiview CT slices
demonstrated an excellent ability to enhance the efficiency of COVID-19 diagnosis. The majority of
DL-based studies utilized the spatial information of the original CT images to train their models,
though, using spectral–temporal information could improve the detection of COVID-19. This article
proposes a DL-based pipeline called CoviWavNet for the automatic diagnosis of COVID-19. CoviWavNet
uses a 3D multiview dataset called OMNIAHCOV. Initially, it analyzes the CT slices using multilevel
discrete wavelet decomposition (DWT) and then uses the heatmaps of the approximation levels to
train three ResNet CNN models. These ResNets use the spectral–temporal information of such images
to perform classification. Subsequently, it investigates whether the combination of spatial information
with spectral–temporal information could improve the diagnostic accuracy of COVID-19. For this
purpose, it extracts deep spectral–temporal features from such ResNets using transfer learning and
integrates them with deep spatial features extracted from the same ResNets trained with the original
CT slices. Then, it utilizes a feature selection step to reduce the dimension of such integrated features
and use them as inputs to three support vector machine (SVM) classifiers. To further validate the
performance of CoviWavNet, a publicly available benchmark dataset called SARS-COV-2-CT-Scan is
employed. The results of CoviWavNet have demonstrated that using the spectral–temporal information
of the DWT heatmap images to train the ResNets is superior to utilizing the spatial information of the
original CT images. Furthermore, integrating deep spectral–temporal features with deep spatial features
has enhanced the classification accuracy of the three SVM classifiers reaching a final accuracy of 99.33%
and 99.7% for the OMNIAHCOV and SARS-COV-2-CT-Scan datasets respectively. These accuracies verify
the outstanding performance of CoviWavNet compared to other related studies. Thus, CoviWavNet can
help radiologists in the rapid and accurate diagnosis of COVID-19 diagnosis.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Lately, the world has experienced a pandemic due to the novel
oronavirus known as COVID-19. This new disease or infection is
nduced by the severe acute respiratory syndrome coronavirus 2
SARS-CoV-2) [1,2]. The rates of infection are increasing rapidly
cross the globe. It has been reported that greater than 108
illion individuals have been diagnosed with COVID-19, the mor-

ality rate is more than 2 million 4 hundred cases, and the rate
f recovery exceeded 80 million cases [3]. The worldwide rapid
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spread of the novel coronavirus has placed a huge segment of
the globe’s population into quarantine and has devastated several
industrial divisions leading to a global economic crisis. Healthcare
was one of these sectors that was extremely affected by the novel
coronavirus. Due to the large number of cases affected every
day, hospitals were not able to cope with this huge number.
They experienced an insufficient amount of beds, staff members,
medical kits, and supplies. Furthermore, front-line physicians and
nurses were at risk of becoming infected, which correspondingly
decreased their ability to achieve their work appropriately [4].
Accordingly, it is very important to rapidly diagnose COVID-
19 accurately to reduce the number of deaths and prevent the

collapse of healthcare structures.

https://doi.org/10.1016/j.asoc.2022.109401
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The common symptoms of COVID-19 are dry cough, headache,
fever, dyspnea, and myalgia; however, in several situations, no
signs are obvious or asymptotic [5,6]. Asymptotic individuals
could infect others, increasing the threat to public health. Cur-
rently, the real-time reverse transcription–polymerase chain re-
action (RT-PCR) test is considered to be the gold method for
identifying COVID-19 [7]. Nevertheless, the prolonged time to
reach the result of the test, lack of the number of test kits,
and strict lab requirements constrain the quick and efficient
examination of suspicious individuals [8,9]. Moreover, in some
cases, the RT-PCR test could encounter false-negative rates which
means that the patient is experiencing COVID-19 but the result
of the test is negative [10–12]. Consequently, more effective
approaches that have a greater ability to produce a fast and
accurate result are required. Among these methods is medical
imaging especially computed tomography (CT) modality. CT plays
an important role in identifying lung-related anomalies. Various
studies indicated its significant ability to achieve a more accurate
diagnosis compared to RT-PCR tests [13]. Numerous research
articles have proven the ability of the CT modality to identify,
screen, and diagnose the novel coronavirus [14,15]. The visual
structure of COVID-19 on CT scans enables them to be used for
the diagnosis of COVID-19 [16]. However, due to the similarity
between the visual appearance among COVID-19 and other types
of pneumonia, the identification process of COVID-19 becomes
complex [17]. Additionally, radiologists consume a lot of time in
performing diagnosis. Thus, the health industry sector is seeking
novel tools to visualize and manage the propagation of such a
disease.

Artificial intelligence (AI) is a great example of such a tool.
Because of the recent advancements and success of AI technology,
they were extensively utilized in health and medical domains to
analyze medical data. AI approaches were used in the prognosis
and diagnosis of many abnormalities such as gastrointestinal dis-
eases [18], heart abnormalities [19,20], breast cancer [21,22], eye
diseases [23], brain disorders [24–26]. It has also been extensively
used with ambient and assistive living technologies [27,28]. This
success has encouraged researchers to employ AI techniques,
especially deep learning (DL) [29] which is the newest branch
of machine learning (ML) to automatically identify COVID-19 in
suspected cases [30]. They have shown excellent performance in
the diagnosis of the novel coronavirus, being an evidence-based
medical method [31,32] that supports clinicians in achieving an
accurate diagnosis and preventing drawbacks of manual diagno-
sis. The most common DL technique used with medical images is
the convolution neural network (CNN) [33]. Thus, several authors
utilized various architectures of CNNs for COVID-19 diagnosis
using CT images.

Some authors used a single view of CT images with individual
CNN networks. The authors in [34] constructed a customized
CNN model named CTnet-10 for differentiating COVID-19 and
non-COVID-19 cases, reaching an accuracy of 82.1%. In another
study, Ardakani et al. [35] introduced a system for identify-
ing COVID-19 and non-COVID-19 using ten individual CNNs of
different architectures including SqueezNet, ResNet-50, ResNet-
101, ResNet-18, VGG-16, VGG-19, GoogleNet, Xception, and Mo-
bileNet. Both ResNet-101 and Xception achieved the highest
performance. Xception and ResNet-101 models obtained an ac-
curacy of 99.51% and 99.02%, a sensitivity of 100% and 98.04%,
AUC of 99.4% and 87.3%, and specificity of 99.02% and 100%
respectively. Zhao et al. [36] proposed a transfer learning (TL)
scheme and applied it to a new version of ResNet to discrimi-
nate between cases of COVID-19 and non-COVID-19, reaching an
accuracy of 99.2%. Another study proposed a system called COVID
CT-Net which is a self-developed simple CNN to diagnose CT

images in COVID-19 and non-COVID-19. The performance metrics
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attained using the COVID CT-Net are 95.78%, 95.56%, and 96%
for accuracy, specificity, and sensitivity respectively. The main
limitation of the previous studies is using CNNs independently to
perform classification, however, some research articles verified
that merging features of numerous CNNs can improve classi-
fication results [21,37–39]. Also, they all used CT images of a
single view to training their models, nevertheless, training mod-
els with multiview CT images demonstrated an excellent ability
to enhance the efficiency of COVID-19 diagnosis and alleviate the
substantial capacity of radiologists for the primary screening of
this type of pneumonia [40].

