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Introduction: The goal of brain tumor surgery is the maximal resection of neoplastic
tissue, while preserving the adjacent functional brain tissues. The identification of
functional networks involved in complex brain functions, including visuospatial abilities
(VSAs), is usually difficult. We report our preliminary experience using a preoperative
planning based on the combination of navigated transcranial magnetic stimulation (nTMS)
and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial
(VS) cortico-subcortical network in patients with right parietal lobe tumors.

Material and Methods: Patients affected by right parietal lobe tumors underwent
mapping of both hemispheres using an nTMS-implemented version of the Hooper
Visual Organization Test (HVOT) to identify cortical areas involved in the VS network.
DTI tractography was used to compute the subcortical component of the network,
consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D
reconstruction of the VS network was used to plan and guide the safest surgical approach
to resect the tumor and avoid damage to the network. We retrospectively analyzed the
cortical distribution of nTMS-induced errors, and assessed the impact of the planning on
surgery by analyzing the extent of tumor resection (EOR) and the occurrence of
postoperative VSAs deficits in comparison with a matched historical control group of
patients operated without using the nTMS-based preoperative reconstruction of the
VS network.

Results: Twenty patients were enrolled in the study (Group A). The error rate (ER) induced
by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere,
the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus
(1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG)
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(1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to
plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of
cases. After surgery no new VSAs deficits were observed and a slightly significant
improvement of the HVOT score (p=0.02) was documented. The historical control
group (Group B) included 20 patients matched for main clinical characteristics with
patients in Group A, operated without the support of the nTMS-based planning. A GTR
was achieved in 90% of cases, but the postoperative HVOT score resulted to be
worsened as compared to the preoperative period (p=0.03). The comparison between
groups showed a significantly improved postoperative HVOT score in Group A vs. Group
B (p=0.03).

Conclusions: The nTMS-implemented HVOT is a feasible approach to map cortical areas
involved in VSAs. It can be combined with DTI tractography, thus providing a
reconstruction of the VS network that could guide neurosurgeons to preserve the VS
network during tumor resection, thus reducing the occurrence of postoperative VSAs
deficits as compared to standard asleep surgery.
Keywords: brain tumors, diffusion tensor imaging tractography, navigated transcranial magnetic stimulation
(nTMS), superior longitudinal fasciculus (SLF), visuospatial abilities, visuospatial network, parietal lobe, Hooper
visual organization test
INTRODUCTION

The modern goal of brain tumor surgery is to achieve the so-
called “maximal safe resection”, consisting in the maximal
resection of neoplastic tissue while respecting adjacent
eloquent tissue to preserve brain functions (1–3). Traditionally,
motor and language functions can be confidentially assessed by
neurosurgeons both pre- and postoperatively, therefore great
attention is usually paid to the preservation of cortico-subcortical
networks involved in these functions before and during brain
tumor surgery (3–7). Conversely, complex cognitive functions,
including visuospatial abilities (VSAs), usually require a specific
neuropsychological expertise for their assessment, and therefore
are usually undervalued by neurosurgeons when facing with
surgery of brain neoplasms (8). Nevertheless, many cognitive
functions are equally important than motor and language
functions for an optimal quality of life, and should be preserved
during brain tumor surgery to ensure, as much as possible, a
normal postoperative familial, social, and even professional life
to patients (8). Nevertheless, the neuroanatomical correlates of
these brain functions are not well known or understood in all
cases, and therefore the preservation of the involved cortico-
subcortical networks cannot be easily achieved during brain
tumor surgery.

Among these functions, VSAs deserves a great consideration,
since it consists of a heterogeneous group of cognitive processes
involved in the visual interaction with the environment and
T, resting motor threshold; HVOT,
nofsky Performance Status; LBT, Line
; VS, Visuospatial; WHO, World

2

objects, essential for visual perception and finalistic behavior (9).
VSAs impairment can result in a variety of neurological
manifestations, including hemispatial neglect, visuospatial
agnosia, etc. that severely affect the everyday life of patients,
their quality of life (9, 10), and potentially their Karnofsky
performance status, thus potentially also influencing their
eligibility to adjuvant oncological care. The neuroanatomical
correlate of VSAs has been identified mainly in right
hemisphere, consisting in a fronto-parietal network mainly
represented by the posterior parietal cortex and its connections
with the prefrontal cortex by the superior longitudinal fasciculus
(SLF), and in particular its three branches, namely the SLF-I,
SLF-II, and SLF-III (11–16). Such a hemispheric asymmetry
results in the fact that the right hemisphere controls attentional
orienting in both left and right hemispaces, while the left
hemisphere controls the direction of attention only in the right
hemispace (17–21).

The visuospatial (VS) network can be successfully indentified
and preserved during brain tumor surgery by expert
neurosurgeons in collaboration with neuropsychologists during
awake surgery (8, 10). Nevertheless, not all patients are eligible to
undergo awake surgery (22, 23), and unfortunately to date many
neurosurgical centers does not possess the expertise and
resources to perform intraoperative brain mapping of the VS
network (8). The final result is that, still nowadays, the
attention paid to the VS network during brain tumor surgery
is poor, and the occurrence of postoperative VSAs defictis is
underestimated (8).

An alternative to intraoperative mapping is represented by
advanced functional and structural imaging. Functional MRI
(fMRI) can be used to identify the fronto-parietal cortical areas of
the VS network (24). Nevertheless, fMRI has the limitation to
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show wide activation regions that reflect all the cognitive
processes involved in the execution of a specific task, but not
necessarily essential for it (25–28). Moreover, the phenomenon
of dissociation between neural activation and BOLD signal has
been widely reported and represents a serious potential risk for
misinterpretation of fMRI results (29), even when using visual
tasks in experimental models (30). Therefore, in the past years,
several studies have tried to map cortical areas of the VS network
by using different technologies, including repetitive navigated
transcranial magnetic stimulation (nTMS) (31–33). nTMS has a
higher spatial resolution (few millimeters) as compared to fMRI
(34–36), and, unlike fMRI that relies on a positive-activation
model, repetitive nTMS is based on a virtual-lesion model,
consisting in a transient disruption of neuronal activity
through a repetitive stimulation during the execution of a
specific task (37, 38). Preliminary reports demonstrated
repetitive nTMS is a feasible technique to successfully map
cortical areas of the VS network in healthy subjects (31–33).
On the other hand, diffusion tensor imaging (DTI) tractography
can be successfully used to compute the three major branches of
the SLF (SLF-I, SLF-II, SLF-III), and to visualize their
connections to the right parietal and frontal lobe, thus enabling
the identification of subcortical white matter fibers of the VS
network (39).

