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Abstract: The current efforts in photodynamic therapy (PDT) of brain cancer are focused on the
development of novel photosensitizers with improved photodynamic properties, targeted specific
localization, and sensitivity to the irradiation dose, ensuring the effectiveness of PDT with fewer
side effects for normal nerve tissue. Here, we characterize the effects of four photosensitizers of the
tetracyanotetra(aryl)porphyrazine group (pz I–IV) on the functional activity of neuron-glial networks
in primary hippocampal cultures in their application in normal conditions and under PDT. The data
revealed that the application of pz I–IV leads to a significant decrease in the main parameters of
the functional calcium activity of neuron-glial networks and pronounced changes in the network
characteristics. The observed negative effects of pz I–IV were aggravated under PDT. Considering
the significant restructuring of the functional architectonics of neuron-glial networks that can lead
to severe impairments in synaptic transmission and loss of brain functions, and the feasibility of
direct application of PDT based on pz I–IV in the therapy of brain tumors is highly controversial.
Nevertheless, the unique properties of pz I–IV retain a great prospect of their use in the therapy of
tumors of another origin and cellular metabolism.

Keywords: photodynamic therapy; porphyrazines; brain cancer; primary neuronal cultures; func-
tional neural network activity; calcium activity

1. Introduction

Glioblastoma multiforme is the most frequent and aggressive type of malignant tumors
of the central nervous system with extremely low overall patient survival [1–3]. Due to
the low effectiveness of current treatment methods of gliomas, there is an urgent need to
develop breakthrough therapeutic strategies to achieve maximum tumor destruction and
decrease the risk of secondary tumors and metastases. The crucial stage in the development
of any therapeutic approach for treatment of brain tumors is the evaluation of the effects
of anticancer agents on normal nerve cells. Brain cells, especially neurons, have certain
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metabolic peculiarities, making them extremely sensitive to a toxic load. The death of
neuron-glial network elements or changes in their functional activity can significantly affect
brain functions, which can aggravate the patient’s condition and negate the effectiveness of
the therapy.

Photodynamic therapy (PDT) includes in the list of perspective tools for the treatment
of gliomas. PDT is a multi-step procedure that combines systemic or local administration of
a specific agent with photodynamic activity (i.e., photosensitizer), followed by its accumula-
tion in the tumor tissue and excitation by irradiation with a light of appropriate wavelength
and subsequent in the presence of cellular oxygen generation of cytotoxic reactive oxygen
species [4–8]. In recent years there has been a revival intertest to PDT because it is an
attractive and effective anti-cancer approach due to its low invasiveness, low toxic effect
for healthy tissues, and the possibility of its use both as an independent therapy and in
combination with other treatment modes (e.g., chemotherapy, photothermal therapy) [9].
Moreover, it has been shown that, during PDT, several photosensitizers can induce the
immunogenic pathway of cancer cell death, so-called immunogenic cell death (ICD) re-
sulting in the emission of damage-associated molecular patterns (DAMPs), which act as
danger signals and adjuvants to activate the anti-tumor immunity. The release of DAMPs
facilitates the cross-presentation of antigenic peptides on major histocompatibility complex
class I (MHC I) molecules to CD8+ T cells of the adaptive immune system and generation a
long-lasting immunological memory able to eliminate the tumor cells that survived during
initial therapy and, therefore, achieve a complete tumor eradication [7,10–12].

Currently, PDT is widely used in clinical practice in the treatment of tumors of various
origins, including brain tumors. For instance, PDT based on hypericin [13], 5-ALA [14],
hematoporphyrin derivative [15], photofrin [16], and photosens [17] is known to be efficient
against gliomas. However, despite PDT being regarded as a useful tool for cancer treatment,
several persistent challenges compromise its efficiency. From the viewpoint of the central
nervous system, the ability of the photosensitizer to penetrate normal cells preserves
the risk of developing toxic effects leading to the destruction of neuron-glial networks
and significant changes in their functional architectonics under photodynamic exposure.
Therefore, there is still a need for the development of photosensitizers with improved
photodynamic properties, targeted specific localization, and sensitivity to the irradiation
dose, ensuring the effectiveness of PDT with fewer side effects.

