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Imaging somatosensory cortex responses
measured by OPM-MEG: Variational free
energy-based spatial smoothing estimation approach

NanAn,1 Fuzhi Cao,1Wen Li,1WenliWang,1Weinan Xu,1 ChunhuiWang,1Min Xiang,2,3 YangGao,3,4 Binbin Sui,5

Aimin Liang,6 and Xiaolin Ning2,3,7,*

SUMMARY

In recent years, optically pumped magnetometer (OPM)-based magnetoenceph-
alography (MEG) has shown potential for analyzing brain activity. It has a flexible
sensor configuration and comparable sensitivity to conventional SQUID-MEG.
We constructed a 32-channel OPM-MEG system and used it to measure cortical
responses to median and ulnar nerve stimulations. Traditional magnetic source
imaging methods tend to blur the spatial extent of sources. Accurate estimation
of the spatial size of the source is important for studying the organization of brain
somatotopy and for pre-surgical functional mapping.We proposed a newmethod
called variational free energy-based spatial smoothing estimation (FESSE) to
enhance the accuracy of mapping somatosensory cortex responses. A series of
computer simulations based on the OPM-MEG showed better performance
than the three types of competing methods under different levels of signal-to-
noise ratios, source patch sizes, and co-registration errors. FESSE was then
applied to the source imaging of the OPM-MEG experimental data.

INTRODUCTION

The topographic organization of the somatosensory cortex was first established by Penfield and Boldrey

using an invasive technique of direct electrical stimulation of the human cortical surface (Penfield and Bol-

drey, 1937). Their study revealed that the primary somatosensory in the posterior central cortex is orga-

nized in a one-to-one representation with the contralateral body surface, which is known as the somatosen-

sory ‘‘homunculus.’’ With the development of brain functional imaging techniques including

magnetoencephalography (MEG), electroencephalography, and functional magnetic resonance imaging,

somatosensory evoked responses recorded outside the brain enable noninvasive studies of the somato-

sensory cortex (Nakamura et al., 1998; Baumgartner et al., 1993; Willoughby et al., 2020). Among these

techniques, MEG provides a direct measure of weak extracranial neuromagnetic fields produced by thou-

sands of neurons that act synchronously (Hämäläinen et al., 1993). It provides sufficient resolution to

localize the precise source location and capture the time-frequency dynamics of evoked responses.

Somatosensory evoked fields (SEFs) have been used to localize the clinical-style primary somatosensory

cortex (SI) in pre-surgical neuroimaging (Solomon et al., 2015), to study the reorganization of the somato-

sensory cortex (Papadelis et al., 2018), and assess plastic changes in various physiological and pathophys-

iological states (Badura-Brack et al., 2015).

Superconducting quantum interference device (SQUID)-based MEG has developed rapidly over the last

four decades. However, conventional SQUID-MEG is thought to be cumbersome and has a fixed sensor

array, which limits its further use, such as in studying the neurodevelopment of children in whom the

head circumference rapidly changes with time. In addition, its sensors need to work at a low temperature,

which prevents it from getting close to the subject’s scalp to obtain higher signal-to-noise ratio (SNR) data.

Fortunately, new types of sensors, including optically pumped magnetometers (OPMs) (Osborne et al.,

2018) and high-temperature SQUIDs (Faley et al., 2017) make on-scalp MEG possible (Schneiderman

et al., 2019). In particular, OPM-MEG has attracted the attention of researchers owing to its wearable

and flexible sensor configuration (Boto et al., 2018; Iivanainen et al., 2017). OPM-MEG is currently under-

going technical exploration. Researchers from various backgrounds have focused their energy on OPM-

MEG system construction (Borna et al., 2020), active shielding (Iivanainen et al., 2019), helmet design
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(Hill et al., 2020), sensor array design (Beltrachini et al., 2021), co-registration with MRI (Zetter et al., 2019;

Cao et al., 2021), and applications (Iivanainen et al., 2020; Boto et al., 2021; Wittevrongel et al., 2021). In this

study, we constructed a 32-channel wearable OPM-MEG system and aimed to use it to analyze the SEFs of

four subjects under median and ulnar nerve electrical stimulations.

For the source analysis, various magnetic source imaging (MSI) techniques have been developed, such as

the classic and powerful methods, namely the minimum norm estimation (MNE) method (Liu et al., 2002)

and its variant. However, these methods are believed to blur the source extent (Grech et al., 2008); that

is, they overestimate the source extent. This blurred estimate is because source signals reconstructed at

two different locations may be sensitive to brain activity in the same location; namely, the existence of cross

talk and point spread between sources (Samuelsson et al., 2021; Liu et al., 2002). Although the sources can

be separated from the background by subjectively adjusting the imaging threshold, the adjustment lacks

objective evidence (Sohrabpour and He, 2021). To realize the full potential of OPM-MEG, it is necessary to

improve the accuracy of the source extent estimation. In recent years, solving the MEG inverse problem

under the Bayesian framework has attracted significant attention (Cai et al., 2019; Costa et al., 2017; Liu

et al., 2020). The Bayesian approach converts the MSI problem to the determination of the source covari-

ance and enables the comparison of different imaging results. In this study, under the Bayesian framework,

we propose a new MSI algorithm called variational free energy-based spatial smoothing estimation

(FESSE). Simulations at different levels of the SNR, source patch size, and co-registration error show that

it has better performance in estimating the source location and its extent compared to the benchmark al-

gorithms, including MNE, beamforming—LCMV (Van Veen et al., 1997) and the multiple sparse priors

(MSP) algorithm (Friston et al., 2008a). FESSE is applied to the source analysis of the measured OPM-

MEG data and it shows better imaging results than the other methods.

RESULTS

FESSE evaluation via simulations

A series of computer simulations using the OPM-MEG system were conducted to evaluate the FESSE per-

formance. FESSE was compared with benchmark algorithms, including beamforming—LCMV, MSP, and

MNE. LCMV was provided by the software Fieldtrip (Oostenveld et al., 2011) while MSP and MNE were

based on SPM software (Litvak et al., 2011). Figure 1 schematically depicts the simulation protocol.