Despite the combination of nTMS and DTI tractography can
help neurosurgeons to identify and visualize the cortico-
subcortical components of the VS network, to our knowledge
no studies have ever analyzed the potential benefit of using such
information to identify and preserve the VS network during
brain tumor surgery, so far.

Here we report our preliminary experience using a
preoperative planning based on nTMS cortical mapping and
DTI tractography for the 3D reconstruction and visualization of
the VS network. We also analyze how the use of this planning
could help neurosurgeons in preserving the network during
surgery of brain tumors in the right parietal lobe, as well as in
reducing the occurrence of new postoperative visuospatial
deficits. Finally, we compared findings achieved in patients
treated using our new protocol for preoperative mapping of
the VS network with findings observed in a matched historical
control group of patients operated using standard asleep surgery
without the help of any preoperative functional mapping
and planning.
MATERIALS AND METHODS

Study Design
We retrospectively col lected cl inical , neurological ,
neuropsychological, and neuroradiological data of all patients
admitted at the Department of Neurosurgery of the University of
Messina, Italy, between January 2019 and December 2020
harboring a brain tumors located mainly in the right parietal
lobe, and submitted to preoperative nTMS mapping of VS
cortical areas and DTI tractography of the three SLF branches
(SLF-I, SLF-II, SLF-III) to plan and guide tumor resection
Frontiers in Oncology | www.frontiersin.org 3
(Group A). Inclusion criteria were: age ≥ 18 years old, native
Italian-language speakers, brain tumors mainly located in the
right parietal lobe and therefore suspected to involve the VS
network. Exclusion criteria were: age < 18 years old, bilingual
speaking, the presence of any contraindication to undergo MRI
and/or nTMS mapping (e.g., subjects harboring pacemakers,
cochlear implants, non-MRI-compatible prosthesis, severe
epilepsy). The information provided by nTMS cortical
mapping and DTI tractography enabled the reconstruction of
the VS network that was used to plan and guide the maximal
tumor resection as well as to preserve the VS cortical and
subcortical structures.

We also collected data from a historical control group
including 20 patients affected by brain tumors mainly located
in the right parietal lobe and operated at the same Neurosurgical
Center in the period between January 2016 and December 2020
using a standard asleep microneurosurgical treatment without
the use of any preoperative mapping and reconstruction of the
VS network (Group B). Patients in Group B were matched for
main clinical characteristics with patients in Group A (Table 1).

In Group A, we first analyzed the cortical distribution of
errors induced by nTMS mapping during the execution of a
specific neuropsychological test investigating VSAs to disclose
cortical areas involved in the VS network (i.e., the Hooper Visual
Organization Test, HVOT) in the right vs. left hemisphere. We
also analyzed the eventual different intra-hemispheric
distribution of errors induced by nTMS mapping in
each hemisphere.

Finally, we analyzed the impact of the use of the preoperative
planning based on the advanced reconstruction of the VS
network on tumor extent of resection (EOR) and postoperative
preservation of visuospatial abilities. We also compared the EOR,
the postoperative visuospatial performance and functional
outcome in Group A vs. Group B.

All participants signed a written informed consent for
collection and use of clinical data for scientific purposes,
according to the IRB at our Institution (Comitato Etico Messina).

Repetitive nTMS Cortical Mapping of the
VS Network in Group A
All participants (Group A and B) underwent brain MRI scan by
using a 3 Tesla scanner (Achieva 3T, Philips Medical Systems,
The Netherlands). T1-weighted multiplanar reconstruction
(MPR) sequences (TR/repetition time=8.1, TE/echo time = 3.7)
were acquired after gadolinium i.v. administration, as a part of
the routine preoperative diagnostic assessment. In case of non
contrast-enhancing lesions (i.e., low grade gliomas) FLAIR
sequences (TR = 8000, TE = 331.5/7) were also acquired.

The MRI scan of patients in Group A was imported into the
nTMS system for mapping cortical areas involved in the VS
network. The nTMS mapping was performed by using the
NexSpeech module of the Nexstim NBS 4.3 system (Nexstim
Oy, Helsinki, Finland), and basically consisted in the use of
repetitive nTMS delivered through a figure-of-eight coil over the
scalp of the patient during the execution of the HVOT test.
Initially, the resting motor threshold (RMT) for the first dorsal
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TABLE 1 | Salient demographic and clinical characteristics of patients in Group A and B, as well as nTMS mapping features of patients in Group A.

N° Sex Age Handedness Histology Location RH
RMT
(mV)

LH
RMT
(mV)

Eloquence
for VS
network

EOR HVOT T
score
(pre-
OP)

HVOT T
score

(post-OP 1
month)

KPS
score
(pre-
OP)

KPS score
(post-OP 1
month)

LBT
score
(pre-
OP)

LBT
score
(post-
OP)

nTMS Group (Group A)
#1 F 73 Right Glioblastoma

WHO IV
Fronto-
parietal,
Right

41 35 N GTR 68 71 90 90 8 7

#2 M 56 Right Glioblastoma
WHO IV

Parietal,
Right

35 38 N GTR 81 80 80 80 6 7

#3 M 54 Right Glioblastoma
WHO IV

Temporo-
parietal,
Right

32 36 N GTR 66 64 80 90 7 8

#4 M 67 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

36 29 Y STR 77 78 70 70 7 7

#5 F 78 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

39 38 N GTR 58 54 80 80 8 9

#6 F 70 Right Glioblastoma
WHO IV

Temporo-
parietal,
Right

59 41 N GTR 77 70 90 90 7 7

#7 F 73 Right Glioblastoma
WHO IV

Parieto-
occipital,
Right

32 31 N GTR 75 71 80 80 7 7

#8 M 46 Right Metastases
from Lung
Cancer

Parietal,
Right

30 28 Y GTR 80 80 80 80 6 6

#9 M 55 Right Diffuse
Astrocytoma
WHO II

Fronto-
temporo-
parietal,
right

34 32 N GTR 71 70 90 90 6 7

#10 M 77 Right Glioblastoma
WHO IV

Parieto-
temporo-
occipital,
right

35 31 N GTR 76 77 90 80 6 6

#11 M 48 Right Glioblastoma
WHO IV

Parietal,
Right

35 34 Y GTR 80 78 80 90 7 7

#12 F 44 Right Glioblastoma
WHO IV

Parietal,
Right

32 32 N GTR 54 56 90 90 9 9

#13 F 44 Right Glioblastoma
WHO IV

Parietal,
Right

38 39 N GTR 62 60 90 80 9 9

#14 F 53 Right Glioblastoma
WHO IV

Parietal,
Right

40 41 N GTR 74 72 90 90 8 9

#15 F 41 Right Diffuse
Astrocytoma
WHO II

Parietal,
Right

39 39 Y GTR 80 80 80 80 7 7

#16 M 66 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

34 36 Y STR 60 60 90 90 7 8

#17 F 65 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

41 39 Y GTR 64 61 80 90 7 7

#18 M 66 Right Glioblastoma
WHO IV

Parietal,
Right

31 32 N GTR 76 74 80 60 7 7

#19 M 25 Right Diffuse
Astrocytoma
WHO II

Fronto-
parietal,
Right

35 36 Y STR 70 70 90 90 7 7

#20 F 66 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

39 39 Y GTR 68 66 70 80 7 7

(Continued)
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TABLE 1 | Continued