We recently presented a novel group of tetracyanotetra(aryl)porphyrazines (here-
inafter, pz) as promising photosensitizers for PDT [18,19]. These compounds have unique
properties providing an elegant combination of photophysical and cytotoxic properties
(e.g., stable production of cytotoxic singlet oxygen), which function as sensors and molec-
ular rotors. The action of these photosensitizers is dependent on fluorescence of the rate
of intramolecular rotation that opens up an ability to detect tumor cells’ sensitivity to
photoinduction and timely optimizes the treatment modes for each patient, allowing for
the opportunity to have more personalized cancer therapy [18]. We have previously shown
the effectiveness of four pz (pz I–IV) in PDT treatment of glioma in vitro. It was shown
that pz I–IV accumulated in both healthy neuronal cells and glioma cells, but the rate of
their internalization, subcellular localization, and dark toxicity differed significantly [19].

In the present study, we studied the features of the functional activity of neuron-glial
networks in primary hippocampal cultures in the application of pz I–IV with (PDT) and
without (in the dark) photodynamic exposure.

2. Materials and Methods
2.1. Ethics Statement

The animals were housed in a certified SPF vivarium of Lobachevsky State University
of Nizhny Novgorod. All experimental procedures were approved by the Bioethics Com-
mittee of Lobachevsky University and carried out in accordance with Act 708n (23 082010)
of the Russian Federation National Ministry of Public Health, which states the rules of
laboratory practice for the care and use of laboratory animals, and the Council Directive
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2010/63 EU of the European Parliament (22 September 2010) on the protection of animals
used for scientific purposes. Pregnant C57BL/6 mice (day of gestation 18) were sacrificed
by cervical vertebra dislocation.

2.2. Isolation of Murine Primary Hippocampal Cultures

Primary hippocampal cultures were obtained from mice embryos and cultured on
culture plates pretreated with polyethyleneimine solution (1 mg/mL) (Sigma-Aldrich,
Darmstadt, Germany) according to the previously developed protocol [20]. Isolation of
embryonic hippocampi was performed in Ca2+- and Mg2+-free phosphate-buffered saline
(PBS, Invitrogen, Waltham, MA, USA) with subsequent enzymatic digestion with 0.25%
trypsin-ethylenediaminetetraacetic acid (EDTA, Invitrogen) for 20 min. After centrifugation
(800 rpm for 3 min), the cell suspension was seeded on a culture plate at an approximate
initial density of 7000–9000 cells/mm2. The primary hippocampal cultures were grown
in Neurobasal medium (Invitrogen) supplemented with 2% B27 (Invitrogen), 0.5 mM L-
glutamine (Invitrogen), and 0.4% fetal bovine serum (FBS; Biosera, Nuaillé, France) under
constant conditions of 37 ◦C, 5% CO2, and a humidified atmosphere in a Binder C150
incubator (BINDER GmbH, Tuttlingen, Germany). Half of the medium was replaced once
every three days.

According to modern paradigm, neural networks are the minimum functional unit of
the central nervous system responsible for the implementation of higher cognitive functions
and the ability to respond to environmental changes [21]. Recent experimental evidence
suggested that astrocytes capable of forming their own networks and interacting with
neurons provide mutual regulation the functional activity of each other [22,23]. Therefore,
the realization of brain functions is largely dependent on functional ensembles of neurons
and glial cells that form complex neuron-glial networks.

We previously showed that primary hippocampal cultures can serve as a relevant
biological model of the brain neuron-glial networks in vitro [24]. In particular, we charac-
terized the cellular content and the features of functional activity of neuron-glial networks
in the different period of cultivation in vitro [24–26].

The current study was conducted beginning with day 14 of primary hippocampal
cultures development in vitro (DIV). This period is characterized by the presence of neurons
and glial cells in the cultures in an approximate ratio of 1:2, the prevalence of a population
of mature chemical synapses with mature axo-dendritic and axo-spiny asymmetric contacts,
and stable functional activity of neuron-glial networks, which has a complex characteristic
pattern [24–26].