The aim of the proposed FESSE method was to enhance the ability of MSI to map somatosensory re-

sponses. Thus, we first investigated the performance of FESSE and the benchmark methods when the

source patch was located in Brodmann area 3b (BA3b-L) of the SI. Figure 2 shows the reconstruction results

of the source patch with varying sizes, that is, FWHM= 5, 10, and 30 mm. It can be observed that FESSE has

better fidelity (higher AUC; AUC, area under the curve) for imaging the focal or extended source compared

with the benchmark algorithms. As mentioned previously, the MNE shows blurred reconstruction results.

LCMV and MSP provide focal imaging results, with the localization results of LCMV being more accurate

than those of MSP.

Influence of the source patch size

To quantitatively illustrate the influence of the source patch size, we simulated data using candidate sour-

ces with different FWHM values to measure the effect of the source patch size on reconstruction accuracy.

The SNR was set at 10 dB. Figure 3 shows the AUC and dipole location error (DLE) values of the four ap-

proaches. For all the source configurations considered, FESSE could reconstruct the actual source patch

more accurately than the other methods. In particular, when the size of the source patch increased, its abil-

ity to reconstruct the source spatial extent also improved accordingly. FESSE also performed well in terms

of localization accuracy. In our simulations, LCMV showed better performance for imaging the focal source

than for imaging the extended source, which was manifested by its decreasing AUC and increasing DLE.

The AUC values of the MSP and MNE decreased as the size of the source patch increased.

Influence of the SNR

Different levels of Gaussian noise were added to each group of simulated data generated by each candi-

date source with FWHM = 20 mm. The Gaussian noise was independent across sensors. We measured the

performance of the MSI methods mentioned above for a wide range of SNRs. The simulation results

are shown in Figure 4. FESSE had the lowest DLE compared with other methods under all SNR conditions
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and it showed better performance in estimating the source extent (AUC close to one except for SNR =�20

dB). The performances of LCMV and MNE improved with increasing SNR, as indicated by the increasing

AUC and decreasing DLE. In other words, these two methods are susceptible to low SNRs. The ability of

the MSP to estimate the source extent was quite stable with increasing SNR and it was almost better

than MNE and LCMV; however, its DLE was not.

It can be seen that the DLE of MSP has no steady tendency with SNR and it is almost higher than that of the

other methods. For MSP, it assumes possible patch locations as candidate source priors and iteratively

searches for the simplest source distribution that explains the most data. This causes a problem that the

localization error cannot be reduced if the source priors are not given precisely. The current version of

the MSP in the SPM toolbox adopts a strategy to assume multiple groups of random source patches to

invert the same data several times and choose the best results as the final source estimate. This could

reduce the source localization error to some extent; however, it cannot resolve this problem completely.

This might explain why although the spatial priors are given in the MSP, its localization error is not better

than that of the conventional methods (MNE and LCMV).

Influence of co-registration errors

In practice, co-registration errors are inevitable. Here, we studied the effect of co-registration errors on

source reconstruction. The influence was assessed by adding different levels of rotation and translation er-

rors to the sensor array when solving the inverse problem. According to our previous study on the accuracy

of co-registration for OPM-MEG (Cao et al., 2021), we designed four levels of rotation and translation er-

rors. Figure 5 shows the simulation results under the co-registration error when the source patch is 10 mm

and the SNR is 10 dB. The reconstruction results of all MSI methods worsened with increasing co-registra-

tion error, which was indicated by the gradually decreasing AUC values and increasing DLE values.

Although LCMV showed similar localization accuracy (see DLE values) with FESSE, its ability to recover

Source activity
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Sensor data

Source location and orientation
Source patch size (FWHM)
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C
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Figure 1. Simulation process of the OPM-MEG data

The location of the source patch was randomly chosen in the designed source space (shown as the red mesh), and its

orientation was taken perpendicular to the local mesh. The source was a bandpass signal. Using the OPM-MEG sensor

configuration, the data were computed by solving a forward problem. Different levels of noise could be added to the

sensor data.
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the source extent (see AUC values) was the worst when co-registration errors existed simultaneously.

Considering these two complementary metrics comprehensively, that is, AUC and DLE, FESSE provided

better results (higher AUC and lower DLE) among all MSI methods. In addition, it should be noted that

the co-registration error has a significant impact on the source reconstruction, especially the rotation error.

For a rigid helmet, the relative locations of the sensors are known accurately when designing the helmet, so
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DLE=4.70 mm

AUC=0.992
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DLE= 8.96 mm
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-1   -0.5  0 0.5 1

Figure 2. Example reconstruction results

The source patches with varying spatial sizes were located in Brodmann area BA3b-L. The first column shows the

simulated source, while the other columns show the reconstruction results of benchmark algorithms and FESSE. The

imaging results are normalized using the maximum value of the estimated source amplitude for each method and shown

on the inflated cortex.

Figure 3. Influence of the source patch size

(A) Boxplots of AUC values of all methods at different sizes of the source patch.

(B) Boxplots of DLE values at each size of the source patch.
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the co-registration error manifests as a rotation and translation relative to the subject’s head. When the

sensors are rotated at the same angle, those far away from the rotation axis will have a larger displacement

and greater location errors. Hence, it can be inferred that larger the helmet, greater is the effect of the rota-

tion error. Owing to the unequal location errors, it is not surprising that the rotation error has a great

impact.

Results of OPM-MEG experimental data analysis

As shown in Figure 6A, the OPM-MEG system was composed of second generation OPM sensors (QZFM,

QuSpin Inc., United States), a magnetically shielded room (MSR), a three-dimensional (3D)-printed helmet,

a data acquisition system, and an electrical stimulator. The co-registration of OPM-MEG and MRI was per-

formed for each subject, and the co-registration results for one subject are shown in Figure 6B.

We performed a sensor-level analysis for all the subjects. First, we evaluated the SNR of each dataset using

post-stimulus and baseline data. The SNRs are all greater than 5 dB, which indicates the high quality of the

measured SEFs. Figure 7 presents representative results of the somatosensory responses of Subject 1. The

results for the same type of nerve stimulated in the left and right hands showed analogous SEF waveforms.