Furthermore, other authors [41] used multi-view CT images to
train ResNet-50 CNN to classify images to COVID-19 and normal
and reached a maximum area under the curve (AUC) of 96%.
Similarly, Wu et al. [40], employed ResNet-50 trained with multi-
view CT data to discriminate among COVID-19 and other types of
pneumonia and reached an accuracy of 76%, a sensitivity of 81.1%,
a specificity of 61.5%. These previous two studies employed only
one individual CNN to classify images and one of them was based
on small datasets. On the other hand, some authors integrated
handcrafted features with deep features, for example, Shankar
and Perumal [42] proposed a fusion model called FM-HCF-DLF
based on the combination of handcrafted features that include
local binary patterns and deep learning features of Inception
V3 CNN. The highest performance metrics achieved are 94.08%
accuracy, 93.61% sensitivity of 93.61%, 94.56% specificity, and
94.85% precision. Likewise, the authors [43] combined several
handcrafted features compromising statistical features, grayscale
covariance matrix (GLCM), and the discrete wavelet transform
(DWT) with deep features of ResNet-18, ShuffleNet, GoogleNet,
and AlexNet. They used several SVM classifiers and reached an
accuracy of 99%. The main limitation of the previous two studies
is the huge dimension of features used to train the classification
models which increases the complexity and classification time.
Although the authors in [43] utilized PCA to reduce the dimen-
sion of the features extracted from each CNN, the dimension of
the principal components when combined with all handcrafted
features is still large.

Some other authors employed ensemble DL models, for ex-
ample; Zhou et al. [44] constructed a framework based on en-
semble DL models including AlexNet, GoogleNet, and ResNet to
classify CT images as normal, cancerous, and COVID-19. They
employed majority voting to fuse the prediction of the three
CNNs reaching an accuracy of 98.25%. Similarly, the authors [45]
used majority voting to combine the predictions of fifteen CNN
models after searching for the best combination of CNNs out-
puts. The maximum accuracy of 85% is attained. However, the
authors in Ref. [46] proposed a system that extracts features from
four CNNs including ResNet-18, GoogleNet, AlexNet, and Shuf-
fleNet. Subsequently, principal component analysis (PCA) was
used to reduce the dimension of the deep features. Next, the
principal components selected from each network are fused in a
concatenated manner with other principal components of other
networks. These fused principal components are fed to an SVM
classifier, obtaining an accuracy of 94.7%, a specificity of 93.7%
and sensitivity of 95.6%. Alternatively, Biswas et al. [47] used the
stacking ensemble method to fuse predictions of VGG-16, ResNet-
50, and Xception CNNs to differentiate between COVID-19 and
non-COVID-19 reaching an accuracy of 98.79%. Whereas, in [48],
the authors proposed two new CNN structures called CovidResNet
and CovidDenseNet to distinguish COVID-19 and non-COVID, or
COVID-19, non-COVID, and normal. The predictions of these CNNs
are merged using the averaging technique. The results obtained
reached 93.87% accuracy, 92.49% sensitivity, 99.13% precision, and
97.73% specificity for binary classification. The earlier methods
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elied only on spatial information to achieve a diagnosis; how-
ver, spatial–temporal information could improve the detection
f COVID-19 [49].
According to the limitations mentioned earlier, this paper

roposes an automated pipeline called CoviWavNet based on
ultiview CT images (3D CT volumes). It considers not only

he spatial information included in the original CT images to
erform the classification. But uses multilevel DWT to extract
he spectral–temporal information by obtaining the heatmaps
f the multilevel DWT of the CT slices and using them to train
hree CNNs including ResNet-18, ResNet-50, and ResNet-101.
his spectral–temporal representation is useful and more helpful
50,51]. It extracts spectral–temporal features from these three
NNs and fuses them with spatial features extracted from the
ame CNNs trained with the original multiview CT images. After-
ard, the proposed pipeline utilizes a feature selection approach
o reduce the huge dimension resulting from fusion. The proposed
ipeline investigates whether combining the spatial information
f CT images with the spectral–temporal information extracted
rom the multilevel DWT heatmap images could improve the
iagnostic accuracy of COVID-19. The article uses a private 3D CT
olume dataset called OMNIAHCOV that was acquired in Egypt,
here all available online are acquired from China, Europe and
he United States. To our knowledge, it is the first study to explore
he use of AI models to diagnose COVID-19 in Egyptian patients.
or further validation, the proposed pipeline uses another pub-
ic benchmark dataset that has been extensively used in the
iterature, known as SARS-COV-2 CT [52].

The novelty and contribution can be summarized as follows:

• Using multiview CT volumes containing CT images at differ-
ent views and regions of the lung which is not the common
case in the literature that uses CT images of a single view.

• Utilizing the heatmaps of the multilevel DWT to train the
deep learning models instead of the original CT images.

• Extracting spectral–temporal features from the CNN trained
with the heatmaps of the multilevel DWT and integrating it
with spatial features extracted from the CNN learned with
the original multiview CT images.

• Reducing the huge dimension of features obtained after
fusion through a feature selection procedure.

• Validating the proposed model on a large 3D CT volumes
dataset acquired in Egypt, where all available online are
from China, Europe, and the United States.

he paper is organized as follows. Section 2 describes the meth-
ds, the datasets, and the proposed pipeline. Section 3 explains
he setup of the experiments, including the adjusted parameters
f the CNNs and the evaluation metrics used. Section 4 presents
he results. Section 5 discusses the results. Finally, Section 6
oncludes the paper.

. Methods and materials

.1. Convolutional neural networks

The convolutional neural network (CNN) is a branch of DL
ethods that are widely used for resolving classification prob-

ems of medical images in the field of health informatics [53,
4]. For this reason, in this paper, three CNN architectures are
mployed. A CNN’s structure depends on perceptron models.
hese networks automatically obtain features from the image,
nlike the conventional artificial neural network, and therefore
ecently become a hot research topic, especially in medical image
rocessing [55]. The main advantage of CNNs is directly using im-
ges to perform the diagnosis process avoiding the unnecessary
teps made in traditional machine learning approaches (such as
3

preprocessing, segmentation, and feature extraction) [56]. They
could also reduce the complication of the classification models,
by utilizing the whole local and global information of a medical
image, and for this reason, they have the capacity for vigorous ro-
tation, translation, and scaling. The main three layers of a CNN are
the convolutional, pooling, and fully connected (FC) layers. In the
former layers, portions of the image are convolved with a small-
size filter. Next, a feature map is formed containing the spatial
info regarding the pixel values of the original input image. These
feature maps are of high dimension; therefore, the key purpose of
the pooling layers is to lower this massive dimension through a
downsampling procedure. Finally, the FC layers collect input from
the previous layers and produce class scores [57]. In this study,
three CNNs depending on the residual neural network (ResNet)
are used including the ResNet-18 which includes 18 deep layers,
ResNet-50 which is 50 layers deep, and finally ResNet-101 which
is 101 layers deep.

ResNet is a CNN architecture based on the residual block pro-
posed by He et al. [58]. The residual block proposes shortcut links
within the convolution layers, which help the network to hop
some convolution layers at a time. This means that the residual
block suggests two choices, it can achieve a set of functions on the
input, or it may omit this phase entirely. For this reason, ResNet
architecture is believed to be more efficient than other CNNs
such as AlexNet and GoogleNet. The composition of such crosscut
links guarantees the update of the parameters of the CNN’s and
prevents the issue of gradient vanishing produced by the back-
propagation process. In addition, these shortcuts facilitate CNN
optimization.

