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Abstract: The benevolent and detrimental effects of antioxidants are much debated in clinical trials
and cancer research. Several antioxidant enzymes and molecules are overexpressed in oxidative
stress conditions that can damage cellular proteins, lipids, and DNA. Natural antioxidants remove
excess free radical intermediates by reducing hydrogen donors or quenching singlet oxygen and
delaying oxidative reactions in actively growing cancer cells. These reducing agents have the
potential to hinder cancer progression only when administered at the right proportions along with
chemo-/radiotherapies. Antioxidants and enzymes affect signal transduction and energy metabolism
pathways for the maintenance of cellular redox status. A decline in antioxidant capacity arising from
genetic mutations may increase the mitochondrial flux of free radicals resulting in misfiring of cellular
signalling pathways. Often, a metabolic reprogramming arising from these mutations in metabolic
enzymes leads to the overproduction of so called ‘oncometabolites’ in a state of ‘pseudohypoxia’.
This can inactivate several of the intracellular molecules involved in epigenetic and redox regulations,
thereby increasing oxidative stress giving rise to growth advantages for cancerous cells. Undeniably,
these are cell-type and Reactive Oxygen Species (ROS) specific, which is manifested as changes in the
enzyme activation, differences in gene expression, cellular functions as well as cell death mechanisms.
Photodynamic therapy (PDT) using light-activated photosensitizing molecules that can regulate
cellular redox balance in accordance with the changes in endogenous ROS production is a solution
for many of these challenges in cancer therapy.
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1. Introduction

Reactive oxygen species (ROS) are the intermediates of the metabolic processes in organelles
such as endoplasmic reticulum, mitochondrial respiratory complex, peroxisomes, and processes such
as detoxification of xenobiotics, oxidation of fatty acids etc. [1]. Under normal conditions, ROS are
produced in picomolar concentrations and any amount of excessive ROS gets neutralized by the
antioxidant system of the body. However, sometimes, there will be an impairment or imbalances
in this process leading to the accumulation of free radicals, complicating diseases such as cancer,
cardiovascular diseases, diabetes, etc. Metabolically active cells develop higher amounts of free
radicals, which can alter cellular homeostasis leading to the development of malignancy and metastasis.
The association between cardiovascular diseases, myocardial oxidative stress, and the beneficial role
of antioxidants in preventing atherosclerosis is quite popular in clinical medicine. Presence of oxide
radicals predisposes the oxidation of low-density lipoproteins for the formation of atherosclerosis
resulting in blockage of arteries [2]. A higher level of ROS is also responsible for various pathologies viz.
aging, endothelial dysfunction, insulin resistance, diabetic nephropathy, etc. Many of these harmful
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effects induced by oxide radicals on the cardiovascular diseases are alleviated by the supplementation
of antioxidants [3]. The intake of antioxidants may help the diabetic patients to reduce the free radical
overload in the system and overcome the hyperglycaemic state [4].

Growing cells adjust endogenous ROS for outcomes such as cellular senescence, apoptosis,
and necrosis. Approximately 2% of the oxygen entering in the body by respiration is converted
into free radicals by cellular and mitochondrial processes under normal physiological conditions [5].
Living cells synthesize nitric oxide radicals (NO®) that function as an endothelial relaxing factor and
neurotransmitter produced by the nitric oxide synthase (NOS). Nitric oxide (NO®) and superoxide
(*Oy) radicals are converted into alkoxyl (*RO) radical, peroxyl (*ROO) radical, hydroxyl (*OH) radical,
and singlet oxygen (:07) anions by a series of biochemical reactions. Further, these powerful oxidizing
radicals are converted into molecular oxidants like hydrogen peroxide (H,O;) and peroxynitrate
(ONOQ7) anions, as well as hypochlorous acid (HOCI), which may act as a source of ROS [6]. ROS can
induce oxidation of cell membranes due to the presence of high concentration of fatty acids in the
lipid bilayer. In fact, ROS can cause the lipid peroxidation of lipid membranes, forming lipid peroxyl
(*LOO) radicals, resulting in the cross linking of membrane proteins and alterations in membrane
fluidity. It can also result in the formation of lipid-DNA adduct and lipid-proteins that can harm the
physiological functioning of the cell [7]. ROS interacts with proteins resulting in changes to the tertiary
structures, proteolytic degradation, fragmentation, peroxidation, protein-protein cross linkages as well
as the formation of carbonyls viz. aldehydes and ketones. It may attack the sugar moieties in the DNA
strand producing sugar peroxyl (*ROO) radicals causing breakage of strands and interact with DNA
causing modification of DNA bases. The net result of these oxidative damages on the genetic material
is ageing, mutagenesis and death of the cells [8].