The differences between the median and ulnar nerve responses were in the value of the maximum ampli-

tude and its occurrence time. The maximum amplitude of the median nerve was higher than that of the

ulnar nerve, which occurred at approximately 35 ms (M35), while that for ulnar stimulation occurred at

60–70 ms (M60). The TFRs showed that the power of the activity for all stimulus types was concentrated

in the 20–100 ms period and it had a broad frequency band ranging from 10 to 40 Hz at 20–30 ms. For

all stimulation types, a dipolar pattern was visible in the topography at the time of maximum magnetic

amplitude. In addition, the dipole patterns of the left and right stimuli showed opposite polarities.

The SEFs of other subjects provided similar results to those of Subject 1, as shown in Figures S1, S3, and S5.

After a comprehensive consideration of the occurrence time of the peak of the GFP, as well as the existence

of the dipolar pattern in the topography, we assessed the peak stages of two nerve responses for all sub-

jects after each type of stimulus, with the results presented in Table 1. In the post-stimulus period of 100ms,

two peak stages were recognized: M35–40 and M60–70. In particular, the M35 component was present for

each stimulus. Thus, M35 was regarded as the major activity in our study, which was mapped to the cortex

using the MSI methods mentioned above.

For the source-level analysis, we mapped the source activity at 35-ms post-stimulus (M35) using FESSE and

benchmark methods. Using the measured OPM-MEG data, we successfully mapped the source of the

Figure 4. Influence of the SNR

(A) Boxplots of AUC results for all methods at varying SNRs.

(B) Boxplots of DLE results for all methods at varying SNRs.
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somatosensory response. Representative image results for Subject 1 are shown in Figure 8. For all methods,

the estimated source of each stimulus was localized near the somatosensory cortex; that is, around the

post-central gyrus and it was on the contralateral hemisphere of the stimulus side, which is consistent

with previous research results based on SQUID-MEG (Del Gratta et al., 2002; Schulz et al., 2004). In our

study, FESSE provided a clear and concentrated source. From the results of FESSE (Figure 8), it could

be observed that the source locations were all located at the anterior wall of the posterior central gyrus

for all stimulus types. The estimated source extent for each stimulus was similar, and the average FWHM

of the estimated source was 20 mm. In contrast, the source location and the spatial extent under the

left/right median nerve stimulus were close to the cortex surface, while those under ulnar nerve stimulation

were close to the central sulcus. The source imaging results of the other subjects are shown in Figures S2,

S4, and S6. These results indicate that the median and ulnar nerve evoked responses could be discrimi-

nated in the source-level analysis. It can also be observed that the locations of the reconstructed sources

were slightly different for different subjects, indicating individual differences in the cortex.

DISCUSSION

In this study, we constructed a 32-channel OPM-MEG system and used it to perform median and ulnar

nerve stimulation experiments. To accurately map somatosensory cortex responses, we proposed a new

Trigger
signal

Data acquisition 
system

Magnetically shielded room

Plastic board

3D-printed helmet

OPM sensors

Electrical stimulator

Sensor 
control

Sensor 
signal

A B

Scanned objectDesigned helmet

Scalp 
derived from MRI Co-registration results

Helmet match

Figure 6. Optically pumped magnetometer-magnetoencephalography (OPM-MEG) system

(A) The diagram of the OPM-MEG system.

(B) The co-registration results of one subject.

Figure 5. Influence of co-registration errors

(A) The performance metric results under different levels of rotation error of sensor locations and orientations. The results of Rot = 0� are used as a contrast

group without co-registration error.

(B) The performance metric results under different levels of translation error of sensor locations and orientations. The results of Tran = 0 mm are used as a

contrast group without co-registration error.
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MSI method called FESSE. We verified its better performance compared to the benchmark algorithm via

simulations and then applied it to the source reconstruction of SEFs. The measured OPM-MEG data

were analyzed at the sensor and source levels.

Based on the Bayesian framework, different types of MSI methods can be derived from different constraints

of the source covariancematrix (Wipf and Nagarajan, 2009; López et al., 2014). MNE and LCMV assume that

the source prior is the identity matrix and the inverse of the data covariance matrix, respectively (Liu et al.,

2002; Van Veen et al., 1997), while MSP and FESSE provide a spatial prior constraint, which can better

constrain the spatial expansibility of the sources. For MSP, it assumes a limited number of candidate source

patches of the same size in the source space and attempts to use GS to search a subset of source patches

highly correlated with the observation as the inverse solution (Friston et al., 2008a). However, the estimated

results of the MSP are highly dependent on the selected source patches, and the source patches are

randomly chosen in the entire source space increasing the randomness of the source localization error.

FESSE uses the variational free energy as model evidence to choose the appropriate spatial smoother

for all candidate sources within the limited source space estimated by MNE or LCMV. In this sense, FESSE

incorporates the advantages of the MNE and MSP methods.

Figure 7. Representative results of the sensor-level somatosensory responses of Subject 1

(A) Somatosensory evoked fields (SEFs) of Subject 1 under left median electrical stimulation. The left panel shows the averaged SEFs with optically pumped

magnetometer-magnetoencephalography (OPM-MEG) data in black and global field power (GFP) data in green. The time-frequency representation of the

channel with the maximum of the magnetic field and the topography of the component with the maximum amplitude are shown in the upper and lower

portions of the right panel, respectively.

(B) Somatosensory evoked fields (SEFs) of Subject 1 under right median electrical stimulation.

(C) Somatosensory evoked fields (SEFs) of Subject 1 under left ulnar electrical stimulation.

(D) Somatosensory evoked fields (SEFs) of Subject 1 under right ulnar electrical stimulation.