N° Sex Age Handedness Histology Location RH
RMT
(mV)

LH
RMT
(mV)

Eloquence
for VS
network

EOR HVOT T
score
(pre-
OP)

HVOT T
score

(post-OP 1
month)

KPS
score
(pre-
OP)

KPS score
(post-OP 1
month)

LBT
score
(pre-
OP)

LBT
score
(post-
OP)

Historical Matched Control Group (Group B)
#1 M 57 Right Glioblastoma

WHO IV
Temporo-
parietal,
Right

/ / / GTR 70 72 80 90 7 7

#2 M 52 Right Glioblastoma
WHO IV

Parieto-
occipital,
Right

/ / / GTR 78 76 80 80 7 7

#3 F 68 Right Glioblastoma
WHO IV

Parietal,
Right

/ / / GTR 68 74 90 90 8 7

#4 F 70 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

/ / / STR 75 80 70 70 6 6

#5 F 50 Right Metastases
from Breast
Cancer

Parietal,
Right

/ / / GTR 70 72 90 90 6 6

#6 M 71 Right Glioblastoma
WHO IV

Parietal,
Right

/ / / GTR 67 67 90 90 7 7

#7 F 72 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

/ / / GTR 72 74 80 80 7 7

#8 M 41 Right Diffuse
Astrocytoma
WHO II

Fronto-
parietal,
Right

/ / / STR 84 85 70 60 6 6

#9 M 35 Right Diffuse
Astrocytoma
WHO II

Temporo-
parietal,
Right

/ / / GTR 80 80 90 90 6 6

#10 M 50 Right Glioblastoma
WHO IV

Parietal,
Right

/ / / GTR 70 72 80 90 7 6

#11 M 49 Right Diffuse
Astrocytoma
WHO II

Temporo-
parietal,
Right

/ / / GTR 78 74 80 80 7 7

#12 F 50 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

/ / / GTR 70 70 90 70 7 6

#13 F 55 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

/ / / GTR 71 72 80 80 7 7

#14 M 75 Right Metastases
from Lung
Cancer

Parietal,
Right

/ / / GTR 68 70 90 80 8 7

#15 M 58 Right Anaplastic
Astrocytoma
WHO III

Temporo-
parieto-
occipital,
Right

/ / / GTR 72 75 90 90 7 7

#16 M 60 Right Glioblastoma
WHO IV

Parietal,
Right

/ / / GTR 65 76 90 80 7 5

#17 M 66 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

/ / / GTR 60 80 80 70 9 6

#18 F 67 Right Glioblastoma
WHO IV

Fronto-
parietal,
Right

/ / / GTR 72 70 80 90 8 8

#19 F 75 Right Glioblastoma
WHO IV

Parietal,
Right

/ / / GTR 68 69 90 90 8 8

#20 M 52 Right Diffuse
Astrocytoma
WHO II

Temporo-
parietal,
Right

/ / / GTR 74 78 90 90 7 6
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interosseus (FDI) muscle using single-pulse stimulation of the
primary motor cortex was defined as previously described (40–
42). Then, a repetitive stimulation was applied over both the
hemispheres, with particular regard to the parietal lobe and
the adjacent frontal, temporal and occipital gyri, during the
execution of an nTMS-implemented version of the HVOT test.
The HVOT is a standardized test for measuring the individual
ability to integrate visual stimuli, and is commonly used during
routine neuropsychological assessment for the investigation of
visuospatial processing (43). It consists of 30 line drawings
depicting simple objects, which have been cut into pieces and
rearranged in a puzzle-like fashion (Figure 1). The subject is
asked to identify what each object would be if all pieces were put
back together correctly. All the HVOT drawings were imported
into the nTMS system and displayed into a LCD screen in front
of the subject. Pictures were presented to subjects for a fixed time
(4 s) and with a fixed inter-picture interval (IPI; 4 s). Each
participant underwent a baseline task without nTMS stimulation
three times, in order to eliminate unrecognized/misnamed
drawings, to induce a learning-effect, and therefore to reduce
as much as possible false-positive results. Then, the task was
administered during the repetitive stimulation. As already
reported in literature regarding nTMS mapping of VSAs, the
stimulation protocol consisted in a train of 10 pulses with a 5 hz
frequency at 100% of the RMT intensity (32, 33). Stimulation
intensity was reduced to 90% or 80% of the RMT if the patient
complained some discomfort during the mapping procedure.
The repetitive stimulation was triggered with the picture
presentation by using an onset delay of 0 ms (44). The nTMS
coil was randomly moved in about 10-mm steps over the parietal
cortex and the adjacent frontal, temporal and occipital gyri.
Frontiers in Oncology | www.frontiersin.org 6
The coil was placed perpendicular to the sulcus posterior to the
stimulated point to achieve the maximum field induction (45).
During the mapping procedure, about 100 cortical sites in both
hemispheres were stimulated 3 times each. Since repetitive nTMS
is able to temporarily disrupt brain functions according to a
“virtual lesion” model (37, 38), the nTMS mapping induced
specific errors during the execution of the HVOT when
stimulating cortical areas involved in the VS network. A
stimulated cortical site was considered involved in the VS
network if an nTMS-induced error at the HVOT was obtained
at least during 2 of 3 stimulations. All the procedure was video-
recorded and used for the off-line analysis.

Off-Line Analysis of nTMS Mapping in
Group A
The recorded videos of the HVOT performance during both the
baseline and the stimulation procedures were accurately
analyzed and compared by two experienced neuropsychologists
in order to identify nTMS-induced errors. According to the
literature, HVOT errors were categorized into performance, part,
and language-based errors (46). Performance errors include:
1) perseverative errors, consisting in repeating a previous correct
or incorrect response on a later item, providing category
responses that are unrelated to the current stimulus item but
that are related to a previous item; 2) unformed/unassociated
errors, consisting of a response that is unassociated to the current
item, for example, “knife” for “dog”; 3) don’t know/no response
errors, consisting in providing no response or in do not
understand the item. Part errors consist in naming only one
part of the current stimulus, for example, “finger” for “hand”.
Language-based errors consist of 1) semantically related or
A B

DC

FIGURE 1 | Example of classical drawings showed during the HVOT. (A) Hand; (B) Cat; (C) Apple; (D) Candle.
June 2021 | Volume 11 | Article 677172
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unrelated name for an object; 2) circumlocutory response;
3) neologistic response; 4) agrammatic response; 5) incorrect
phonemically related response.