2.2. Transfer learning

Transfer learning (TL) is a well-known machine learning tech-
nique that utilizes current knowledge to handle problems in
distinct, although related fields [59]. It employs a fundamental
hypothesis in conventional machine learning to transfer current
knowledge in order to resolve similar classification learning prob-
lems in another or the same field but having few numbers of
labeled training data. TL can be used for parameter transfer,
instance transfer, feature transfer, and association relationship
transfer. In this paper, the first three methods are employed,
where parameter transfer is employed to use the same param-
eters of pre-trained CNNs, instance transfer to employ the same
structure of pre-trained models, and feature transfer which uses
the pre-trained CNN as a feature extractor.

2.3. Discrete wavelet transform

Discrete wavelet transform (DWT) is a well-known approach
to analyzing medical images. DWT offers spectral–temporal pre-
sentation by decomposing a medical scan using a set of or-
thonormal basis functions. It consists of a collection of transforms
each with several wavelet basis functions. At the first level of
multilevel DWT, the image is analyzed through passing through
low- and high-pass filters, resulting in two groups of coefficients.
These groups are the approximate coefficients CA1 and three
detail coefficients CD1. The detail coefficients involve the vertical,
horizontal, and diagonal coefficients, respectively. The multilevel
DWT analysis is attained by convolving the approximation values
generated in the prior decomposition level into numerous high
and low-pass filters [60,61].

2.4. Experimental datasets

To access and validate the introduced pipeline, two CT datasets
are used. The first dataset is a private data called OMNIAHCOV



O. Attallah and A. Samir Applied Soft Computing 128 (2022) 109401

c
a

i
f
m
6
t
T
w
r
t
p
F
r

Fig. 1. Samples of images available in the OMNIAHCOV dataset.
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ontaining 3D CT volumes, while the second one is a publicly
vailable benchmark dataset called SARS-CoV-2 CT-Scan [52].

• OMNIAHCOV: The collected dataset contains 5152 normal
mages and 6012 images of COVID-19. Chest imaging was per-
ormed using severe multidetector computed tomography (MDCT)
achines. They included the following: (1) SOMATOM Sensation
4, Siemens Medical Systems, Germany, (2) Canon Medical Sys-
ems; Toshiba Aquilion 64, USA, and (3) Canon Medical Systems;
oshiba Aquilion CXL/CX 128, USA. The parameters for CT scans
ere as follows: The slice thickness was 1–1.25 mm, the tube
otation was 0.6–0.9 s, the detector Collimation was 1 mm,
he kVp was 120–130, and the mA was 200. All examinations
erformed did not require intravenous contrast administration.
ig. 1 shows samples of CT scans existing in the dataset. Details
egarding the dataset can be found [62].

• SARS-COV-2 CT: is a freely available 2D CT image dataset [52]
The dataset has a total of 2482 CT images, where 1252 of these
images are diagnosed as positive CT scans for COVID-19 disease,
and the other 1230 are CT scans that were diagnosed as non-
COVID-19 cases. The dimension of these CT images changes from
119 × 104 to 416 × 512. Fig. 2 displays samples of CT images
existing in the dataset.

2.5. Proposed CoviWavNet pipeline

The proposed pipeline consists of five steps including image
preprocessing, multilevel DWT heatmaps generation, pre-trained
ResNets construction and training, feature extraction, integra-
tion and selection, and classification steps. In the image pre-
processing step, CT slices of the 3D volumes of the OMNIAHCOV
dataset are converted from Dicom format to jpg-colored images.
The images of both datasets are resized and enhanced. Next,
multilevel DWT is applied to these images to display the spatial–
temporal information of the images, and then the heatmaps of
the DWT levels are generated. Later, three pre-trained CNNs are
constructed and trained once using the original CT images and

then using the heatmaps of the multilevel DWT images. After that, f

4

deep spatial features are extracted from each ResNet trained with
the original CT images. Likewise, spectral–temporal deep features
are obtained from each ResNet trained with the heatmaps of
the multilevel DWT images. Subsequently, deep spatial features
and spectral–temporal features extracted from each CNN are
combined, and then a feature selection procedure is applied to
reduce their huge dimension. Finally, three support vector ma-
chine (SVM) classifiers are used to perform diagnosis using the
reduced fused set of features. The block diagram of the proposed
pipeline is shown in Fig. 3.

2.5.1. Image pre-processing
The OMNIAHCOV dataset contains CT slices in Dicom format.

These slices are converted to 3D jpg images. The images of both
datasets are augmented. This step is done to increase the size
of each of the datasets. The augmentation procedure is usu-
ally performed to avoid the overfitting that could occur in the
CNN training phase [63]. Augmentation also may improve the
classification performance of deep learning models [64]. Various
augmentation techniques are applied to images of both datasets
including scaling (0.85,1.2), shearing (0,50), rotation (−20,20),
flipping in the x and y axes, and random translation in the x
nd y directions (−35,35). Next, these images are resized to
27 × 227 × 3 to compromise the input layer size of the ResNets.

.5.2. Generation of multilevel DWT heatmaps
In this step, 3-levels of DWT are applied to the images. The

rd level of decomposition is commonly used in several medi-
al applications and is proven to improve classification perfor-
ance [65,66]. This study utilized a Haar mother wavelet as

he basis function. Haar is chosen because it is an effective ap-
roach as indicated in several studies related to the diagnosis of
OVID-19 [50,51,67]. The approximation coefficients are selected
o convert them to heatmaps as the authors of the research
rticle [68] showed that the approximation coefficients obtained

rom medical data have outstanding performance compared to
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Fig. 2. Samples of images available in SARS-COV-2-CT Scan dataset.
Fig. 3. Proposed CoviWavNet pipeline block diagram.
he detail coefficients. Samples of the heatmaps of the three ap-
roximation levels are shown in Figs. 4 and 5 for the OMNIAHCOV
nd SARS-COV-2-CT Scan datasets respectively.

.5.3. Pretrained ResNets construction and training
TL is utilized in this step to adjust the pre-trained ResNets

ormerly learned with the ImageNet dataset. Subsequently, the
umber of output layers of the three ResNets is altered to 2,
omparable to the number of classes available in each of the
wo datasets utilized in this study as an alternative to the 1000
5

classes of ImageNet. Later, some CNN parameters are changed
(demonstrated briefly in the experimental setup section), and
then ResNets are trained once using the original CT slices and
then using the heatmaps images of the approximation coefficients
of the three DWT levels. The filters in the ResNets trained with
the heatmaps images of the DWT levels are learned from the
spectral–temporal domain, instead of the spatial domain like the
ResNet learned from the original CT slices. The low-frequency
band of the input image encompasses nearly all of the details and
the high-frequency band includes noise info. This nonuniformity
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Fig. 4. Samples of COVID-19 heatmaps of the approximation coefficients of the three DWT levels of for the OMNIAHCOV dataset; (a) original, (b) 1st DWT level, (c)
2nd DWT level, and (c) 3rd DWT level.
Fig. 5. Samples of the heatmaps of the approximation coefficients of the three levels of DWT for the SARS-COV-2-CT Scan dataset; (a) original, (b) 1st DWT level,
(c) 2nd DWT level, and (c) 3rd DWT level.
of spectral power allows the elimination of high frequencies
to achieve a minimum loss to the information from the input
image [50]. Thus, spectral–temporal representation is better than
spatial demonstration. For this reason, heatmaps of DWT levels
are used to train CNNs.