Table 1. Peak stages of brain activity for each subject

Left median Right median Left ulnar Right ulnar

Subject 1 M20, M35, M65 M20, M35, M65 M35, M65 M35, M60

Subject 2 M20, M35, M65 M20, M35, M70 M35, M60 M35, M70

Subject 3 M20, M35, M60 M20, M35, M60 M35, M60 M35, M50

Subject 4 M20, M35, M60 M20, M35, M60 M35, M60 M35, M60

The time window is within 100 ms of the post-stimulus period.
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Simulation results under different levels of SNR (Figure 4) and source patch size (Figure 3) show the effec-

tiveness and superiority of FESSE over the competing methods MNE, LCMV, and GS-based MSP. The co-

registration of OPM-MEG is more complicated than that of SQUID-MEG on account of its flexible sensor

arrays (Cao et al., 2021; Zetter et al., 2018). Moreover, its close distance to the scalp and an increased

SNR makes OPM-MEG sensitive to the forward model error. Therefore, it is necessary to analyze the

impact of co-registration errors on source reconstruction. In our work, we evaluated the performance

of MSI methods under co-registration errors. FESSE provides better source reconstruction results than

the others (Figure 5). It should also be noted that the impact of the co-registration error is significant,

and it is strongly recommended to use devices and methods with high co-registration accuracy. For

FESSE, the smoothness level is a parameter that must be set previously. To reduce the computational

burden, it can be set at intervals to produce spatial priors from the focus source to the extended source.

The size of the spatial prior under different smoothness levels can be estimated by calculating the FWHM

of each spatial prior.

Using the constructed wearable OPM-MEG, we have shown that the SEFs under median and ulnar

nerve stimulations can be reliably detected by OPMs with high quality (maximum amplitude reaches 1

pT). Both the sensor-level and source-level analyses have demonstrated substantial differences in

cortical responses to different stimulations of peripheral nerves, which is consistent with the findings

of previous studies (Theuvenet et al., 2006; Huttunen et al., 2006). In particular, FESSE provides

more reasonable source imaging results than competing methods without adjusting the imaging

threshold (Figure 8). It can distinguish the cortex responses under the two types of electrical sensory

stimulation.

Based on the prior information provided by studies conducted previously on the somatosensory cortex

(Nakamura et al., 1998; Baumgartner et al., 1993; Willoughby et al., 2020), we distributed the sensors in

our experiments to primarily cover the partial brain functional area (bilateral parietal and temporal lobes

Figure 8. Source reconstruction results of all stimulus types for Subject 1

Each column shows the reconstruction results of each method. The normalized estimated source power is shown on the

cortex of Subject 1. The source imaging results of LCMV andMNE are shown at a threshold of 50% of the maximum power

value.
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of the brain) instead of the whole scalp. Simulation results on the influence of the sensor layouts on the

FESSE performance have demonstrated that different sensor layouts affect the source estimate, and the

source reconstruction using the local distribution sensor layout is better than using a global distribution

layout for detecting sources in the somatosensory cortex (see Figures S7 and S8). Our experimental results

also verified the ability of the locally distributed OPM array to successfully map the source activity of the

somatosensory cortex. In addition, we also preliminarily simulated a decreasing number of sensors on

the FESSE performance. Simulation results (see Figure S8) show that when the number of sensors is greater

than 20, FESSE can provide a source localization error of less than 5 mm. Currently, OPM sensor technology

is at the initial exploration stage; therefore, few sensors are available for researchers. With a limited number

of sensors, covering the functional area being studied can allow for convenient research without loss of

important information.

Limitations of the study

It should be noted that the source imaging results of FESSE are based on the limited source space obtained

from the imaging results of, for example, the MNE method, which makes FESSE unable to reconstruct the

source areas that are not detected by the MNE method. FESSE is suitable for estimating the source and its

range in the region of interest of the brain.

In our work, we used the same sensor arrays across different subjects without considering individual differ-

ences in the human cortex. Relative positions of the sensor array and heads of the subjects were slightly

different because of their personalized head structures. The measured signal for each subject might not

have the best quality because the sensors could not accurately cover the brain functional area of each sub-

ject. In other words, the sensor layout for detecting the somatosensory responses for each subject was

different. Our simulations have shown that different sensor layouts influence source reconstruction. One

of the outstanding advantages of OPM-MEG is its flexible sensor configuration, which is not present in con-

ventional SQUID-MEG. To further improve the detection accuracy, optimization of the sensor array with a

limited number for a specific subject is required accordingly. Research has been performed to consider the

sensor configuration design from the perspective of source reconstruction accuracy (Beltrachini et al., 2021;

Duque-Muñoz et al., 2019). However, for practical application, designing and fabricating a personalized

helmet for each subject is complex and time-consuming and many studies still use a general helmet for

different subjects (Iivanainen et al., 2020). Therefore, creation of helmet designs (flexible or rigid) that

would enable the sensor array to be adjusted freely, timely, and accurately for each subject would be bene-

ficial in the future.
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Spatial fidelity of MEG/EEG source estimates: a
general evaluation approach. Neuroimage 224,
117430. https://doi.org/10.1016/j.neuroimage.
2020.117430.

Schneiderman, J.F., Ruffieux, S., Pfeiffer, C., and
Riaz, B. (2019). In On-scalp MEG, S. Supek and
C.J. Aine, eds. (Springer-Verlag Berlin
Heidelberg), pp. 1313–1335.

Schulz, M., Chau, W., Graham, S.J., McIntosh,
A.R., Ross, B., Ishii, R., et al. (2004). An integrative
MEG–fMRI study of the primary somatosensory
cortex using cross-modal correspondence
analysis. Neuroimage 22, 120–133. https://doi.
org/10.1016/j.neuroimage.2003.10.049.

Sohrabpour, A., and He, B. (2021). Exploring the
extent of source imaging: recent advances in
noninvasive electromagnetic brain imaging.
Curr.Opin.Biomed.Eng. 100277. https://doi.org/
10.1016/j.cobme.2021.100277.

Solomon, J., Boe, S., and Bardouille, T. (2015).
Reliability for non-invasive somatosensory cortex
localization: implications for pre-surgical
mapping. Clin. Neurol. Neurosurg. 139, 224–229.
https://doi.org/10.1016/j.clineuro.2015.10.001.

Theuvenet, P.J., van Dijk, B.W., Peters, M.J., van
Ree, J.M., da Silva, F.L.L., and Chen, A.C. (2006).
Cortical characterization and inter-dipole
distance between unilateral median versus ulnar
nerve stimulation of both hands in MEG. Brain
Topogr 19, 29–42. https://doi.org/10.1007/
s10548-006-0010-1.