Mitochondrial energy production is achieved as oxygen is reduced along the electron transport
chain (ETC) located on the inner membrane leading to the production of oxygen free radicals. Several
species of oxide free radicals are generated from singlet oxygen (!O~,) anion, which is the most reactive
ROS by a single step electron transfer process. One electron reduction of the singlet oxygen (:075)
anion generates superoxide (*O,) radicals and a further reduction of one electron from these superoxide
(*Oy) radicals produces hydrogen peroxide (H,O,) [9]. The primary role of the oxide free radicals
is the destruction of microorganisms as performed by the white blood cells, especially neutrophils
through the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase activity [10]. They are
also responsible for the intercellular and intracellular signalling necessary for various physiological
activities leading to the proliferation and differentiation of cells [11]. Often, low levels of ROS activate
cellular glutathione by triggering the antioxidant response element (ARE) producing proliferative
effects on a variety of cell types, whereas concentrations above 100 uM result in the activation of cell
death pathways (referred as biphasic response) [12]. During hyperoxia or hypoxia and treatment
using ionizing radiations, a large quantity of oxide free radicals are gemerated that can harm the cells.
Together, superoxide (*O;) radicals and hydrogen peroxide (H,O;) increase DNA replication and the
cell cycle to act as mitogen predisposing cells to develop cancer [13,14].

2. Endogenous Antioxidants

Antioxidants originate from either endogenous or exogenous sources. The endogenous
antioxidants consist of enzymatic antioxidants viz. catalase, glutathione (GSH) dependent enzymes
viz. glutathione peroxidases (GPx), glutathione reductases, glutathione S-transferases, superoxide
dismutase (SOD), thioredoxin etc. and non-enzymatic antioxidants, which are sub-divided as metabolic
and nutrient antioxidants. Metabolic antioxidants consist of bilirubin, coenzyme Q10, GSH, L-arginine,
melatonin, uric acid, etc. Nutrient antioxidants consist of «-lipoic acid, 3-carotenoids, flavonoids,
polyphenols, and vitamins C and E, etc. All these antioxidants have the unique capability of scavenging
and mopping up of free radicals by donating their own electrons and neutralizing the electrical
charge [15]. Ideally, antioxidants should readily be synthesized, chelate redox metals, and eliminate
free radicals helping the metabolically active cells to achieve homeostasis.
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Depending to their action on cellular free radicals, endogenous antioxidants may be preventive or
scavenging and often performing radical-induced damage repair. Accordingly, they are sub-divided
into the following categories. First line of defense: They include catalase, GPx and SOD, which act
on hydrogen peroxides (H;O,), alkyl hydroperoxidases (ROOH) and superoxide (*O,) radicals
respectively to prevent the formation of free-radicals and ROS. Second line of defense: They are
antioxidants that scavenge active free radicals by donating electrons to inhibit chain initiation and
propagation. Later on, these scavenging antioxidants become free radicals of less potential, which are
easily neutralized by the first-line antioxidants viz. ascorbic acid, uric acid, glutathione, ubiquinol,
vitamin E, etc. Third line defense: These are de novo enzymes that repair the damages caused by
free radicals on cellular biomolecules such as DNA, protein, and lipid to restore cellular functions viz.
nucleases, polymerases, peptidases, lipases. Fourth line defense: These antioxidants are produced as a
part of cellular adaptation and utilize signals required for free radical production [16].