2.5.4. Deep feature extraction, integration, and selection
TL is employed again in this step to obtain spatial deep fea-

tures from the last average pooling layer of the ResNets trained
with the original images. Similarly, TL is used to obtain spectral–
temporal features from the last average pooling layer of the
ResNets being trained with the heatmap images of the three lev-
els of DWT. The dimension of those features after being extracted
is 2048 for ResNet-101 and ResNet-50. Whereas for ResNet-
18, the number of features is 512. Afterward, the spatial and
spectral–temporal deep features extracted from each ResNet are
integrated. The result of this integration is three feature sets of
sizes 1024, 4096, and 4096 for ResNet-18, ResNet-50, and ResNet-
101, respectively. The dimensions of these feature sets are large;
therefore, a feature selection (FS) procedure is required to reduce
them.

FS is capable of ignoring redundant irrelevant features that
exist in the feature space. Furthermore, it speeds up the classi-
fication process and lowers the complexity of the training mod-
els [69]. Additionally, FS inhibits overfitting that may possibly
occur during the phase of training [70,71]. Minimum redun-
dancy maximum relevance (mRMR) FS process [72] is utilized
in this step. The mRMR procedure chooses a subset of features
that are highly correlated with the class (relevant) and mini-
mally correlated to each other (redundant). The criterion used
to select features is the minimum redundancy and maximum
relevance. Redundancy and relevance are measured using mutual
information.

2.5.5. Classification
The classification step is in charge of classifying CT images

to COVID-19 and non-COVID-19 or COVID-19 and normal cases
6

utilizing three SVM classifiers. SVM is a robust machine learning
technique that employs statistical learning theory to achieve the
classification procedure. It is utilized to create the finest hy-
perplane that has the greatest margin of distinction among the
two classes of CT data sets [73]. In this paper, linear, cubic, and
quadratic kernel functions are selected because they have reached
maximum results. Note that for the OMNIAHCOV dataset, data
is split into 75% and 25% for training and testing respectively to
ensure that the images belonging to the same patient used in the
training phase are not used in the testing phase. Whereas, for the
SARS-COV-2-CT Scan dataset, 5- fold cross-validation is used to
validate the results.

3. Performance evaluation

The performance of CoviWavNet is accomplished by utiliz-
ing several measures. The accuracy (Acc), the area under the
receiver operating characteristic (ROC) curve (AUC), specificity
(SP), sensitivity (SE), F1-score, precision (Prec), negative predicted
value (NPV), and Mathew correlation coefficient (MCC) metrics
are employed for accessing the proposed model. These measures
are computed as shown below (1)–(7).

Accuracy =
TP + TN

TN + FP + FN + TP
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

Precision =
TP

TP + FP
(4)

F1-Score =
2 × TP

2 × TP + FP + FN
(5)

NPV =
TN

(6)

TN + FN
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CC =
TP × TN − FP × FN

√
(TP + TN)(TP + FN)(TN + FP)(TN + FN)

(7)

Where; TN is the entire count of non-COVID-19 scans incor-
rectly diagnosed. TP is the whole count of COVID-19 scans prop-
erly identified. FN is the total count of COVID-19 scans im-
properly categorized as non-COVID-19. FP is the whole count of
non-COVID-19 scans incorrectly identified as COVID-19.

4. Experimental setup

The implementation of the proposed CoviWavNet is done us-
ing Matlab 2020a on a 64-bit operating system. Intel(R) Core (TM)
i7-10750H (10th generation) processor is used with a processing
frequency of 2.6 GHz and 1.512 TB hard disk, Hexa-core processor
RAM 16 GB of type DDR4. Experiments are performed on NVIDIA
GeForce GTX 1660 with a graphics card of 6 GB size.

The hyperparameters of the CNNs are the mini-batch size,
i.e. the amount of data involved in the weight changes of each
sub-epoch. As demonstrated in [74], in fact, by using larger batch
sizes, CNN models’ quality has declined and their ability to gen-
eralize has been assessed by its ability to generalize. Large batch
sizes tend to converge to sharp minimizers for both training
and test tasks. The sharp minima lead to weak generalizations.
In contrast, small batch sizes regularly converge with smooth
minimizers and generally achieve the best generalization perfor-
mance. [75]. Consequently, it is adjusted to 10. Learning rates
determine the size of steps in each epoch while moving into a
least-loss function. Normally, higher learning speeds make the
model learn faster, resulting in inefficient final weights. On the
contrary, smaller learning rates can enable models to learn ad-
ditional optimal weights, or global optimal weights but lead
to longer training times. Furthermore, excessive learning rates
lead to massive weight changes and model performance (For
example, models’ loss on training data sets) varies during the
training period. Performance fluctuations are the result of weight
differences. On the contrary, too low learning rates may never
converge or be trapped in an unbalanced resolution. Therefore, in
experiments, the learning rate is selected as 0.001, not too small
or too high.

The largest number of epochs is selected as 20 because ex-
panding this number did not enhance performance, just extended
the time of computation. Validation frequencies are set to 843
and 173 for the OMNIAHCOV and SARS-COV-2-CT-Scan datasets
to compute the validation error only one time at the end of
each epoch. The three ResNets networks were trained by stochas-
tic gradient descent with a momentum procedure to improve
convergence rates and avoid local minimums during conver-
gence. [76–78]. To avoid overfitting, a certain CNN parameter has
been selected, including batch normalization [79,80].

5. Results

5.1. ResNets classification results

In this section, a comparison among the classification results
of the three ResNets trained with the original CT images and
the ResNets trained with the heatmaps images of the three ap-
proximation DWT levels is conducted and displayed. Table 1
shows the classification accuracy of the three ResNets trained
with the original CT images and the heatmaps images of the three
approximation (CA1, CA2, CA3) DWT levels for the OMNIAHCOV
and SARS-COV-2-CT Scan datasets. For the OMNIAHCOV dataset,
the classification accuracy attained using the ResNets trained
with the original CT images are 90.7%, 93.81%, and 94.07% for
ResNet-18, ResNet-50, and ResNet-101 respectively. Whereas, for
the ResNets trained with the heatmap images of the DWT levels,
7

Table 1
Accuracy (%) of ResNet CNNs trained with the original CT images and the
heatmaps images of the three approximation coefficients of DWT (CA1 , CA2 ,
A3 ) for OMNIAHCOV and SARS-COV-2-CT Scan datasets.
Model Original CA1 CA2 CA3

OMNIAHCOV Dataset
ResNet-18 90.70 91.18 93.45 94.77
ResNet-50 93.81 94.33 95.64 96.45
ResNet-101 94.07 94.51 95.35 97.66

SARS-COV-2-CT Scan Dataset
ResNet-18 70.34 74.90 77.32 84.83
ResNet-50 76.51 78.39 82.82 86.04
ResNet-101 73.42 77.99 84.56 86.85

the classification accuracies of the heatmap images of (CA1) are
1.18%, 94.33%, 94.51% for ResNet-18, ResNet-50, and ResNet-
01 respectively. The classification accuracies of the heatmap
mages of (CA2) are 93.45%, 95.64%, 95.35% for ResNet-18, ResNet-
0, and ResNet-101 respectively. The classification accuracies of
he heatmap images of (CA3) are 94.77%, 96.45%, and 97.66%
or ResNet-18, ResNet-50, and ResNet-101 respectively. These
ccuracies prove that the heatmap images of the DWT levels
mprove the classification accuracies of the DL models compared
o the original CT images.