Performance and part errors specifically regard visual analytic
and synthetic abilities, whereas language-based errors regard the
verbal representation of visual stimuli. When an error response
occurred during nTMS mapping, the corresponding cortical site
was marked as visual-organization related and tagged according
to the observed error type (performance, or language-based, or
part error).

After the offline analysis of responses was accomplished, the
nTMS cortical spots corresponding to HVOT errors were
automatically merged over the patient’s MRI scan and exported
as DICOM images (i.e., Fusion MRI scan). Then, the anatomical
localization over the brain cortex of each nTMS-induced error was
defined. The Fusion MRI scan was used to perform an automatic
MRI reconstruction and volumetric segmentation of the brain
cortical surface using the Freesurfer image analysis suite, which is
documented and freely available for download online (http://
surfer.nmr.mgh.harvard.edu/) (Figure 2). Then, the Freesurfer
surface reconstruction and segmentation of each hemisphere
was further segmented according to the cortical parcellation
system described by Corina et al. (47, 48). Thereafter, the
location of each single nTMS-induced error/spot was identified
in a specific Corina’s cortical area.

We analyzed the inter- and intra-hemispheric cortical
distribution of the nTMS-induced errors. The errors’
distribution was expressed as error rate % (ER) per single area
(number of errors/total stimulation trials) and analyzed in both
the right and left hemisphere. As well, the ER distribution was
also analyzed according to the different classification of errors
(performance, language-based and part errors) in both
the hemispheres.
Frontiers in Oncology | www.frontiersin.org 7
DTI Tractography of the SLF branches in
Group A
During MRI scan acquisition, also diffusion weighted imaging
(DWI, 64 directions, TR/repetition time = 2383.9, TE/echo
time = 51.9) sequences were acquired for the successive DTI
computation. DWI sequences were imported together with the
Fusion MRI scan into the Medtronic Planning Station
(Medtronic Navigation, Coal Creek Circle Louisville, CO,
USA). All the tractography workflow was performed using the
StealthViz software (Medtronic Navigation, Coal Creek Circle
Louisville, CO, USA). After co-registration of the different
sequences, the tensor was calculated, and the software created
the Apparent Diffusion Coefficient (ADC) map and the
Directionally Encoded Colors (DEC) map. The DEC map was
therefore used to choose the ROI for the tractography of the SLF
branches. When possible, all the three different components of
the SLF (SLF-I, SLF-II, SLF-III) were computed. Otherwise, only
the branch closer to the tumor was reconstructed. It is important
to highlight that, according to the current literature, the SLF-III
is the most ventral portion of the SLF and is synonym of the
anterior segment of the arcuate fascicle (49). The tractographic
reconstruction was performed choosing a multiple region-of-
interest (ROI)-based approach, according to the literature (39,
50), and using a deterministic approach (fiber assignment by
continuous tracking algorithm, FACT) with the following
parameters: fractional anisotropy (FA) threshold = 0.20; vector
step length = 1 mm; minimum fiber length = 50 mm; seed
density = 1.0; and max directional change = 55°. In case of
massive perilesional edema that could hamper the fiber tracking
of the SLF branches, the FA threshold value to stop tracking is
progressively reduced in 0.01 steps from the standard 0.20 value
up to reach the minimum value of 0.10. If no fibers are visualized,
the computation of the specific SLF branch is stopped to avoid
FIGURE 2 | Automatic segmentation of the cortical surface of the right hemisphere according to Corina et al (47). with the relative legend.
June 2021 | Volume 11 | Article 677172

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Raffa et al. nTMS-Based Mapping of Visuospatial Network
false-positive results. Patients were included in the study if at
least one of the three SLF branches was successfully computed.

Preoperative Planning in Group A and
Surgical Treatment in Group A and B
In Group A, the nTMS mapping of the VS network and the DTI
fiber tracking of the SLF branches were simultaneously visualized
into the Neuronavigation System, thus providing a 3D
reconstruction of the VS cortico-subcortical network. Such a
3D reconstruction was used by neurosurgeon to plan the best
surgical corridor to achieve the maximal tumor resection as well
as to preserve as much as possible the VS network. Once the
surgical strategy was defined, the 3D reconstruction of the VS
network was still displayed during surgery into the
neuronavigation system and guided neurosurgeon during
tumor resection. The 3D reconstruction of the VS network
helped neurosurgeons to spare, as much as possible, the nTMS
spots at the cortical level and the SLF branches at the
subcortical level.

Surgery was performed under general anesthesia in Group A
and B. Nevertheless, in Group B patients, surgical resection was
not guided by any preoperative nTMS mapping neither
reconstruction of the VS network. In both groups, whenever
lesions were located in the anterior parietal lobe and invaded also
the frontal lobe, the intraoperative neurophysiological mapping
and monitoring of the motor pathway was performed to preserve
the motor cortex and corticospinal tract, as previously described
(42). Moreover, in case of contrast-enhancing brain tumors, the
surgical resection was further guided by intraoperative
fluorescence thanks to the administration of intravenous
sodium-fluoresceine as we reported elsewhere (51, 52).

Postoperative Outcome Assessment in
Group A and B
In both Group A and B we assessed patients’ outcome by
evaluating and comparing the EOR, and the preoperative vs.
postoperative 1) functional status expressed through the
Karnofsky Performance Status (KPS) score, and 2) visuospatial
performances through the HVOT as well as the traditional line
bisection task (LBT).

The EOR was assessed in both groups on an early
postoperative MRI scan (within 48 hours from surgery).
Tumor segmentation and EOR calculation were performed on
T1-enhanced sequences or, on FLAIR sequences in case of non-
enhancing lesions, using OsiriX Imaging Software© (Pixmeo
SARL, Bernex, Switzerland) (53). Segmentation of the tumor
was manually performed across all MRI slices (54, 55). The EOR
was defined as the difference between the preoperative and
postoperative tumor volumes (ml) (56). The EOR was defined
as follows: gross total resection (GTR) = no residual pathological
tissue; subtotal resection (STR) = less than 10 ml of pathological
tissue residue; partial resection (PR) ≥ 10 ml of tissue residue;
biopsy ≥ of 95% of tumor residue (42, 57, 58).The EOR was
expressed describing the percentage of GTR in both groups.