Catalase: Hydrogen peroxide (H;O,) is harmful to cells and it is converted to extremely reactive
hydroxyl radical (*OH) in the presence of cuprous and ferrous ions by a Fenton reaction. Catalase,
a first line antioxidant enzyme located in the peroxisomes (catalase is absent in mitochondria of
mammalian cells), utilizes either iron or manganese as cofactor for converting hydrogen peroxide
(H,0O,) into water and molecular oxygen (O;) [17] (Equation (1)). The enzyme functions in two steps
(i) oxidation of heme to an oxyferryl species by hydrogen peroxide (H,O,) and (ii) generation of a
porphyrin cation radical following oxidation of iron and the porphyrin ring. Catalase consists of
four subunits molecular weight 240 Kilodalton encoded by the gene ctt1 located in chromosome 11.
Thus, it exists as a tetrameric protein with each subunit containing a heme group and a molecule of
NADPH. Genetic polymophisms as well as mutations of ctt1 is responsible for the onset of various
diseases related to the alterations in the cellular oxidative status including cancer [17,18]. However,
there is contradictory evidence concerning the role of catalase enzyme on neoplasms of various types
of tissues [19].

Catalase 1
2H,0: ———> 2H:0+0 @

Glutathione (GSH): A major antioxidant defence molecule existing in all cellular compartments,
which is composed of amino acids cysteine, glutamine, and glycine. It is one of the key antioxidants
which play a greater role in the synthesis of nucleic acids, proteins as well as in the detoxification
of xenobiotics [20]. GSH is synthesized mainly by the liver and converted as oxidized glutathione
by the enzymes glutathione peroxidase (GPx) as well as glutathione reductase to neutralize the free
radicals and resides in the cytoplasm of all metabolically active cells. GSH performs amino acid
transport across plasma membranes, functions as a co-factor for several enzymes, regenerate vitamin
C and E after utilization as antioxidants and scavange various oxide radicals in the cell [21]. In fact,
the sulfhydryl group present in the glutathione allows it to function as a cellular antioxidant. A decline
in the glutathione/glutathione disulphide (GSH/GSSG) ratio is responsible for the increase in oxidative
stress leading to carcinogenesis (Equation (2)). Thus, an increased GSH/GSSG ratio due to the elevated
GSH levels is desirable for reducing oxidative stress and preventing cancer progression, facilitating
cells to achieve a state of homeostasis [22]. Further, decreasing the levels of extracellular cysteine (two
linked cysteine molecules) uptake or the use of glutaminase inhibitors is a therapeutic strategy in
cancer cells to induce excessive ROS and cell death [23].

Glutathione Reductase 9
GSSH + NADPH + H* — > 2GSH + NADP+ @)

Glutathione Peroxidase (GPx): In cellular mitochondria, the first line antioxidant, GPx, converts
hydrogen peroxide (H,O,) into water and fatty acid peroxides into alcohols through H,O,-mediated
oxidation of reduced glutathione (GSH) [24]. It uses glutathione reductase and NADPH to reduce
oxidized glutathione (GSSG) back to GSH. GPx exist as many as eight different GPx enzymes
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encoded by different chromosomes, which may or may not be associated with the cofactor selenium.
Thus, GPx are classified as (i) Selenium-dependent (also known as selenocysteine peroxidase) and
(ii) Selenium-independent based on the catalytic mechanism and the number of subunits. It is the
selenium-dependent GPx that is capable of oxidizing GSH, while catalyzing the conversion of hydrogen
peroxide (H,Oy)or organic peroxide to alcohol or water [25] Equation (3). Deficiency of GPx will lead
to excessive oxidative stress causing damages to cellular proteins and membrane lipids. Particularly,
GPx1 is attributed with the prevention and progression of cancer as well as cardiovascular diseases [26].