Similarly, for the SARS-COV-2-CT Scan dataset, the ResNets
rained with the original CT images attained accuracies of 70.34%,
6.51%, and 73.42% for ResNet-18, ResNet-50, and ResNet-101
espectively. While for those ResNets learned with the heatmap
mages of the DWT levels, the classification accuracies achieved
or (CA1) are 74.9%, 78.39%, 77.99% for ResNet-18, ResNet-50, and
esNet-101 respectively. The classification accuracies of (CA2)
re 77.32%, 82.82%, and 84.56% for ResNet-18, ResNet-50, and
esNet-101 respectively. The classification accuracies of (CA2) are
4.83%, 86.04%, 86.85% for ResNet-18, ResNet-50, and ResNet-
01 respectively. Likewise, these results confirm that using the
eatmap images of the three levels of DWT is better than using
he original CT images, as they enhance the classification accura-
ies of the three ResNets compared to the original CT images. It
an be seen from Table 1 that the heatmaps of the third level of
he DWT have the highest performance for the three ResNets.

.2. Classification results of deep feature extraction

Since the results of Table 1 indicated that the heatmap images
f the third level of the DWT achieved the maximum accuracy
or the three ResNets, the deep spectral–temporal features are
xtracted from only the third DWT level of the three ResNets.
he classification results of the three SVM classifiers learned with
hese deep spectral–temporal features are discussed in Table 2.
he results in Table 2 show that the spectral–temporal features
xtracted for the three ResNets trained with the heatmap images
f the third level of the DWT (CA3) have enhanced the classifica-
ion performance of CoviWavNet compared to the end-to-end DL
lassification results displayed in Table 1. This is because, for the
MNIAHCOV dataset, the L-SVM, Q-SVM, and C-SVM classifiers
rained with the spectral–temporal features of ResNet-18 attained
n accuracy of 95.32%, 95.73%, and 96.18% respectively. These ac-
uracies are greater than the 94.77% accuracy obtained by ResNet-
8 trained with CA3 images as illustrated in Table 1. Similarly,
n accuracy of 98.24%, 98.24%, and 98.57% is achieved using the
-SVM, Q-SVM, and C-SVM classifiers trained with the spectral–
emporal features of ResNet-50. These accuracies are better than
he 96.45% reached utilizing ResNet-50 learned with CA3 images
s shown in Table 1. Likewise, the same three classifiers trained
ith the spectral–temporal features of ResNet-101 obtained an
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Fig. 6. Confusion matrix for the three SVM classifiers trained with spectral–temporal features of ResNet-101 constructed with the third DWT approximation heatmap
images of the OMNIAHCOV dataset, (a) C-SVM, (b) L-SVM, and (c) Q-SVM.
,

Table 2
Accuracy (%) of the three SVM classifiers trained with the heatmap images of
the third approximation coefficients of DWT extracted from the three ResNets
for the OMNIAHCOV and SARS-COV-2-CT Scan datasets.
Classifier L-SVM Q-SVM C-SVM
Model

OMNIAHCOV Dataset
ResNet-18 95.32 (0.05) 95.73 (0.04) 96.18 (0)
ResNet-50 98.24 (0.01) 98.24 (0.05) 98.57 (0.01)
ResNet-101 98.74 (0) 98.93 (0) 98.76 (0.02)

SARS-COV-2-CT-Scan Dataset
ResNet-18 95.60 (0.14) 96.48 (0.21) 96.72 (0.17)
ResNet-50 97.98 (0.07) 98.86 (0.08) 98.96 (0.12)
ResNet-101 97.82 (0.09) 98.72 (0.07) 98.90 (0.06)

accuracy of 98.74%, 98.93%, and 98.76% which is higher than
the 97.66% attained with the ResNet-101 learned with CA3 im-
ges as shown in Table 1. Furthermore, for the SARS-COV-2-CT
can dataset, the L-SVM, Q-SVM, and C-SVM classifiers learned
ith the spectral–temporal features of ResNet-18 reached an
ccuracy of 95.60%, 96.48%, and 96.72%, respectively. Further-
ore, for ResNet-50 and ResNet-101, the L-SVM, Q-SVM, and C-
VM classifiers constructed using the spectral–temporal features
eached an accuracy of (97.98%, 97.82%), (98.86%,98.72%), and
98.96%,98.90%) respectively. These accuracies are greater than
0.34%, 76.51% and 73.42% achieved using ResNet-18, ResNet-50
nd ResNet-101 CNNs as shown in Table 1. The confusion matri-
es for the three SVM classifiers trained with spectral–temporal
eatures of ResNet-101 constructed with the CA3 heatmap images
or the OMNIAHCOV and SARS-COV-2-CT Scan datasets are shown
n Figs. 6 and 7 respectively.

.3. Classification results of deep feature integration and selection

Deep spatial features extracted from each ResNet trained with
he original CT slices are integrated with deep spatial–spectral–
emporal features of each ResNet learned with the heatmap im-
ges of the third level of the DWT (CA3). These deep-based
eatures are reduced using the mRMR FS algorithm. This section
llustrates the classification results after the feature integration
nd selection. Table 3 shows the classification accuracies of the
hree SVM classifiers trained with the reduced number of inte-
rated spatial–spectral–temporal features compared to the deep
8

Table 3
Classification accuracies (%) of the three SVM classifiers trained with the reduced
number of integrated spatial–spectral–temporal features compared to the deep
spatial features for each ResNet for the OMNIAHCOV dataset.
Deep Features L-SVM Q-SVM C-SVM

ResNet-18
Spatial 92.7 (0.05) 92.63 (0.02) 92.30 (0.07)
Spatial-Spectral-Temporal 98.19 (0.10) 98.21 (0.02) 97.98 (0.15)

ResNet-50
Spatial 94.17 (0.02) 94.13 (0.02) 94.13 (0)
Spatial-Spectral-Temporal 99.23 (0.11) 99.32 (0.06) 99.38 (0)

ResNet-101
Spatial 95.36 (0) 95.41 (0.06) 95.35 (0.04)
Spatial-Spectral-Temporal 99.05 (0) 98.97 (0.02) 98.97 (0.02)

spatial features for each ResNet for the OMNIAHCOV dataset.
Fig. 8 shows the dimension of the deep spatial features ex-
tracted from each ResNet and used to train the three SVM clas-
sifier compared to the dimension of the integrated and reduced
spatial–spectral–temporal features.

As shown in Table 3, for the OMNIAHCOV dataset, using
spatial–spectral–temporal features to train the SVM classifiers is
better than spatial features alone for the three ResNets. This is
clear as the accuracy accomplished using the selected spatial–
spectral–temporal features extracted from the ResNet-18 is 98.19%
98.21%, and 97.98% for the L-SVM, Q-SVM, and C-SVM, respec-
tively. These accuracies are greater than that obtained by the
same classifiers trained with the spatial features of ResNet-18
(92.70%,92.63%, and 92.30%). Likewise, the accuracy obtained
using the reduced number of the spatial–spectral–temporal fea-
tures extracted from ResNet-50 is 99.32%, 99.32%, 99.38% for
L-SVM, Q-SVM, and C-SVM respectively. Again, these accuracies
are higher than the 94.17%, 94.13%, and 94.13% obtained using
the same classifiers trained with the spatial features of ResNet-50.
Furthermore, the reduced number of integrated spatial–spectral–
temporal of ResNet-101 achieved an accuracy of 99.05%, 98.97%,
and 98.97% using the L-SVM, Q-SVM, and C-SVM respectively.
Such accuracies are better than the 95.36%, 95.41%, and 95.35%
achieved using the same classifiers trained with the spatial fea-
tures of ResNet-101.