2.3. Photosensitizers and Irradiation Modes

Four tetracyanotetra(aryl)porphyrazine dyes with 9-phenanthrenyl (pz I), 4-biphenyl
(pz II), [4-(4-fluorobenzyoxy) phenyl (pz III), and 4-diethylaminophenyl (pz IV) groups
in the periphery of the porphyrazine macrocycle were tested. The photosensitizers were
obtained according to the previously described synthetic approach using a metal tem-
plate assembly of the porphyrazine frameworks [27,28]. The chemical structure of the
synthesized porphyrazines is shown in Figure 1.

On day 14 of cultivation (14 DIV), the culture medium was replaced to a serum-free
medium containing porphyrazines at concentrations of 1.18 µM for pz I, 0.19 µM for pz II,
and 0.54 µM and 0.37 µM for pz III and pz IV, respectively. Since we consider pz I–IV as
potential photodynamic agents for PDT treatment of brain tumors, the concentrations we
used corresponded to the IC50 for murine glioma GL261 cells, which were experimentally
established in our previous studies [18,19]. After 4 h of incubation, the medium was
replaced with a pz-free complete culture medium. The primary hippocampal cultures were
then subjected to photodynamic exposure by light irradiation at the dose of 20 J/cm2 using
a LED light source (λex 615–635 nm, 20 mW/cm2). For the dark toxicity estimation, the cells
loaded with pz I–IV were stored in the dark for an equal time as PDT groups. The primary
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hippocampal cultures that did not receive a pz I–IV addition to the culture medium served
as a control.
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Figure 1. A chemical structure of the synthesized tetracyanotetra(aryl)porphyrazines: pz I, pz II, pz
III, and pz IV.

2.4. Functional Calcium Imaging

To expand our knowledge about the pathological processes in the central nervous
system or assess the effect of a therapeutic agent, it is essential to study the functional
activity of neuron-glial networks. The calcium imaging technique provides registration
of the spatiotemporal patterns of neural-glial network activity. Visualization of calcium
dynamics in the cytoplasm of nerve cells is an extremely informative approach for assessing
neural-glial network metabolic activity since it allows for visualizing the architecture and
mapping the activity of networks with cellular resolution [26].

Functional calcium imaging was performed on the next day after photodynamic ther-
apy according to the previously developed protocol [29]. A fluorescent calcium-sensitive
dye Oregon Green 488 BAPTA-1 AM (Invitrogen) was dissolved in DMSO with 4% pluronic
F-127 (Invitrogen), and then added to the medium of the primary hippocampal cultures
followed by 20 min incubation in a CO2-incubator. The obtained samples were examined
using an LSM 800 confocal laser scanning microscope (Carl Zeiss, Oberkochen, Germany).
The OGB1 fluorescence excitation wavelength was set at 488 nm with an argon laser, and
the emission was recorded in the range of 500 to 530 nm.

To evaluate the dynamics of changes in the intracellular calcium concentration, time
series of confocal images were recorded. The registration rate used was three frames per
second. The following parameters were analyzed: the duration of calcium oscillations (the
time period from the beginning to the end of an oscillation, s), the frequency of calcium
oscillations (an average number of oscillations per min), and the percentage of active cells
(the cells number with at least one recorded oscillation divided by the total cell number, %).

2.5. Analysis of Network Characteristics of Primary Hippocampal Cultures

We recently developed algorithm providing the analysis of calcium imaging data by
using correlation analysis for construction of the dynamical architecture of neuron-glial
networks [20,22,26,30]. This approach allowed us to assess the activity both neurons and
astrocytes in the network, to assess the collective and coordinated activity of neuron-glial
networks on the functional level, and to evaluate the effects of therapeutic agents [20,26,31].
Used algorithm represents the neuron–glial network as an oriented graph of the nodes,
which correspond to individual cells, and the edges connect the corresponding nodes and
indicate a significant correlation between pairs of cells (p > 0.3). The spread of calcium
signals between cells results in detecting time delays in the increase in Ca2+ concentration.
The following parameters were analyzed: the correlation between cells, the average number
of connections per cell, the ratio of the available connections in the culture to the maximum
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possible number of connections in the culture, and the signal speed propagation. This
complex group of parameters allowed us to assess the functional state of the neuron-glial
networks in the culture.