The KPS was evaluated before surgery and after one month
from surgical treatment.
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The preoperative neuropsychological evaluation was performed
before surgery by two experienced neuropsychologists and included
a general assessment of the VSAs by administering the standard
LBT and HVOT. Moreover, during the preoperative evaluation, the
hemispheric language dominance was assessed according to the
handedness defined through the Edinburgh Handedness Inventory
(EHI) (59). Post-operative visuospatial outcome was assessed at
discharge and at one month from surgery during a standard
neuropsychological evaluation including the assessment of VSAs
through the administration of the standard LBT and HVOT. The
HVOT and LBT scores at the one month follow-up were compared
with the corresponding preoperative scores. The HVOT
performance was expressed as a T-score (range 41-104) (43, 46,
60). The higher is the T-score, the higher is the probability of VSAs
impairment. The LBT score was expressed according to the current
literature (61).

Statistical Analysis
The paired Student T-test was used for the analysis and comparison
of the inter- and intra-hemispheric distribution of the ER, as well as
for the comparison of the pre- vs. postoperative KPS, HVOT, and
LBT scores in each group. The unpaired Student T-test was used to
compare different quantitative parameters, including clinical
characteristics and outcome findings in Group A vs. Group B.
The one-way ANOVA with Tukey post-hoc correction for multiple
comparisons was used to compare the mean ER in each hemisphere
according to the different error type (performance, language-based,
part). Finally, contingency table with Chi-square or Fisher test were
used to compare qualitative parameters in Group A vs. Group B, as
well as to investigate the association between the eloquence defined
by the nTMS-based planning and the EOR in group A. Statistical
significance was defined as a p value < 0.05. Data analysis was
realized by using GraphPad Prism version 6.00 for Windows,
GraphPad Software, La Jolla, California, USA, www.graphpad.com.
RESULTS

Demographic and Clinical Characteristics
of Patients in Group A and B
The Group A included a total of 20 patients (10 males, 10 females,
mean age 58.35 ± 14.03). All patients were monolingual (native-
language: Italian) and right-handed. Tumors were mainly located in
the right parietal lobe in all cases. Nevertheless, in 8 cases the
neoplastic tissue invaded also the ipsilateral frontal lobe, in 4 the
temporal lobe, and in 2 cases the occipital lobe. Pathological
examinations revealed that 16 patients were affected by
glioblastoma (GBM), 3 by diffuse astrocytomas, and 1 by lung
cancer metastases. The mean preoperative KPS was 83.5 ± 6.7. The
preoperative neuropsychological evaluation showed that the mean
T-score computed through the HVOT was 70.85 ± 8.08, while the
mean LBT score was 7.15 ± 0.87.

The Group B included 20 patients (12 males, 8 females, mean
age 58.65 ± 11.47). As well as in Group A, all patients were
monolingual, Italian native speakers, and right-handed. Tumors
were all manly located in the right parietal lobe, and involved also
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the frontal lobe in 7 cases, the temporal lobe in 5, and the occipital
lobe in 2. The histological diagnosis was GBM in 13 cases, diffuse
astrocytoma in 4, anaplastic astrocytoma in 1, metastases from lung
cancer in 1, and from breast cancer in the remaining one. The mean
preoperative KPS was 84 ± 6.8. The mean T-score at the HVOTwas
71.6 ± 5.49, and the mean LBT score was 7.1 ± 0.78.

Table 1 shows salient demographic and clinical characteristics of
patients in Group A and B, as well as nTMS mapping features of
patients in Group A. Statistical analysis showed no significant
differences in Group A vs. Group B for all the preoperative
demographic and clinical characteristics.

nTMS Cortical Mapping of VSAs in
Group A
In Group A, the nTMS mapping of cortical areas involved in the
VS network was feasible and well tolerated in all cases. The mean
RMT was 36.85 ± 6.2 mV in the right hemisphere and 35.3 ± 3.97
mV in the left hemisphere (Table 1). The difference was not
statistically significant.

The offline analysis of the nTMS-induced errors showed that
the ER was significantly higher in the right hemisphere vs. the left
one (0.77% ± 0.44 vs. 0.55%± 0.31, p=0.02) (Figure 3C).

In the right hemisphere, the ER was higher in the anterior
supramarginal gyrus (aSMG, 1.7%), angular gyrus (anG, 1.4%),
superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital
gyrus (dLoG) (1.2%)(Figure 3A). The analysis of the intra-
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hemispheric ER distribution according to the different type of
errors showed that performance errors were significantly more
frequent then language-based and part errors (respectively,
0.34% ± 0.31 vs. 0.15% ± 0.15 vs. 0.28% ± 0.12, p=0.02).

Conversely, in the left hemisphere, the ER was higher in the
SPL (1.14%), posterior supramarginal gyrus (pSMG, 1.12%), and
middle superior temporal gyrus (mSTG, 1.04%). (Figure 3B).
The intra-hemispheric analysis of the cortical distribution of
errors showed the language-based errors were induced more
frequently than performance and part errors (respectively, 0.29% ±
0.17 vs. 0.16% ± 0.17 vs. 0.09% ± 0.09, p=0.001).

The analysis of the inter-hemispheric cortical distribution of
the ER showed that performance and part errors were
significantly higher in the right hemisphere as compared to the
left one (respectively, 0.34% ± 0.31 vs. 0.16% ± 0.17, p=0.01;
0.28% ± 0.12 vs. 0.09% ± 0.09, p=0.0001). Conversely, language-
based errors were significantly more frequent in the left
hemisphere (0.29% ± 0.17 vs. 0.15% ± 0.15, p=0.003) (Figure 4).

Preoperative Planning and Surgical
Resection in Group A
In Group A patients, the nTMS cortical mapping (Figure 5) and
the DTI tractography of the SLF (one or more of the three major
branches) were successfully combined in all cases, thus providing
a 3D representation of the VS network. The preoperative
reconstruction of the VS network and the analysis of its spatial
FIGURE 3 | Distribution of the global ER in the right (A) vs. left hemisphere (B). The ER (%) in each single area is identified by a growing color intensity (yellow,
orange, red). The ER was significantly higher in the right hemisphere (RH) as compared to the left hemisphere (LH), suggesting a lateralization of VSAs (C).
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relationship with brain tumors enabled to identify a concrete risk
for injury to the network during surgery in 8 out of 20 cases
(40%). Such a risk was considered concrete because of the
proximity of the tumor (≤10mm) (42, 58) to the nTMS
cortical spots and/or the SLF branches. Eight lesions close
(≤10mm) to the VS network were considered true-eloquent;
the remaining 12 were defined as false-eloquent (12 out of 20).
Such a preoperative risk stratification of patients was used to plan
the best-customized surgical approach to preserve the
components of the VS network (Figure 6). In some cases, the
visualization of the preoperative reconstruction of the VS
network induced a change of the original surgical strategy
hypothesized before by neurosurgeons (Figure 7). After a
definitive surgical plan had been established, surgery was
performed under the guidance of the 3D reconstruction of the
VS network in all cases. Indeed, it was continuously visualized
into the neuronavigation system and guided the neurosurgeon in
performing tumor resection and preserving the nTMS spots and
the SLF (Figure 8).