It is obvious from Fig. 8 that for the OMNIAHCOV dataset, the
mRMR FS approach has successfully reduced the number of inte-
grated spatial–spectral–temporal features used to train the three
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Fig. 7. Confusion matrix for the three SVM classifiers trained with spectral–temporal features of ResNet-101 constructed with the third DWTapproximation heatmap
images for the SARS-COV-2-CT dataset.
SVMs. For ResNet-18, the number of selected spatial–spectral
features are 20, 21, and 20 for L-SVM, Q-SVM, and C-SVM, respec-
tively. Whereas for ResNet-50, the number of selected integrated
9

spatial–spectral features are 200, 300, and 300 for the same clas-
sifiers. On the other hand, for ResNet-101, the number of selected
integrated spatial–spectral features are 400, 400, and 400 for
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Fig. 8. Number of deep spatial features extracted from each ResNet and used to train the three SVM classifier compared to the dimension of the integrated and
reduced spatial–spectral–temporal features for the OMNIVOV dataset.
Table 4
Classification accuracies (%) of the three SVM classifiers trained with the reduced
number of integrated spatial–spectral–temporal features compared to the deep
spatial features for each ResNet for the SARS-COV-2-CT Scan dataset.
Deep Features L-SVM Q-SVM C-SVM

ResNet-18
Spatial 95.00 (0.13) 96.42 (0.15) 96.72 (0.16)
Spatial-Spectral-Temporal 96.60 (0.09) 97.56 (0.21) 97.62 (0.09)

ResNet-50
Spatial 98.34 (0.10) 98.78 (0.07) 98.94 (0.10)
Spatial-Spectral-Temporal 99.42 (0.15) 99.48 (0.07) 99.62 (0.04)

ResNet-101
Spatial 97.46 (0.01) 98.30 (0.14) 98.50 (0.11)
Spatial-Spectral-Temporal 98.46 (0.10) 99.02 (0.04) 99.34 (0.08)

L-SVM, Q-SVM, and C-SVM respectively. These reduced feature
sets achieved higher accuracy using the same classifiers trained
with the spatial features extracted from ResNet-18, ResNet-50,
and ResNet-101 having dimensions of 512, 2048, and 2048 fea-
tures respectively.

Table 4 proves as well that using spatial–spectral–temporal
eatures to learn the SVM classifiers is superior to spatial features
lone for the three ResNets. The table shows that for the SARS-
OV-2-CT Scan dataset, the SVM classifiers constructed with the
educed number of integrated spatial–spectral–temporal features
xtracted from ResNet-18 achieved an accuracy of 96.60%,97.56%,
nd 97.60% for the L-SVM, Q-SVM, and C-SVM classifiers, respec-
ively. Such accuracies are more than that attained using the
ame classifier trained with spatial features only (95.00%, 96.42%,
nd 96.72%). Similarly, an accuracy of 99.42%, 99.48%, and 99.62%
s obtained with the SVM classifiers learned with the reduced
umber of integrated spatial–spectral–temporal features mined
rom ResNet-50. Furthermore, the reduced number of spatial–
pectral–temporal features extracted from ResNet-101 enhanced
he accuracy of L-SVM (98.46%), Q-SVM (99.02%) and C-SVM
99.34%) compared to 97.4%, 98.2% and 98.3% attained with the
ame classifier trained with the spatial features of ResNet-101.
On the other hand, the mRMR FS approach used in Covi-
avNet has successfully reduced the dimension of fused
10
spatial–spectral–temporal features of the three ResNets for the
SARS-COV-2-CT Scan dataset as shown in Fig. 9. This is clear as
for ResNet-18, the size of features after mRMR has decreased to
400, 400, and 400 for L-SVM, Q-SVM, and C-SVM respectively.
Also, for ResNet-50, the dimension of features after mRMR has
diminished to 1500,1500, and 900 for L-SVM, Q-SVM, and C-SVM
respectively. Likewise, for the ResNet-101, the number of features
after mRMR has reduced to 1200, 900, and 1300 for L-SVM, Q-
SVM, and C-SVM respectively. These reduced sets of features are
lower than the spatial features of ResNet-18 (512), ResNet-50
(2048), and ResNet-101 (2048) respectively.

Performance metrics including sensitivity, specificity, preci-
sion, F1-scores, NPV, and MCC are calculated for the L-SVM
classifier trained with the reduced set of fused spatial–spectral–
temporal features of the three ResNets and shown in Table 5. The
table shows that for the OMNIAHCOV dataset, the L-SVM classifier
learned with the reduced set of fused spatial–spectral–temporal
features attained a sensitivity of 97.96%, 99.27%, 98.92%, speci-
ficity of 98.54%, 99.19%, 99.26%, F1-score 98.39%, 99.32%, 99.16%
for ResNet-18, ResNet-50, and ResNet-101 respectively. Further-
more, the precision obtained is 98.84%, 99.35%, 99.40%, NPV is
97.44%, 99.1%, 98.66%, and MCC is 96.38%, 98.46%, 98.12% for the
L-SVM classifier learned with the reduced set of fused spatial–
spectral–temporal features extracted from ResNet-18, ResNet-50,
and ResNet-101 respectively.

On the other hand, for the SARS-COV-2-CT Scan dataset, the L-
SVM classifier learned with the same features reached a sensitiv-
ity of 97.72%, 99.37%, 98.44%, specificity of 95.48%, 99.58%, 98.50%,
and F1-score of 96.59%, 99.39%, 98.48% for ResNet-18, ResNet-
50, and ResNet-101 respectively. While, the precision achieved
is 95.46%, 99.60%, 98.53%, NPV is 97.77%, 99.17%, 98.40%, and
MCC is 93.24%, 98.77%, 96.94%. The ROC curves for the L-SVM
classifier trained with the reduced integrated spatial–spectral–
temporal features of the three ResNets for the OMNIAHCOV and
SARS-COV-2-CT Scan datasets are shown in Fig. 10. It can be seen
from Fig. 10 that the AUCs for L-SVM trained with the reduced set
of fused spatial–spectral–temporal features of the three ResNets
are 1 for both datasets.

To evaluate and verify the statistical significance of ML clas-

sification performance, the one-way variance analysis (ANOVA)
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Fig. 9. Number of deep spatial features extracted from each ResNet and used to train the three SVM classifier compared to the dimension of the integrated and
reduced spatial–spectral–temporal features for the SARS-COV-2-CT-Scan dataset.

Fig. 10. ROC curves for the L-SVM classifier trained with the reduced integrated spatial–spectral–temporal features of (a) ResNet-18, (b) ResNet-50, (c) ResNet-101
for the OMNIAHCOV and SARS-COV-2-CT-Scan datasets.