2.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism v.9.3.1.471 https://www.
graphpad.com (accessed on 2 December 2021) (San Diego, CA, USA). Data were expressed
as box and whisker plots with Tukey’s method. We performed Kruskal–Wallis non-
parametric ANOVA. Difference was considered to be statistically significant if p < 0.05. At
least three independent biological replicates were used for all experiments.

3. Results

We previously characterized the long-term dark toxicity effects of pz I–IV on the
viability of primary neuronal cultures [19]. It was shown that pz I–IV accumulated in both
healthy neuronal cells and glioma cells, but the rate of their internalization, subcellular
localization, and dark toxicity differed significantly [19]. In the current study, we focused
on the assessment of the features of metabolic functional activity of neuron-glial networks
of primary hippocampal cultures in the application of pz I–IV in the dark and under PDT.

Analysis of the main parameters of calcium activity showed that cultures not exposed
to PDT (control dark) have a high percentage of functionally active cells (81.32 [61.28; 95.32]
%) (Figure 2). At the same time, the calcium activity profile is characterized by frequent
Ca2+ oscillations (0.56 [0.21; 0.95] osc/min) of low duration (11.91 [10.61; 13.96] s). As we
previously showed, such a profile of the functional calcium activity is typical for this period
of cultivation of primary hippocampal cultures in vitro [31].

PDT leads to a significant decrease in the functional calcium activity of neuron-glial
networks of primary hippocampal cultures (Figure 2). In the “Control PDT” group, the
number of active cells (7.06 [0.38; 20.62] %), as well as the frequency of Ca2+ oscillations
(0.01 [0.01; 0.04] osc/min) decreased relatively the group “Control dark” by 11.5 and more
than 50 times, respectively.

The application of all studied photosensitizers (pz I–IV) resulted in inhibition of
the functional calcium activity of primary hippocampal cultures either subjected to PDT
or not (Figure 2). The observed effect was accompanied by a dramatic decrease in the
number of functionally active cells and significant changes in Ca2+ oscillations profile
including a decrease in the frequency and an increase in the duration of Ca2+ oscillations.
There were no significant differences between the experimental groups and the “Control
PDT” group. Such changes in the Ca2+ profile are supposed to be associated with the
destruction of synaptic contacts and degradation of axons and dendrites, which in turn can
potentially lead to the complete destruction of neural networks and, as a consequence, loss
of brain functions.

The no less significant analysis that determines the functional state of primary neuronal
cultures is an assessment of the parameters of network activity. In normal conditions, most
cells in the neuron-glial network work simultaneously and are connected to each other.
The death of functionally important elements in response to a stress factor can lead to the
substantial restructuring of the network resulting in its simplification and pronounced
functional impairment. The potential death of the neuron-glial network is evidenced by
the lack of correlation in the profile of Ca2+ oscillations between functionally active cells.

Therefore, the next stage of our study was focused on the analysis of the main network
characteristics of primary hippocampal cultures including the average level of correlation
of Ca2+ oscillations, the signal speed propagation, the average number of functional con-
nections per cell, and the percentage of existing correlated connections between cells from
the total number of possible connections (Figure 3).

https://www.graphpad.com
https://www.graphpad.com
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Figure 2. Main parameters of functional calcium activity in primary hippocampal cultures the
next day after PDT. (a) Number of Ca2+ oscillations per min; (b) duration of Ca2+ oscillations;
(c) proportion of cells exhibiting Ca2+ activity. * versus “Control dark”; p < 0.05, Kruskal–Wallis test.

It was shown that, normally (“Control dark” group), the cells in the neuron-glial
network form multiple connections (897.18 [735.53; 976.14] connections in each cell on
average) and have a high level of signal speed propagation (0.66 [0.57; 0.77] µm/s), which
corresponds to the 14th–15th days of culture development in vitro [20].