Comparison of Outcome Variables in
Group A vs. Group B
In Group A the GTRwas achieved in 17 out of 20 patients (85%). In
all cases the neurosurgeon performed the resection under the
neuronavigation guidance up to the complete removal of the
neoplastic tissue close to the structures of the VS network. Only
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in three cases 3 cases (15%) a STR was obtained because of the
proximity of the tumor to the corticospinal tract and the primary
motor cortex. In one of these 3 cases, the tumor infiltrated also the
SLF and the neurosurgeon decided to plan a subtotal resection and
to leave a small portion of the SLF-infiltrating neoplastic tissue
(Figure 9). In the remaining 19 cases the proximity of the tumor to
the nTMS spots and/or the SLF branches never required the
interruption of resection. Statistical analysis through the Fisher
test documented a slightly significant association between the
eloquence defined by the nTMS-based planning (true vs. false)
and the EOR (GTR vs. STR) (p=0.04).

At discharge, no new deficits of VSAs were observed in the study
population during the standard neuropsychological evaluation. At
one month from surgery, we observed a significant reduction of the
T-score at the HVOT (69.60 ± 8.21 vs. 70.85 ± 8.08; p=0.02), and an
improvement of the LBT score (7.15 ± 0.87 vs. 7.4 ± 0.94; p=0.05)
suggesting an improvement of VSAs as compared to the
preoperative period (Figure 10A). After one month from surgery,
we recorded a stable KPS score as compared to the preoperative
period (83.5 ± 8.1 vs. 83.5 ± 6.7; ns).

In Group B, the GTR was achieved in 18 out of 20 patients
(90%). No preoperative stratification of the risk for the VS
network was available before surgery. After one month from
surgery, the T-score at the HVOT was significantly increased
(74.3 ± 4.53 vs. 71.6 ± 5.49; p = 0.03), while the LBT score was
significantly reduced (6.6 ± 0.75 vs. 7.1 ± 0.78; p=0.01),
FIGURE 4 | Comparison of the ER per error type between the right (A) and the left hemisphere (B). Performance and part errors were significantly more frequent in
the right hemisphere, while language-based errors occurred more frequently in the left hemisphere (C).
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suggesting a worsening of VSAs as compared to the preoperative
period (Figure 10B). Finally, at one month from surgery, we
observed also a non-significant worsening of the KPS score
(82.5 ± 9.1 vs. 84 ± 6.8; ns).

The comparison of outcome parameters between the two
groups, documented a significant improvement of the
postoperative T-Score at the HVOT (p = 0.03) and of the LBT
score (p = 0.005) in Group A as compared to Group B
(Figure 10C). No significant differences were found for the
EOR and KPS score comparing the two groups.
DISCUSSION

Surgical treatment of brain intrinsic tumors aims to the maximal
resection of the neoplastic tissue and to the simultaneous
Frontiers in Oncology | www.frontiersin.org 11
preservation of the adjacent functional brain networks to
reduce postoperative morbidity that could seriously affect the
functional independence and quality of life of patients (62). Such
an objective has been translated in an increasing ability of
neurosurgeons to preserve especially the motor and language
network, thanks also to the availability of innovative technologies
and surgical strategies. Nevertheless, in the recent years a
growing attention has been paid also to the preservation of
other complex brain functions, including VSAs (8). In fact, a
surgical damage to the brain networks involved in these
functions during brain tumor resection could seriously affect
the patients’ quality of life. VSAs rely on a complex fronto-
parietal network that shows a significant lateralization to the
right hemisphere (19, 46). Accordingly, brain tumors located
within the right parietal lobe can cause a VASs impairment (24,
63). Nevertheless, VSAs impairment is usually underestimated or
FIGURE 5 | Some examples of the nTMS mapping of VSAs in patients with tumors involving the right parietal lobe. In all three cases some nTMS spots are
overlapped to the lesions, suggesting a high risk for postoperative VSAs deficits. Spots are color-coded: white = performance errors; red = language-based errors;
yellow = part errors.
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FIGURE 6 | Case example of the preoperative planning in a right fronto-parietal glioblastoma. The nTMS mapping of VSAs identified several eloquent cortical sites of
the VS network (A); the DTI tractography showed the tumor (yellow) was very close to the SLF-III (orange), but also to the corticospinal tract (CST; arm fibers in red,
leg fibers in green) (B); the fusion MRI scan confirmed the SLF-III was infiltrated by the posterior part of the tumors, as visible in the different axial, coronal and
sagittal slices; conversely, the nTMS cortical spots are far away from the tumor (C).
FIGURE 7 | Case example of the planning in a case of right fronto-parietal GBM (case 4 in Table 1). Preoperative MRI scan documenting the lesion is located in the
anterior portion of the right parietal lobe and infiltrates also the primary motor cortex (A); postoperative MRI scan documenting the subtotal resection of the lesion:
neurosurgeons removed only the portion located in the right parietal lobe, while they didn’t resect the portion infiltrating the motor cortex (B); preoperative
reconstruction of the VS network showing the posterior portion of the lesion is close to the blue fibers of the SLF-I indicated by the red arrows: this induced a
change of surgical strategy leading neurosurgeons to start resection from the antero-lateral portion of the tumor indicated by the green arrows, just medially to the
orange fibers of the SLF-II (C); postoperative DTI fiber tracking showing the 3D rendering of the surgical cave in pink, and the preserved blue fibers of the SLF-I and
orange fibers of the SLF-II (D); coronal section showing the preservation of the SLF-I and II, especially the blue fibers of the SLF-I running medial to the surgical cave (E).
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not properly evaluated in neurosurgical patients because of the
need of a specific neuropsychological expertise (8). Many
neurosurgical departments have recently developed new
strategies for the assessment of VSAs in brain tumor patients,
trying to reduce the occurrence of new postoperative deficits.
Among these, the intraoperative neurophysiological mapping
(IONM) of the VS network during awake surgery seems to be the
most effective (10). As a matter of fact, IONM is considered the
gold standard technique for resection of CNS tumors (64–67).
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Nevertheless, not all patients are eligible for awake surgery (22,
23). A good alternative is represented by the preoperative
mapping of the VS network using advanced neuroimaging
techniques. Among these, nTMS has recently gained great
favor in the neurosurgical community (68). It allows for a non-
invasive identification of eloquent cortex prior to surgery,
including motor and language areas. Several studies reported
that nTMS mapping improves surgical treatment and outcome
of patients affected by brain tumors in eloquent areas (34, 58, 69,
FIGURE 8 | Case-example of the intraoperative use of the 3D reconstruction of the VS network in a case of right parietal diffuse astrocytoma. The nTMS mapping
documented some spots surrounding the lesion, and two overlapped to it (A); a snapshot of the preoperative planning describing the relationship between the tumor
and the VS network (B); the axial and coronal slices show the proximity of the tumor (light blue) to the SLF-II (orange) and the corticospinal tract (CST; arm fibers in
red, leg fibers in green) (C); example of the intraoperative verification of the distance between the tumor, the navigation pointer (blue stylet) and the SLF-II (orange) (D).
FIGURE 9 | Case example of the planning in a case of right fronto-parietal diffuse astrocytoma. The preoperative 3D reconstruction of the SLF-III showed it was
infiltrated by the tumor. The green fibers of the SLF-III are infiltrated by the medial (A) and superior (B) portion of the tumor as indicated by the red arrows; the 3D
reconstruction confirmed the infiltration of the SLF-III, thus inducing neurosurgeon to plan a subtotal resection to preserve the VS network (C).
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70). Moreover, nTMS can be successfully combined with DTI
tractography in the clinical practice, thus enabling the
visualization of eloquent networks and the analysis of their
spatial relationship with the tumor: that allows for a
customized preoperative planning that guides neurosurgeons to
achieve the maximal safe resection of brain tumors in critical
areas (34, 71, 72). Nevertheless, to our knowledge no studies have
ever reported the use of nTMS mapping in combination with
DTI tractography for the reconstruction of the VS network, with
the final aim to improve surgical treatment of brain tumors
involving such a network and reduce the occurrence of
postoperative impairment of VSAs.