11
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Table 5
Performance metrics (%) of the L-SVM classifier trained with the reduced number of integrated spatial–spectral–temporal features for OMINICOV and SARS-COV-2-CT
Scan datasets.
Spatial-Spectral-Temporal CNN Model SE SP F1-score Prec NPV MCC

OMNIAHCOV Dataset
ResNet-18 97.96 (0.19) 98.54 (0.06) 98.39 (0.07) 98.84 (0.06) 97.44 (0.25) 96.38 (0.16)
ResNet-50 99.27 (0) 99.19 (0.28) 99.32 (0.12) 99.35 (0.23) 99.10 (0) 98.46 (0.26)
ResNet-101 98.92 (0.03) 99.26 (0) 99.16 (0.02) 99.40 (0) 98.66 (0.04) 98.12 (0.03)

SARS-COV-2-CT-Scan Dataset
ResNet-18 97.72 (0.21) 95.48 (0.10) 96.59 (0.05) 95.46 (0.11) 97.77 (0.24) 93.24 (0.12)
ResNet-50 99.37 (0.14) 99.58 (0.16) 99.39 (0.15) 99.60 (0.16) 99.17 (0.15) 98.77 (0.30)
ResNet-101 98.44 (0.06) 98.50 (0.22) 98.48 (0.10) 98.53 (0.21) 98.40 (0.06) 96.94 (0.21)
Table 6
One-way analysis of variance test details for classifiers after FS using the
OMNIAHCOV data set.
Source of Variation SS df MS F p Value

ResNet-18
Columns 0.166 2 0.083 6.03 0.0154
Error 0.165 12 0.0137
Total 0.332 14

ResNet-50
Columns 0.006 2 0.03 4.15 0.0427
Error 0.0868 12 0.007
Total 0.147 14

ResNet-101
Columns 0.021 2 0.011 37.49 <0.001
Error 0.003 12 0.0003
Total 0.025c 14

Table 7
One-way analysis of variance test details for classifiers after FS using the
SARS-COV-2-CT-Scan dataset.
Source of Variation SS df MS F p Value

ResNet-18
Columns 3.276 2 1.638 65.52 <0.001
Error 0.3 12 0.025
Total 3.576 14

ResNet-50
Columns 0.1053 2 0.053 4.39 0.0371
Error 0.144 12 0.012
Total 0.2493 14

ResNet-101
Columns 1.984 2 0.992 129.39 <0.001
Error 0.092 12 0.0077
Total 2.076 14

test is performed to classifier results after a repeated 5-fold cross-
validation procedure. This analysis is applied to the accuracy
of the classifiers after the FS process. The ANOVA test results
are revealed in Tables 6 and 7 for the OMNIAHCOV and SARS-
COV-2-CT-Scan datasets. As observed from Tables 6 and 7, the
p-values reached using this test are lesser than α, where α = 0.05
or all ResNets of both datasets. Thus, statistical differences in
lassification accuracies of the classifiers can be concluded.

.4. Comparison with other related studies

To verify the competitiveness of CoviWavNet, its performance
s first compared with methods based on 3D Chest CT datasets
omparable to OMNIAHCOV dataset. The results of this compar-
son are shown in Table 8. Moreover, the results of CoviWavNet
re compared with relevant studies based on SARS-COV-2-CT-
can dataset; a benchmark CT dataset for COVID-19 diagnosis.
he results of this comparison are shown in Table 9. The results
12
demonstrated in Table 8 show the competitive ability of Covi-
WavNet compared to other methods based on other 3D chest
CT datasets. This is because the accuracy, sensitivity, specificity,
and AUC are 0.9923, 0.9927, 0.9919, and 1. These performance
measures are superior to the accuracy (0.76), sensitivity (0.811),
specificity (0.615), and AUC (0.819) achieved in the study con-
ducted in [40] that used ResNet-50. Furthermore, the perfor-
mance of CoviWavNet is greater than that of the study [41]
which achieved accuracy (0.96, 0.93), sensitivity (1,1), specificity
(0.9,0.92) and AUC (0.9,0.97) using ResNet-50 and ResNet-101
respectively with voting algorithms. Moreover, the performance
CoviWavNet is higher than the accuracy (0.9752), sensitivity
(0.9799), and specificity (0.9749). The main reason for Covi-
WavNet’s outstanding performance is fusing spatial and spectral–
temporal information from CT images and the heatmaps of DWT
images, whereas other studies depend only on spatial information
of the original CT slices only.

On the other hand, Table 7 shows the remarkable performance
of CoviWavNet. This is because it attained an accuracy of 99.62%,
a sensitivity of 99.54%, a specificity of 99.69%, an F1-score of
99.62%, and a precision of 99.70%, which are higher than all
other methods shown in Table 7. Soares et al. [52] achieved
a lower accuracy of 97.38%, an F1 score of 97.31%, a precision
of 99%, and a sensitivity of 95.53% using an explainable deep
learning model. Whereas, the authors of [82] introduced a Bi-
LSTM (bidirectional long–short-term memory) combined with a
mixture density network (DBM) model and obtained an accuracy
of 98.37%, a sensitivity of 98.87%, a precision of 98.74%, and an
F1 score of 98.14%. Also, the authors in [48] obtained a lower
accuracy of 86.88%, sensitivity 87.41%, specificity of 85.92%, F1-
score of 89.52%, and precision of 91.76% using a model called
CoviDenseNet based on TL and DenseNet. Furthermore, the au-
thors in [52] proposed a customized CNN with a few layers and
attained an accuracy, sensitivity, and specificity of 95.78%, 96%,
and 95.56%. While the study [83] constructed a customized CNN
model and utilized gradient weighted class activation mapping
to envisage and map class activations. The model of [83] reached
a 95% accuracy, 96% sensitivity, 95% F1-score, and 95% precision,
which are lower than those of CoviWavNet. The main limitation
of studies [52,83] is not using pre-trained models, where the
authors instead constructed a model from scratch and finetuned
all of its parameters, which is a complex task. Besides, the two
studies [43,84] attained an accuracy of 99%, a sensitivity of 99%,
and an F1-score of 99%. Although the study [43] tried to lower
the huge dimension of the features extracted from each of the
4 CNNs used in their model with PCA, they still have a large
number of features produced after fusing the deep features with
other hand-crafted features. Also, the study [84] suffered from
the high computational load generated by the genetic algorithm
to select features extracted from the CNN. Moreover, the authors
of [85] combine the prediction of three CNNs using fuzzy ranking
to achieve accuracy, sensitivity, specificity, F1 score, precision
of 98.93%, 99.08%, 99%, 98.93%, and 98.93% which is lower than
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Table 8
Comparison of the results attained with CoviWavNet using OMNIAHCOV dataset and those of the related studies based on relevant 3D datasets for binary classification
Article Dataset # Images Method Acc SE SP AUC

[40] Multicenter Non-COVID = 254
COVID-19 = 365

ResNet-50 0.7600 0.8110 0.615 0.8190

[41] Mosmed-1110 Normal = 65
COVID-19 = 46

ResNet-50+MVa 0.9600 1.000 0.96 0.9000

[41] CCAP Normal = 65
COVID-19 = 46

ResNet-101+MPb 0.9300 1.000 0.92 0.9700

[81] COVID-CTset Normal = 48,260
COVID-19 = 15,589

ResNet-50 0.9752 0.9799 0.9749 –

Proposed OMNIAHCOV Normal = 5152
COVID-19 = 6012

ResNet-50 trained with DWT
heatmaps and CT images +
L-SVM

0.9923 0.9927 0.9919 1.000

aMV is the majority vote ensemble method.
bMP maximum probability ensemble method.
Table 9
Comparison of the results (%) attained with CoviWavNet and those of the related studies based on the SARS-COV-2-CT-Scan dataset.
Article Method Acc SE SP F1-score Prec

[83] Customized CNN 95.00 96.00 – 95.00 95.00

[48] CoviDenseNet 86.88 87.41 85.92 89.53 91.76

[52] x-DNN3 97.38 95.53 – 97.31 99.00

[86] Customized Simple CNN 95.78 96.00 95.56 – –

[82] Bi-LSTM 98.37 98.87 – 98.14 98.74

[47] VGG-16+ResNet-
50+Xception+Majority
voting

98.79 98.79 98.79 98.79 98.79

[85] Fuzzy Ranking + VGG-11,
ResNet-50-2,
and Inception v3

98.93 99.08 99.00 98.93 98.93

[84] Customized CNN+Genetic
Algorithm+XBoost

99.00 99.00 – 99.00 99.10

[43] ResNet18+ShuffleNet+AlexNet+
GoogleNet+DWT+GLCM+
Statistical features+PCA+SVM

99.00 99.00 99.00 99.00 99.00

Proposed ResNet-50 trained with DWT
heatmaps and CT images +
C-SVM

99.62 99.54 99.69 99.62 99.70

3x-DNN is an explainable deep neural network.
the performance of CoviWavNet. The main reason for all of the
above studies to have lower performance than CoviWavNet is
that they depend only on the spatial or temporal information
extracted from the original CT while CoviWavNet utilizes the
spatial–spectral–temporal information.