Application of pz I–IV without PDT leads to significant changes in the network
characteristics of neuron-glial networks. Against the background of a decrease in the
number of working cells and Ca2+ activity profile in all experimental groups (Figure 2),
there is a decrease in signal speed propagation between cells and the average level of
correlation and number of functional connections per cell (Figure 3).
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Figure 3. Main parameters of neuron-glial network activity in primary hippocampal cultures the next
day after PDT. (a) Mean correlation level of cells, (b) signal speed, (c) average number of functional
connections per cell, and (d) percentage of correlated connections from the total number of possible
connections. * versus “Control dark”, # versus “Control PDT”, • versus the same pz dark group,
p < 0.05, Kruskal–Wallis test.

PDT also had a negative effect on the network characteristics of neuron-glial networks.
The signal speed propagation between cells in the “Control PDT” group remains unchanged;
however, there is a significant decrease in the average level of correlation (0.15 [0.10; 0.23])
and the average number of functional connections per cell (60.51 [3, 09; 165.87]). The use of
pz I–IV during irradiation led to a decrease in all studied network characteristics, which
indicates a pronounced disruption of the networks functioning. The most pronounced
changes were observed in the pz I–PDT and pz II–PDT groups, in which a significant
decrease in signal speed propagation between cells (6.45 [6.28; 6.79] and 7.27 [6.85; 9.17]
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µm/s) relative to the “Control PDT” group (13.39 [11.31; 17.42] µm/s) was shown. Other
analyzed network parameters tended to zero (Figure 3).

The construction of correlation network graphs showed that, in the normal state,
the neuron-glial network of the primary hippocampal cultures has a large number of
connections (Figure 4a). PDT led to the partial destruction of connections between cells
(Figure 4b). A similar dynamic of changes was observed in the groups of cultures with pz
I–IV application without PDT (Figure 4c,e,g,i). The most significant changes are noted in
the “pz I dark” group. A complete destruction of the connections between the cells that
form the neuron-glial network was shown 24 h after photodynamic exposure with the
application of all the studied photosensitizers (pz I–IV) (Figure 4d,f,h,j).
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Next, we analyzed the relation between the level of correlation of Ca2+ oscillations
on the distance between cells (Figure 5), which showed a high level of correlation in the
normal state (“Control dark” group). Most of the points reflecting the relationship between
a pair of cells are in the correlation range from 0.8 to 1 (Figure 5a). PDT led to a significant
decrease in the level of correlation between cells (Figure 5b). In the “Control PDT” group,
the point cloud was shifted to the to the beginning of coordinates, and the correlation level
was in the range from 0 to 0.5. A decrease in the level of correlation was also noted in the
groups of cultures with application of pz I–IV without irradiation. After photoactivation of
all studied photosensitizers (pz I–IV), the point cloud was concentrated in the range from
0 to 0.2, which is considered to be a lack of correlation (Figure 5d,f,h,j).
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Analysis of raster diagrams of calcium activity in the “Control dark” group showed
the synchronized activity of cells in the neuron-glial network. The spontaneous calcium
activity profile is characterized by the appearance of superoscillations (Figure 6a). PDT
significantly changed the pattern of calcium activity of primary hippocampal cultures. In
the “Control PDT” group, the superoscillations were not registered; the number of grouped,
synchronized Ca2+ events were reduced (Figure 6b). A similar dynamic of changes was
observed in the groups of cultures with application of photosensitizers (pz I–IV) without
irradiation (Figure 6c,e,g,i). The most pronounced changes in the profile of calcium activity
were observed in the groups of cultures with the application of pz I (Figure 6c) and pz II
(Figure 6e) where the profile of calcium activity was mainly represented by ungrouped
single Ca2+ oscillations. Photodynamic exposure aggravated the effect of pz I–IV on the
pattern of spontaneous calcium activity of primary hippocampal cultures (Figure 6d,f,h,j).
The synchronized Ca2+ events were completely absent in these experimental groups.
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control, (f) pz II PDT, (g) pz III control, (h) pz III PDT, (i) pz IV control, and (j) pz IV PDT.
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4. Discussion