Van Veen, B.D., Van Drongelen, W., Yuchtman,
M., and Suzuki, A. (1997). Localization of brain
electrical activity via linearly constrained
minimum variance spatial filtering. IEEE Trans.
Biomed. Eng. 44, 867–880. https://doi.org/10.
1109/10.623056.

Willoughby, W.R., Thoenes, K., and Bolding, M.
(2020). Somatotopic arrangement of the human
primary somatosensory cortex derived from
functional magnetic resonance imaging. Front.
Neurosci. 14. https://doi.org/10.3389/fnins.2020.
598482.

Wipf, D.P., Owen, J.P., Attias, H.T., Sekihara, K.,
and Nagarajan, S.S. (2010). Robust Bayesian
estimation of the location, orientation, and time
course of multiple correlated neural sources
using MEG. Neuroimage 49, 641–655. https://
doi.org/10.1016/j.neuroimage.2009.06.083.

Wipf, D., and Nagarajan, S. (2009). A unified
Bayesian framework for MEG/EEG source
imaging. Neuroimage 44, 947–966. https://doi.
org/10.1016/j.neuroimage.2008.02.059.

Wittevrongel, B., Holmes, N., Boto, E., Hill, R.,
Rea, M., Libert, A., et al. (2021). Optically pumped
magnetometers for practical MEG-based brain-
computer interfacing. In Brain Computer
Interface Research, C. Guger, B.Z. Allison, and A.
Gunduz, eds. (Springer), pp. 35–46.

Zetter, R., Iivanainen, J., and Parkkonen, L. (2019).
Optical Co-registration of MRI and on-scalp
MEG. Sci. Rep. 9, 1–9. https://doi.org/10.1038/
s41598-019-41763-4.

Zetter, R., Iivanainen, J., Stenroos, M., and
Parkkonen, L. (2018). Requirements for
coregistration accuracy in on-scalp MEG. Brain
Topogr 31, 931–948. https://doi.org/10.1007/
s10548-018-0656-5.

ll
OPEN ACCESS

iScience 25, 103752, February 18, 2022 11

iScience
Article

https://doi.org/10.1016/j.neuroimage.2006.04.196
https://doi.org/10.1016/j.neuroimage.2006.04.196
https://doi.org/10.1016/j.neuroimage.2016.12.048
https://doi.org/10.1016/j.neuroimage.2016.12.048
https://doi.org/10.1002/hbm.24795
https://doi.org/10.1002/hbm.24795
https://doi.org/10.1016/j.neuroimage.2019.03.022
https://doi.org/10.1016/j.neuroimage.2019.03.022
https://doi.org/10.1155/2011/852961
https://doi.org/10.1002/hbm.10024
https://doi.org/10.1109/TMI.2020.3025608
https://doi.org/10.1016/j.neuroimage.2013.09.002
https://doi.org/10.1016/j.neuroimage.2013.09.002
https://doi.org/10.1101/2021.05.25.444975
https://doi.org/10.1101/2021.05.25.444975
https://doi.org/10.1097/00004424-198609000-00009
https://doi.org/10.1097/00004424-198609000-00009
https://doi.org/10.1109/10.748978
https://doi.org/10.1006/nimg.1998.0332
https://doi.org/10.1006/nimg.1998.0332
https://doi.org/10.1088/0031-9155/48/22/<?show $132#?>002
https://doi.org/10.1088/0031-9155/48/22/<?show $132#?>002
https://doi.org/10.1155/2011/156869
https://doi.org/10.1155/2011/156869
https://doi.org/10.1117/12.2299197
https://doi.org/10.1016/j.nicl.2017.10.021
https://doi.org/10.1016/j.nicl.2017.10.021
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref43
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref43
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref43
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref43
https://doi.org/10.1016/j.neuroimage.2011.02.002
https://doi.org/10.1016/j.neuroimage.2011.02.002
https://doi.org/10.1016/j.neuroimage.2020.117430
https://doi.org/10.1016/j.neuroimage.2020.117430
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref46
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref46
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref46
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref46
https://doi.org/10.1016/j.neuroimage.2003.10.049
https://doi.org/10.1016/j.neuroimage.2003.10.049
https://doi.org/10.1016/j.cobme.2021.100277
https://doi.org/10.1016/j.cobme.2021.100277
https://doi.org/10.1016/j.clineuro.2015.10.001
https://doi.org/10.1007/s10548-006-0010-1
https://doi.org/10.1007/s10548-006-0010-1
https://doi.org/10.1109/10.623056
https://doi.org/10.1109/10.623056
https://doi.org/10.3389/fnins.2020.598482
https://doi.org/10.3389/fnins.2020.598482
https://doi.org/10.1016/j.neuroimage.2009.06.083
https://doi.org/10.1016/j.neuroimage.2009.06.083
https://doi.org/10.1016/j.neuroimage.2008.02.059
https://doi.org/10.1016/j.neuroimage.2008.02.059
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref55
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref55
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref55
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref55
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref55
http://refhub.elsevier.com/S2589-0042(22)00022-0/sref55
https://doi.org/10.1038/s41598-019-41763-4
https://doi.org/10.1038/s41598-019-41763-4
https://doi.org/10.1007/s10548-018-0656-5
https://doi.org/10.1007/s10548-018-0656-5


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Xiaolin Ning (ningxiaolin@buaa.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects

Four right-handed healthysubjects (two males and two females, 25–27 years of age) participated in this

study. This study was reviewed and approved by the Ethics Committee of Beihang University. All subjects

provided written informed consent for the experimental procedure, in accordance with the Declaration of

Helsinki.

METHOD DETAILS

Variational FESSE

Estimation of the source extent is of interest to researchers for mapping the somatosensory cortex; how-

ever, it is also a major challenge for MSI algorithms. As widely described in the literature (Sohrabpour

and He, 2021; Becker et al., 2015), MNEs generally lead to blurred source localization results. In recent

years, MSI algorithms based on the Bayesian framework have been developed for source reconstruction.

Here, we propose an MSI algorithm based on the Bayesian approach for source reconstruction.