6. Discussion

The paper proposed a pipeline for the automatic diagnosis
f COVID-19 called CoviWavNet. The proposed pipeline is based
n multi-view 3D volumes, not a single view. It used a dataset
ollected in Egypt based on 3D CT volumes called OMNIAH-
OV. In order to validate the performance of CoviWavNet, it also
sed a benchmark CT dataset. First, CoviWavNet used 3-levels
f DWT to analyze CT slices and then converted the approxi-
ation coefficients to heatmaps and used them to train three
esNets. These heatmap images of the three DWT levels represent
he spectral–temporal information included in the images. Covi-
avNet compared the classification accuracy of the three ResNet

rained with the heatmap of the three DWT levels with the same
esNets trained with the original CT images. The results of this
omparison are shown in Table 1. Table 1 revealed that the three
esNets trained with the heatmaps images of the three DWT
evels performed better than ResNets trained with the original
T images. This proves that spectral–temporal information is
uperior to spatial information during ResNet training.
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Table 1 indicated that the ResNets trained with the heatmaps
of the third approximation coefficient level have the greatest
performance among all other levels. Therefore, CoviWavNet ex-
tracted deep spectral–temporal features from each ResNet by TL
and used them to train three SVM classifiers. Table 2 showed
that spectral–temporal features mined with TL from the three
ResNets have superior performance compared to end-to-end DL
classification results shown in Table 1. Afterward, the spectral–
temporal features mined from each CNN were fused with the
spatial features extracted from the same ResNet trained with the
original CT images. A reduction step was performed using the
mRMR FS method to reduce the huge dimension of features after
the fusion step. The results of the extraction, integration, and
reduction of features are shown in Tables 3 and 4 for the OM-
NIAHCOV and SARS-COV-2CT-Scan datasets. These results were
compared with those obtained using spatial features extracted
from the same ResNet trained with the original CT images and
shown also in Tables 3 and 4 for the OMNIAHCOV and SARS-
COV-2CT-Scan datasets. Tables 3 and 4 verified that using spatial–
spectral–temporal information is better than using only spatial
information for diagnosing COVID-19. Furthermore, Figs. 8 and
9 proved the success of the mRMR FS method in reducing the
number of fused spatial–spectral–temporal while maintaining su-
perior performance in terms of number of features and accuracy
compared to using only deep spatial features extracted from the

original CT images.
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Fig. 11. Performance comparison between CoviWavNet and baseline DL networks for the OMNIAHCOV and SARS-COV-CT-SCAN datasets.
Some performance metrics are computed for the performance
of CoviWavNet to further evaluate its performance and were
displayed in Table 5. As discussed in [87–90], for a medical diag-
nostic system to be reliable, precision and specificity must exceed
95%, while the sensitivity should increase by 80%. According to
the results shown in Table 5 for both datasets, both specificity
and precision attained using CoviWavNet are greater than 95% for
the OMNIAHCOV and SARS-COV-2CT-Scan datasets. Furthermore,
the sensitivity attained with CoviWavNet is more than 80% for
the OMNIAHCOV and SARS-COV-2CT-Scan datasets. These results
confirm that CoviWavNet is a reliable pipeline that can be used
to assist the radiologist in the automatic diagnosis of COVID-19
while avoiding the challenges of manual diagnosis.

Also, the performance of CoviWavNet was compared with
methods based on datasets similar to OMNIAHCOV, and the
results of this comparison are shown in Table 8. The results
demonstrated in Table 8 verified the outstanding performance
of CoviWavNet compared to other methods based on compara-
ble datasets. Furthermore, to further validate the performance
of CoviWavNet, its performance was compared with relevant
studies based on the benchmark dataset called SARS-COV-2-
CT-Scan. This comparison was illustrated in Table 9 and the
results of this table proved the superior performance of Covi-
WavNet compared to other studies based on either spatial or tem-
poral information. The results confirmed that utilizing spatial–
spectral–temporal information is better than using either spatial
or temporal information alone.

Finally, the performance of CoviWavNet is compared with
baseline DL models. The result of this comparison is shown in
Fig. 11. It can be noted from Fig. 11 that the accuracy of Covi-
WavNet is greater than that achieved by other baseline DL models
including DenseNet-201, MobileNet, Shuffle, Squeeze, Inception,
ResNet-18, ResNet-50, ResNet-101, DarkNet-19, and DarkNet-
53 for the OMNIAHCOV and SARS-COV-2-CT-Scan datasets. This
proves the superiority of CoviWavNet over other baseline DL
models.

7. Conclusion

The pandemic caused by the novel coronavirus has over-
whelmed the world and has led to considerable losses and chal-
lenges globally. Additionally, a huge deal of matter has evolved
because of the advent of COVID-19 variants. With the rapid
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spread of COVID-19 worldwide, it is very difficult for radiol-
ogists to perform a rapid and accurate diagnosis of the novel
coronavirus under the enormous workload. AI technology; in
specific DL techniques have the potential to help radiologists
in the primary screening of COVID-19. Such techniques could
reduce the excess workload of radiologists, improve diagnostic
accuracy, and produce a fast diagnosis. Therefore, this article
proposed a pipeline called CoviWavNet based on DL techniques
for the diagnosis of COVID-19. This study used a large CT dataset
acquired in Egypt called OMNIAHCOV. This dataset consists of 3D
CT volumes of multiview slices, while most of the methods in
the literature are based on single-view 2D images. To further val-
idate the capacity of CoviWavNet, a publicly available benchmark
dataset was also utilized called the SARS-COV-2-CT-Scan dataset.
First, CoviWavNet analyzed CT slices with three levels of DWT and
transformed approximation coefficients into heatmap images.
Then, it used these images to train three ResNets. The results
proved that using the heatmap images of the approximation coef-
ficients of DWT is better than using the original CT slices. Second,
CoviWavNet extracted deep spectral–temporal features from the
three ResNets and used them as input to three SVM classifiers.
CoviWavNet verified that deep spectral–temporal features are su-
perior to deep spatial features obtained from the ResNets trained
with the original CT images. Finally, CoviWavNet fused spatial and
spectral–temporal features and reduced them using the mRMR
FS algorithm and demonstrated that the reduced set of spatial–
spectral–temporal features had enhanced the diagnostic accuracy.
The proposed pipeline achieved promising performance, reaching
a final accuracy of 99.23% and 99.62% for the OMNIAHCOV and
SARS-COV-2-CT-Scan datasets, respectively, which are superior
to related studies. The results have demonstrated that mRMR
FS method provided a smaller feature set compared to the deep
features extracted from each ResNet individually and achieved
great performance in terms of the metrics utilized. Therefore,
CoviWavNet could be used as an element of a computer-aided
diagnostic system and may provide a fast and automated tool
to assist radiologists in COVID-19 diagnosis. This study did not
consider differentiating COVID-19 from other types of pneumonia
which will be addressed in future work. Furthermore, more
feature selection algorithms and deep learning techniques will be
investigated.
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