Despite the achievements in modern medicine, a steady increase in oncological dis-
eases has been observed all over the world. Since the middle of the 20th century, PDT
has been a clinical option for the treatment of tumors of various origins [6,7,14,32]. In
particular, along with chemotherapy and fractionated radiotherapy, PDT is regarded as a
therapeutic modality for the treatment of gliomas as well as for fluorescent-guided brain
tumor resection [33–35]. Moreover, in the context of the modern paradigm on the critical
role of the immune system in cancer treatment, accompanied by the active development
of personalized immunotherapeutic anti-cancer strategies, the attractiveness of the PDT
approach is also associated with an ability to induce regulated cancer cell death modalities
with immunogenic properties, which provides endogenous stimulation of antitumor T-cells
and the generation of long-term immunological memory, and eventually allows us to
achieve complete tumor eradication and negates the risk of metastasis [7,17]. However, the
controversial evidence of PDT efficiency on overall survival of patients with gliomas as well
as persistent side effects, technical limitations in light delivery, and photosensitizer design
do not allow for the widespread use of this approach in the clinic as a standard treatment
mode [14]. Nevertheless, in a view of the promising prospects of PDT in anti-cancer therapy,
the intensive research aimed at boosting PDT efficiency continues [36]. Special attention is
given to the design of novel photosensitizers with improved photodynamic properties and
a low systemic toxicity effect for normal tissues.

Representatives from tetrapyrrole macrocycles whose photodynamic properties are
widely discussed in the literature are of particular interest [37–40]. These compounds
have improved the absorption and retention properties as well as “open” pyrol sites for
substitution [41]. Substitution with aryl- and cyano- groups enables the design of tetra-
cyanotetra(aryl)porphyrazines, which support the high photodynamic activity and have
unique properties of molecular rotors [42]. Previously studies have shown that PDT leads
to a significant increase in intracellular viscosity of tumor cells [43,44]. The fluorescence of
molecular rotors depends on the rate of intramolecular rotation. In high viscosity media, in-
tramolecular rotation is inhibited resulting in a significant increase of the emission intensity
and the fluorescence lifetime. The assessment of viscosity characteristics by measuring the
lifetime of fluorescent molecular rotor excitation using time-resolved microscopy allows
for early monitoring of tumor cells’ sensitivity to photoinduction, and the efficiency of
cell death during PDT procedure or immediately after its termination. The functions of
molecular rotors were shown for pz I–IV in our previous studies [18,27,28,42,45,46]. That
means that pz can provide promising prospects for personalized PDT dosimetry aiming
to achieve the highest treatment efficacy with minimal cytotoxic effect for surrounding
normal tissues. Moreover, the attractiveness to pz for PDT glioma treatment also lies in
their ability to induce immunogenic cell death that was previously shown in vitro and
in vivo in a tumor prophylactic vaccination model [47]. This indicates a high potential of
the use of pz not only as a personalized PDT dosimetry tool, but also as an effective PDT
treatment mode.

We have previously shown that pz I–IV effectively kills murine glioma GL261 cells
and causes different long-term dark toxicity effects on primary neuronal cultures [18,19].
Herein, we assessed the influence of pz I–IV on the functional network activity of primary
hippocampal cultures in a normal state and after PDT. Carried out experiments revealed
that PDT without the application of pz leads to a significant decrease in the main param-
eters of the functional calcium activity of neuron-glial networks and causes a negative
effect on the network characteristics, resulting in the partial destruction of connections
between cells, a decrease in the level of correlation between cells, and simplification of the
pattern of calcium activity. Similar dynamics of changes in calcium activity parameters and
network characteristics were observed in the application of pz I–IV. PDT aggravated the
negative effect of pz I–IV. Against the background of a dramatic decrease in the number of
metabolically active cells accompanied by a decrease in the frequency and an increase in the
duration of Ca2+ oscillations, there was a decrease in all studied network characteristics and
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pronounced simplification of the spontaneous calcium activity profile 24 h after irradiation.
The observed effects suggest that, even in the absence of pronounced toxic effects on mor-
phological integrity, the accumulation of pz I–IV in healthy nerve cells can cause significant
changes in the functional architectonics of neuron-glial networks, leading to impairments
in synaptic transmission and degradation of axons and dendrites, which in turn can poten-
tially result in the complete destruction of neural networks and, consequently, loss of brain
functions. We previously found that pz I–IV were substantially accumulated in neurons
and glial cells in primary neuronal cultures mostly in lysosomes (pz I–IV) and partially in
the endoplasmic reticulum (ER) (for pz I and pz II) even two hours after pz addition to
the culture medium [19]. It could be assumed that accumulation of pz in the lysosomes
can trigger a lysosomal stress response accompanied by the release of Ca2+ ions through
calcium permeable channels into the cytosol [48]. Moreover, the lysosome resident protein
the mammalian target of rapamycin (mTOR) contributes to the stress of the ER, the main
depot of Ca2+ in cells [48]. Thus, both lysosomal and ER stress can initiate the development
of excitotoxic effects, which significantly affect the spontaneous calcium activity of nerve
cells. The formation of reactive oxygen species under PDT apparently accelerates and
intensifies the effects of lysosomal and ER stress leading to dramatic consequences in the
spontaneous calcium activity of primary hippocampal cultures.