Description of the inverse problem
The sources of MEG can be equivalent to a large number of current dipoles distributed throughout the

cortical surface. The relationship between the magnetic fields Y˛RNc3Nt measured at a set of Nc sensors

for Nt time points and Nd dipoles J˛RNd3Nt can be described by a linear model:

Y = LJ + ε (Equation 1)

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Fieldtrip v20201023 Oostenveld et al. (2011) https://www.fieldtriptoolbox.org/download/

SPM12 The Wellcome Center for Human Neuroimaging https://www.fil.ion.ucl.ac.uk/spm/

FreeSurfer v7.1.0 Fischl (2012) https://surfer.nmr.mgh.harvard.edu/

MATLAB vR2019b MathWorks https://www.mathworks.com/products/matlab.html

FESSE algorithm This paper https://doi.org/10.5281/zenodo.5804077

Other

Human subjects This paper N/A
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where ε is the additive noise and L˛RNc3Nd is the lead fieldmatrix, which can be obtained from the analytical

or numerical solutions of the forward problem in the quasi-static approximation (Mosher et al., 1999; Nolte,

2003). When Y and L are provided, the inverse problem is to estimate the source activity J. In a Bayesian

framework, this estimation is transformed into maximizing the posterior distribution of J conditioned on

the observed data Y, that is, pðJjY Þ, which can be computed via the Bayes rule:

pðJjYÞ=pðY jJÞpðJÞ
pðY Þ : (Equation 2)

With proper spatial whitening based on the estimated noise covariance matrix (Ramı́rez et al., 2011), the

noise ε can be assumed to present a zero-mean Gaussian distribution, that is, ε � Nð0;QeÞ. Subsequently,
the likelihood associated with (2) can be written as pðY jJÞ = NðLJ;QeÞ. Given the dataset, p(Y) is a constant

value. Thus, the estimation of pðJjYÞ relies on the determination of the source prior p(J). Generally,

Gaussian process models are used to represent p(J) as a Gaussian process prior (Friston et al., 2008b; Har-

rison et al., 2007), pðJÞ = Nð0;QsÞ. This allows us to express the posterior distribution pðJjYÞ as

pðJjY Þfexp
h
� ðLJ � Y ÞTQeðLJ � YÞ � JTQsJ

i
(Equation 3)

where ð,ÞT is the transpose operator. In this step, the maximization of pðJjY Þ is transformed into

min
J

h
ðLJ � YÞTQeðLJ � YÞ+ JTQsJ

i
: Taking the derivative of J and setting it to zero yields (Dale and Se-

reno, 1993):

bJ =QsL
T
�
LQsL

T +Qe

��1Y (Equation 4)

which is the solution to the inverse problem under the Bayesian framework. This equation can also be

derived from other methods, such as the Tikhonov regularization method (see Liu et al., 2002, Appendix).

The source prior is Qs = covðbJÞ = hQ0, where Q0 is the initial prior of J and h is the regularization param-

eter. The essence of different inverse methods can be described by the different constraints on the prior

covarianceQs: For example, if there is no available spatial prior about the sources, theMNE solution always

assumes that Q0 = I (Hincapié et al., 2017), and subsequently,

Qs = hI: (Equation 5)

However, MNEs cannot precisely estimate the extent of the source. To obtain an accurate estimation of the

source extent, the brain source structure within the limited source range can be modeled into the source

prior, which is what our method attempts to accomplish.

Graph laplacian spatial smoother
Based on the MNE solution, the active sources are limited to ~J0:The purpose of this step is to accurately

estimate the location and size of the source within a limited source range. We represent the region of

the non-zero values of bJ0 as U˛RNs33; where Ns is the number of candidate sources within U. The location

of each candidate source is denoted as giði = 1; 2;.; NsÞ:To estimate the size of the source, graph Lapla-

cian spatial smoothers with different smoothness scalars are performed on the cortex surface mesh. The

graph Laplacian spatial smoother is defined based on an adjacency matrix CNd3Nd , which is calculated us-

ing the vertices and faces defined in the original cortex mesh. If the vertices i and j are connected on a face

element, the element in the i-th row and j-th column of matrix C is 1, and 0 otherwise. The graph Laplacian

spatial smoother is expressed as

G=

�
I+

C � diagðCaÞ
16

�s

(Equation 6)

where a = ½1; 1;.; 1�T˛RNd31, and Ca is the calculation of the sum of each row of C. diagðxÞ, denoting the

diagonal matrix composed of a vector x. s is the factor controlling the smoothness level. The corresponding

column inG defines its smoothness for each candidate source gi inU. By changing the smoothness s, multi-

scale spatial priors D = ½G1 / Gs �˛RNd3ðsNsÞ are obtained. The larger the s, the more extensive is the

imaging region of the spatial prior.
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Variational free energy as model evidence
For each spatial prior, the source covariance prior can be modeled as:

Qs = elidi (Equation 7)

where di˛RNd31 is the i-th column ofD, which represents the spatial prior; and eli is its hyperparameter. The

change of the hyperparameter h in (5) to el guarantees the hyperparameter positive and applies a Gaussian

assumption to it. Considering the sensor noise covariance, the source prior can be projected onto the

sensor space.

S= eliLdiL
T + eleQe (Equation 8)

where ele denotes the hyperparameter of the sensor-noise covariance. Thereafter, the hyperparameters

fljli; leg with the Gaussian hyperpriors pðlÞ=Nðh;PÞ need to be estimated, where h and P are the

mean and covariance, respectively.

The advantage of the Bayesian approach for solving the inverse problem is that it enables the comparison

of different models m using the model evidence pðY jmÞ; that is, pðY jdiÞ in our method, and estimates hy-

perparameters from the data. However, it is difficult to directly calculate the model evidence. Fortunately,

the variational free energy F provides a low bound to the log evidence (Friston et al., 2007). In other words,

the maximization of free energy can approximate the model evidence. Considering the posterior densities

of parameters l presenting a Gaussian distribution: qðlÞ=Nðml;SlÞ with the mean ml and covariance Sl,

the free energy can be expressed as (Friston et al., 2008a)

F = �Nt

2
tr
�
SYS

�1
��Nt

2
lnhSi �NtNc

2
ln 2p+

1

2
ln
�
SlP

�1
�� 1

2
ðml � hÞTP�1ðml � hÞ (Equation 9)

where SY =YYT=Nt is the data covariance. We use C $D to denote the determinant operator and trð $Þ to
denote the trace of a matrix. Thefree energy is used as the maximum likelihood function to estimate the

hyperparameters ml = argmaxlðFÞ. With the expectation maximization (EM) algorithm, the hyperpara-

meters can be estimated iteratively (Friston et al., 2008b).