In the present study, we reported our preliminary experience
using the nTMS cortical mapping of the VS network, in
combination with the DTI tractography of the SLF branches.
Previous studies reported the possibility to use repetitive nTMS
for mapping VSAs. Giglhuber K. et al. in a first paper in 2016
reported a novel approach to evoke neglect-like symptoms in
healthy subjects using repetitive nTMS. They implemented a line
bisection judgement task (the landmark task) in the nTMS
system to map cortical areas involved in the VS network. They
found a higher nTMS-induced error rate in the aSMG, dLOG,
and SPL (32). In a second paper from the same authors, in 2018,
repetitive nTMS was used in healthy subjects to map visuospatial
attention (33). In this study, using the greyscale task (73), the
authors found that nTMS was able to induce leftward or
rightward deviations of the VS attention by stimulating the
right hemisphere, especially the pSMG, SPL, anG, vLOG,
several temporal (mSTG, pMTG mMTG) and frontal areas
(mSFG, mMFG, pMFG, mMFG, trIFG, opIFG). The most
interesting finding reported is that repetitive nTMS is a feasible
technique to map the cortical component of the VS network.
Nevertheless, these experimental studies were performed only in
healthy subjects. The most important result of our study is the
confirmation of preliminary results reported by Giglhuber K.
et al. in patients affected by tumors located in the right parietal
lobe. As a matter of fact, we found a higher ER in the same areas
of the right hemisphere reported in previous studies: the aSMG,
anG, SPL, and dLOG. However, many error responses were also
evoked by stimulating the temporal lobe, in particular the
superior temporal gyrus (aSTG, mSTG, pSTG), like it has been
reported in previous nTMS studies (32). Since we performed
mapping in brain tumor patients, we explored only the parietal
lobe and the adjacent temporal, frontal and occipital gyri: we
didn’t applied nTMS over the most anterior portion of the
frontal lobe and therefore we cannot confirm or deny the
ability of repetitive nTMS to map the frontal cortical areas
involved in the VS network as reported in the second study by
Giglhuber et al. (33).

The results of our nTMS-based mapping of cortical regions
belonging to the VS network are also concordant with previous
studies based on lesional models or intraoperative brain mapping
that indicated the right inferior and superior parietal, angular,
and middle occipital cortices are key anatomical structures in the
visuoconstruction processes (17–20). Furthermore, evidence
from previous standard TMS studies in healthy subjects
A

B

C

FIGURE 10 | Visuospatial outcome at one month from surgery. Significant
reduction of the postoperative vs. preoperative T Score at the HVOT in Group
A (A); significant increase of the postoperative vs. preoperative T Score at the
HVOT in Group B (B); significant reduction (improved VSA) of the
postoperative T Score at the HVOT in Group A vs. Group B (C).
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showed that the right posterior parietal cortex (rPPC), right
supramarginal gyrus, and medial SPL are involved in visuospatial
localization (74), visual search tasks (75, 76), and general visual
selection mechanisms (77).

Interestingly, we achieved similar results using the same
repetitive nTMS protocol of Giglhuber K. et al. but a different
neuropsychological task, that is the HVOT. HVOT is commonly
used during the routine neuropsychological examination to
measure visuospatial processing (78–83). The cognitive
processes investigated by HVOT are multifactorial, including
mental rotation, visual working memory, object identification
and name retrieval (78). Although some authors suggested the
HVOT is not a pure visuospatial test, but implicates other
functions such as language (84), it has been reported that it
clearly loads on a global dimension called non-verbal cognitive
ability which encompasses a large variety of attentional and
visuospatial measures (85). Nadler J. et al. reported a simply
method for qualitative analysis of HVOT results that is based on
the distinction between errors related to visuospatial processing
(performance and part errors) and errors related to language
functions (language-based errors) (46). In their paper the
authors clearly documented a lateralization of different error
types, being part and performance errors more common in
patients with lesions in the right hemisphere, while language-
based errors occurring more frequently in patients with left
hemisphere lesions. Interestingly, using the nTMS-
implemented version of the HVOT we observed a significant
different inter-hemispheric distribution of the nTMS-induced
errors: performance and part errors occurred more frequently in
the right hemisphere (p=0.0001), while language-based were
more commonly induced by stimulating the left one (p=0.003).
Such findings exactly confirm results of Nadler et al. in their
lesional model, and are concordant with the current knowledge
about the location of the visuospatial and language networks (19,
25, 46). Therefore, the qualitative analysis of the HVOT error
responses (even those nTMS-induced) allow to discriminate
language-based errors related to the impairment (permanent,
like in cases of stroke, or transient, like in case of nTMS
stimulation) of the language network from part and
performance errors due to the impairment of the VS network.
Accordingly, in our study, cortical areas showing a higher nTMS-
induced ER of language-based errors were exclusively located in
the left hemisphere (Figure 4).