Therefore, considering the significant changes in the functional activity of neuron-glial
networks in vitro, the feasibility of the direct application of PDT based on pz I–IV in the
therapy of gliomas is highly controversial. Nevertheless, the unique properties of pz I–IV
retain a great prospect of their use in PDT cancer therapy. Looking ahead, pz I–IV could
be applied in the therapy of other types of tumors differed by cells’ origin and cellular
metabolism from glioma and healthy nervous system cells. For instance, we previously
showed that pz II and pz IV cause pronounced cytotoxicity against human epidermoid
carcinoma A431 cells, whereas photoinduced effects regarding human immortalized ker-
atinocytes HaCaT were significantly lower [18]. PDT based on pz I and pz III effectively
kills fibrosarcoma MCA205 cells through the immunogenic pathway accompanied by the
emission from PDT-induced cancer cells of two crucial DAMPs (ATP and HMGB1) with
subsequent engulfment by antigen-presenting cells (i.e., dendritic cells, DC) and induction
of their activation and maturation in vitro [47]. Moreover, in the tumor prophylactic vacci-
nation model in vivo, it has been shown that fibrosarcoma MCA205 cells stimulated with
pz I-PDT or pz III-PDT served as a potent vaccine-activated adaptive immune response
and significantly decreased the tumor growth at the challenge site [47].

Currently, the development of DC-based vaccines is regarded as an alternative ap-
proach for the treatment of gliomas that allows for avoiding pronounced toxic effects for a
healthy nervous system [49]. The most common design of DC vaccines is the application
of specific antigen peptides/RNA for pulsing DCs or whole-glioma tumor cells killed via
freeze/thawing-based necrosis [50]. However, although the former methodology might
exhibit low efficacy due to the high antigenic heterogeneity of brain tumors, the latter
procedure is associated with poor immunogenic potential. Considering the evidence that
pz-based PDT can trigger ICD [47], it could be assumed that application of PDT-induced
glioma cells for pulsing DCs will significantly improve the immunogenic potential and the
ability to induce a superior T helper 1-mediated immunity, that in turn allows for achieving
a high efficacy of a new generation of DC vaccines against gliomas. Indeed, this is an
intriguing direction for future research, and more detailed experiments in vitro and in vivo
are expected.

5. Conclusions

We characterized the effects of four photoactive dyes of the tetracyanotetra(aryl)
porphyrazine group (pz I–IV) on the functional activity of neuron-glial networks in primary
hippocampal cultures in their application in normal conditions and under PDT. It was
shown that application of pz I–IV leads to a significant decrease in the main parameters of
the functional calcium activity of neuron-glial networks and causes the pronounced changes
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in the network characteristics. The observed negative effects of pz I–IV were aggravated
under PDT. Considering the significant restructuring of the functional architectonics of
neuron-glial networks that can lead to the severe impairments in synaptic transmission
and loss of brain functions, the feasibility of direct application of PDT based on pz I–IV in
the therapy of brain tumors is highly controversial. Nevertheless, the unique properties of
pz I–IV retain a great prospect of their use in the therapy of tumors of another origin and
cellular metabolism.
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