For different spatial priors, it is natural to consider using free energy to provide evidence for model com-

parison. The spatial prior dfinal corresponding to the maximum free energy is the final source prior, which

provides the imaging region of the estimated source. The source prior at the sensor space can be ex-

pressed as

Sfinal = elfinalLQfinalL
T + eleQe (Equation 10)

where elfinal and ele are estimated by the EM algorithm, and subsequentlySfinal is taken into (4) to obtain the

estimated source activity Jfinal.

Evaluating FESSE performance by simulations

Simulation protocol. The cortex derived from MRI (MRI) data of Subject 1 (one of the subjects in our

OPM-MEG experiment) was down-sampled to a mesh with 15,002 vertices to be regarded as the source

model. The 32-channel OPM sensor configuration covering the bilateral parietal and temporal lobes of

the brain of Subjectone was obtained accordingly. Radial field components were measured using an

OPM array. In the simulations, the length of the data was 700 ms, starting from �200 ms to 500 ms, with

a sampling frequency of 1 kHz. The source was activated only within 0–500 ms. We used full width at half

maxima (FWHM) to define the size of each source patch to simulate sources with different active spatial

extents and adopted the Gaussian spatial model to generate each source patch (Friston et al., 2008a).

Each source patch was generated by selecting dipoles whose geodesic distances (Dijkstra, 1959) from

the target dipole location were less than a given FWHM. The amplitudes of the dipoles within the source

patch were set asA exp

 
�g2

i

.
2ðFWHM=2:355Þ2

!
where gi is the geodesic distance andA is the intensity of

the current source. A was set to 10 nA∙m in the simulations. The candidate source space was the

cortex surface covered by OPM sensors. The orientation of the sources was perpendicular to the local

cortical surface (Wipf et al., 2010). The source signals were bandpass orthogonal Gaussian signals (within

10–30 Hz). The corrected-sphere model (Nolte, 2003) was used as the forward model and used for data

generation.
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We evaluated the performance of all the source imaging methods to be compared under simulation sit-

uations of varied source patch size, SNR, and even co-registration errors. Under each simulation condi-

tion, we randomly selected candidate source locations on the designed source space to perform Monte

Carlo simulations and only one source patch was activated in each dataset. The source patch size was

chosen as FWHM = 10, 15, 20, 25, and 30 mm. The SNR was defined as SNR = 20 log10

rmsðY signalÞ
rmsðYnoiseÞ , where

rmsð $Þ is the root-mean-square of the matrix. We calculated the SNRs of the measured OPM-MEG data,

which were within the range of 5–15 dB. To better explore the performance of the MSI methods, we set

the SNRs in the simulations to a wider range, SNR = �20 dB, �10, 0, 10, and 20 dB. For our OPM-MEG

system, we utilized a rigid helmet whose sensor locations and orientations were relatively fixed. In this

case, the co-registration errors between the OPM sensor array and MRI were systematic errors, that is,

the transformation errors of the estimated sensor array coordinate system and its real coordinate system

(Hill et al., 2020). The transformation errors can be represented by the rotation and translation errors of

the two coordinate systems. Thus, when solving the inverse problem, we added rotation and translation

errors separately on the sensor array to evaluate the effects of the co-registration error on the perfor-

mance of each MSI method. We chose the direction from the origin to the top of the head, that is,

the z axis, as the rotation axis and the translation direction where the origin was defined as the midpoint

of the left and right pre-auricular points. To analyze the effect of the rotation error, the whole sensor

array was rotated with Rot = 0.3�, 0.6�, 0.9�, and 1.2�, about the z axis. Similarly, the whole sensor array

was translated as Tran = 1, 2, 3, and 4 mm, along the z axis to evaluate the influence of the translation

error.

For LCMV, we employed its current version in the Fieldtrip toolbox. The whole data, including the pre- and

post-stimulus data, were used to estimate the common spatial filters, and the regularization parameter was

set as lambda = 5% (the default setting of the ft_inverse_lcmv Fieldtrip function) to replace the data covari-

ance matrix SY as its regularized version SY + 5%3trðSY Þ to guarantee a good estimate of the SY when the

data was a low-rank matrix. Then the common filters were applied to the pre- and post-stimulus data sepa-

rately. To avoid the centralization of source estimation, the estimated results were the estimated power of

the post-stimulus data normalized by that of the pre-stimulus data, which is the so-called neural activity in-

dex. The implementation of MNE andMSP used the standard process provided by the SPM software. Their

regularization parameters were set as Qe0 = 0.01 (the default setting of the spm_eeg_invert_classic SPM

function) to bring the noise covariance matrix Qe to a reasonable scale Qe03 trðSY Þ½Qe=trðQeÞ �. For the
MSP, a greedy search (GS) strategy was adopted. For FESSE, eight smooth levels of source patch were

determined on the cortex of each subject, and the size of the source prior varied from 5 mm to 40 mm

with a 5 mm increment.

Quantitative metrics. Two complementary metrics are used to quantitatively measure and compare

the performance of the FESSE and benchmark algorithms. One is the dipole location error (DLE), which

calculates the Euclidean distance between the global maximum of the estimated source activity and the

simulated source. The DLE only uses the global maximum of the reconstructed activity to evaluate the

accuracy of source localization; however, the local estimated activity and the corresponding spatial

extent of the sources should also be considered. The other index, the improved area under the curve

(AUC) (Grova et al., 2006) provides an appropriate measure of detection accuracy for source extent esti-

mation. The curve is the receiver operating characteristic curve (Metz, 1986), which can be built based on

the binary classification results of the normalized energy of the reconstructed and simulated activity un-

der different choices of the imaging threshold (see Grova et al., 2006 for detail). The advantage of AUC is

that it incorporates the imaging threshold into the statistical index and considers the source spatial

change under different threshold selections. With these two metrics, the detection accuracy of MSI

can be measured, such that the smaller the DLE and the closer the AUC is to 1, the better the effect

of the source imaging.