The neuroanatomic correlates of the HVOT have been
investigated by Moritz C.H. et al. (78) using an fMRI-
implemented version of the test in a cohort of healthy subjects.
The authors found fMRI activation of the bilateral SPL,bilateral
lateral occipital and posterior medial temporal lobes, bilateral
middle frontal gyri and left anterior cingulate gyrus, with a
strong right lateralization. These findings are concordant with
the results of our study and with those of Giglhuber K. et al (32,
33), thus demonstrating that nTMS is able to accurately map
cortical areas involved in the VS network in the posterior
parietal, occipital and frontal cortex.

Nevertheless, the identification of cortical areas involved in
the VS network is not enough to preserve the network during
Frontiers in Oncology | www.frontiersin.org 15
brain tumor surgery, thus avoiding the occurrence of
postoperative VSAs impairment. Tractography studies largely
demonstrated the role of the SLF in the VS network (11–14, 39,
86). The different branches namely SLF-I, SLF-II and SLF-III
connect the posterior parietal cortex to the dorsal and ventral
frontal cortex, thus creating a complex fronto-parietal VS
network (13, 39). Such a subcortical network must be
preserved during brain tumor surgery to avoid the occurrence
of new postoperative VSAs deficits. In the literature, there are few
reports on the use of IONM during awake surgery to preserve
VSAs during brain tumor surgery (10, 20, 87). Nevertheless, to
our knowledge, there are no reports about the use of preoperative
functional imaging techniques that could be useful to preserve
VSAs in patients operated for brain tumors located within the
right parietal lobe. In the present study, we report for the first
time the combination of nTMS cortical mapping and DTI
tractography for the preoperative 3D reconstruction of the
cortico-subcortical structures of the VS network in patients
affected by right parietal lobe brain tumors. Such a
reconstruction was successfully used to plan and guide a safe
surgical strategy to achieve the maximal tumor resection while
respecting the cortico-subcortical component of the VS network
(Figure 7). In the present study, the first result of the availability
of the 3D reconstruction of the VS network for preoperative
planning was that neurosurgeons were able to identify true-
eloquent lesions (40% of cases) characterized by their proximity/
infiltration of nTMS spots (indicating cortical eloquent sites for
VSAs) and/or the SLF branches: in this cases a more careful
tumor resection was planned to preserve the VS network. On the
other hand, false-eloquent tumors (60%) located far from the VS
network were approached more aggressively. Resection was
stopped in 3 cases because the infiltration of the motor
pathway, and in 1 of these cases the infiltration of the SLF
induced a further, small limitation of the extent of tumor
resection. Nevertheless, in this case the EOR would have been
anyway subtotal because of the infiltration of the motor pathway.

The final result of such a surgical strategy based on a specific
attention paid to the VS network during tumor resection was that
no cases of worsened performance at the HVOT or at a standard VS
test such as the LBT were observed after one month from surgery.
Moreover, the comparison with a matched historical control group
documented that the availability of the preoperative reconstruction
of the VS network for planning and guiding surgical resection led to
a significant improved postoperative VS performance at the HVOT
and LBT in comparison with the standard microneurosurgical
resection during asleep surgery. Nevertheless, no significant
differences were found comparing the EOR, thus suggesting that
our proposed strategy could be helpful specifically to preserve the
VS network during surgery without reducing the possibility to
achieve the GTR of the tumor. Such a strategy could also potentially
have a positive impact on the postoperative KPS score, although we
were not able to document any significant difference between the
two study groups. However, patients treated without using the
nTMS-based mapping and planning showed a non-significant
reduction of the postoperative KPS score as compared to the
preoperative period.
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Similar surgical strategies have been already reported for
resection of tumor close to the motor or language networks:
several studies (including some from our group) reported that
the use of a preoperative planning based on nTMS cortical
mapping and nTMS-based DTI tractography is associated to a
tailored less-invasive surgical approach, and to an improved
EOR and functional outcome (23, 42, 58, 69, 88, 89). Since this
is the first study evaluating the impact of such an advanced
preoperative planning for the 3D reconstruction of the VS
network in brain tumor patients, it is plausible to speculate
that this approach could lead to those encouraging results in
terms of improvement of surgical treatment and outcome
already observed for the nTMS-based planning in patients with
motor- or language-eloquent brain tumors. Nevertheless,
although the results of our study are encouraging, further
larger prospective studies are needed to confirm or deny our
preliminary observations.

Limitations of the Study
The single-center retrospective design, the small number of
patients enrolled, and the comparison with a matched
historical control group limit the strength of our conclusions.
Moreover, this study suffers from the common intrinsic
limitations of nTMS, such as the different mapping accuracy
due to the use of different stimulation parameters (44, 90, 91),
but also the inaccuracy of the nTMS navigation during both the
registration and the stimulation phases (92, 93).

Moreover, we must consider the intrinsic limitations of DTI
tractography in cases of excessive peritumoral edema that, in
some cases, could seriously hamper the possibility to perform a
correct DTI fiber tracking (94, 95), as well as the possible
occurrence of brain shift during surgery: the latter is another
unavoidable limitation of image-guided surgery, unless
intraoperative imaging is employed (96–98). Nevertheless, the
use of tailored approaches with minimal brain exposure, and the
continuous verification of established superficial anatomical
landmarks may reduce inaccuracy due to the brain shift (99).

Finally, we must acknowledge that postsurgical deficits,
including VSAs impairment, may be due to other causes than
a direct damage during surgery, such as vascular injury to the
structures of functional brain networks (100–105). In these cases,
the intraoperative visualization of VS network cannot preserve
its cortical and/or subcortical structures from indirect ischemic
damage caused by surgical damage to vascular structures or
postoperative hemodynamic changes. Nevertheless, this aspect is
difficult to analyze and is poorly considered in the literature.

However, the present study aims to simply describe a new
technique for the advanced visualization of the VS network prior
to surgery as well as to report preliminary data about its potential
usefulness in the treatment of patients affected by right parietal
lobe tumors. It sheds a light on the possibility to use really up-to-
date technologies for the non-invasive mapping of brain areas
involved in visuospatial processing. This could increase the
awareness and the confidence of neurosurgeons with VSAs and
VS network, whose importance for patients’ quality of life is
still underestimated.
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Cortical mapping using the repetitive nTMS-implemented HVOT is
a feasible technique and can be successfully combined with DTI
tractography of the SLF branches to achieve a 3D reconstruction of
the most important cortico-subcortical components of the brain
visuospatial network. Such a reconstruction can be used by
neurosurgeons for a customized presurgical planning in patients
affected by right parietal lobe tumors with the aim to better assess
the risk of surgical damage to the VS network. Moreover, through
neuronavigation it could also guide neurosurgeons to identify and
preserve the VS network during tumor resection, thus avoiding the
occurrence of new subtle postoperative deficits of VSAs. Further
larger prospective studies are warranted to confirm our
preliminary results.
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