Experimental data acquisition

Experimental paradigm
The subjects were presented with median and ulnar nerve stimulation at the right or left wrist with a bi-

polar electrode. The electrical stimulation was a square-wave electrical pulse with a duration of 200 ms,

and was provided by a commercial stimulator (DS7A, Digitimer Inc., United Kingdom). Stimulus intensity

was tailored individually and was set as the threshold value for each subject when a small movement of

ll
OPEN ACCESS

iScience 25, 103752, February 18, 2022 15

iScience
Article



the thumb or little finger was visible (Antonakakis et al., 2019; Del Gratta et al., 2002). The inter-trial in-

terval was about 1.3 s with a G0.1 s time jitter. The subjects were instructed not to move their head and

fixate on a point in front of them. A total of 300 trials were conducted for each stimulus. In total, four

events, namely the right/left median and right/left ulnar nerve stimuli, were recorded for each subject,

and the synchronizing trigger for each stimulus was also acquired.

OPM-MEG data acquisition

OPM-MEG system. During the experiment, the OPM sensors were operated inside the MSR (ambient-

field amplitude and drift typically below 13 nT and 40 pT/h), and the subject was seated throughout the

recording. A plastic board placed behind the seat was used to support the weight of the cables, which con-

nected theOPM sensors to their electronic modules. The data acquisition system was composed of two

pieces of the NI DAQ device PXI-4499, which enabled 32 channel data collection. Because of the need

to use one data acquisition channel to record the synchronizing trigger of each stimulus, 31-channel

OPM sensors (QZFM, QuSpin Inc.,United States) were used in the experiments. An array of 31 second gen-

eration OPM sensors was inserted into the sensor slots on a 3D-printed helmet and distributed symmetri-

cally on both sides of the helmet to ensure coverage of the somatosensory functional area. The OPM

sensors measured the radial components of the magnetic field. For different subjects, the same helmet

was used, and the sensors were inserted into the same slots. The depths of the sensors for each subject

were adjusted manually to ensure that the OPM sensors were as close to the scalp as possible. The elec-

trical modules of the sensors and commercial stimulator were placed outside theMSR to avoid electromag-

netic interference. All OPM-MEG data were acquired at a sampling frequency of 1 kHz.

Co-registration. After data acquisition for each subject, the insertion depth of each sensor was

measured manually. Then the OPMs were removed from the helmet. The subject wearing the helmet

was 3D-scanned immediately to obtain 3D superfine stereo images for the co-registration of OPM-MEG

and MRI data. According to our previous studies on the co-registration comparison of three commonly

used devices, we chose to use a laser scanner (HSCAN Prince 775, Scantech Inc., China), which has the

best accuracy. Co-registration was accomplished in two steps: helmet match and face match (see Cao

et al., 2021 for details of the co-registration method). Co-registration provided the sensor configuration

for source imaging. The sensor locations and orientations were corrected according to the recorded depth.

Through the co-registration step, the locations and orientations of the sensors relative to the head of each

subject were obtained.

Anatomical MRI
MRI data of all subjects were collected using a Siemens MAGNETOM Prisma 3T MR system. We acquired

T1-weighted MRI scans using an MPRAGE sequence (TR, 2,300 ms; TE, 3.03 ms; TI, 1,100 ms; FA, 8�; field of

view, 2563 2563 192mm; voxel size = 13 13 1mm3). MRI data were pre-processed and segmented using

Freesurfer software (Fischl, 2012) to obtain the scalp surface and cortex.

OPM-MEG experimental data analysis

The measured data were bandpass filtered between 2 and 40 Hz. We manually screened to identify bad

channels and noisy segments. The data were then segmented into epochs based on the recorded triggers.

For each group of data, the statistical metrics of each trial, including the variance, minimum, maximum,

range, kurtosis, and z-value were computed. All trials were visually inspected and those with outliers of

the statistical metrics were removed. With this step, the apparent artifacts caused by eye blinks and eye

movements were rejected. After rejecting the noisy trials, for each stimulation type (left/right median nerve

stimulation and left/right ulnar nerve stimulation), there were 214, 179, 201, and 79 trials left for Subject 1;

162, 178, 140, and 176 trials left for Subject 2; 162, 149, 108, and 133 trials left for Subjectthree; and 193, 173,

174, and 165 trials left for Subject 4. Compared to gradiometer-based SQUID-MEG, OPM-MEG is more

susceptible to background magnetic field disturbances. Thus, we used the magnetic field mapping

method (Mellor et al., 2021) to further correct the low-frequency artifacts caused by the natural head move-

ment of the subject.

The pre-processed data were averaged over the time domain to obtain the averaged SEFs. The global field

power (GFP), defined as the Frobenius norm of the averaged sensor data at each time point, was computed

accordingly. In addition, the time-frequency representations (TFRs) were also calculated using the multi-ta-

per-method convolution and the Hanning taper with a frequency-dependent window length. The time-
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frequency analysis was performed within the time interval from�200 to 500ms and for a frequency from 2 to

40 Hz for each epoch, whichwere then averaged across epochs. An analysis of GFP and TFR provided sig-

nificant information for estimating the main active period of the source activity.

The brain sources were modeled as distributed current dipoles on the down-sampled cortical sheet, with

their locations on the vertices and orientations perpendicular to the local cortical surface (Wipf et al., 2010).

The co-registration for each subject was performed to obtain the sensor configuration using the scanned

3D object and segmented scalp mesh from the MRI. The averaged SEFs within the estimated active period

of the source were used to map the somatosensory responses to the median and ulnar stimulations. The

lead field was computed using a corrected-sphere head model. Thereafter, FESSE and benchmark MSI

methods were used for source imaging. The pipeline for each method was the same as that used in the

simulations.
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