GPx
R-0-O-H + 2GSH ——> R-OH + GSSG + HzO &)

Heme oxygenase: Heme oxygenase-1 is the enzyme for the degradation of heme into biliverdin,
bilirubin, carbon monoxide (CO) and free iron (Equation (4)). It is responsible for the adaptive responses
of the physiologically active cells during fluctuations in the cellular oxidative stress [27]. The function
and expression of heme oxygenase is influenced by various signaling pathways, transcription factors,
and the metabolic status of the normal as well as diseased cells [28].

CcO
T Biliverdin
Hemeoxygenase Reductase
Heme \l/ Biliverdin > Bilirubin )

Fez» —>  Ferritin

Peroxiredoxins: These are a family of six isoenzymes with antioxidant action on alkyl
hydroperoxides (ROOH), hydrogen peroxide (H;O,) and the peroxynitrite (ONOO™) anion.
Mitochondrial and cytosolic peroxiredoxins can detoxify hydrogen peroxide (H,O,) to water while
undergoing oxidation of their active-site cysteines (Equation (5)). This oxidized peroxiredoxins
is reduced again by NADPH, which is synthesized from thioredoxin by the action of thioredoxin
reductases [29]. Peroxiredoxins is upregulated by Nuclear factor erythroid 2-related factor 2 (Nrf2),
a transcription factor, which controls the regulation of several antioxidant genes. It also interacts
with several other transcriptional regulators, including c-Myc oncogene, to suppress breast cancer
development [30].

Peroxiredoxins

H:0: 2H:0
Y 0

Cys *Cys

Superoxide Dismutase (SOD): Located in the cytosol and mitochondria, SOD catalyses the
dismutation of two molecules of superoxide (*O;) radicals to hydrogen peroxide (H,O,) and oxygen
molecule (O;) (Equation (6)). It is a metalloenzyme requiring a metal cofactor for catalytically
deactivating and converting the powerful superoxide (*O,) radicals or singlet oxygen (*O~) anion to
less hazardous molecules [31]. On the basis of the type of metal ion as co-factor three forms of SOD
are present in humans: cytosolic Cu, Zn-SOD, mitochondrial Mn-SOD, and extracellular-SOD [32].
Indeed, the function and location of SOD are modified based on these cofactors, which include
(i) Cu/Zn-SOD found in the cytosol as well as peroxisomes of the eukaryotic cells, (ii) Mn-SOD found in
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the mitochondria of eukaryotes and prokaryotes, and (iii) Fe-SOD found in the prokaryotes as well as
the chloroplasts of plants [16]. The deficiency of SOD occurs with age and will lead to an increase in the
free radicals causing diseases viz. amyotrophic lateral sclerosis (ALS), cerebral vascular hypertrophy,
vascular dysfunction associated with hyperhomocysteinemia, as well as conditions like myocardial
injury and perinatal death in mice models [33-35].

D
2°0: S0 H:20:2+ O:2 (6)

Thioredoxins: Thioredoxin-1 is located in the cytoplasm as well as nucleus, while, Thioredoxin-2
is located in the mitochondria. These antioxidant molecules possess two cysteine active sites to serve as
hydrogen donors to the thioredoxin-dependent peroxide reductases towards reducing oxidized proteins
and protecting cells (Equation (7)). Also, they possess a disulphide bond and have two redox-active
cysteins within a conserved active site (Cys-Gly-Pro-Cys) [36]. Under homeostasis, the reduced form
of thioredoxin-1 binds to the Apoptosis signal-regulating kinase 1 (Ask1), predisposing the latter to the
ubiquitination and degradation [37]. Interestingly, thioredoxin along with GSH antioxidant pathways
synergize for the total inhibition of oxidative stress, which may turn out to be beneficial for cancer
growth and expansion [38].

NADH Thioredoxin *Cys
Reductase /]\
¥ o ! @)
Thioredoxins
NAD Cys

3. Exogenous Antioxidants

Several of the exogenous antioxidants are natural compounds, which are hydrogen donors or
quenchers of singlet oxygen ('O~;) anion. They are capable of removing free radical intermediates or
delaying oxidative reactions. Natural antioxidants from diets include vitamin A, C, E, and various
phytoingredients that function differently to promote cell cycle arrest and death of cancer cells.
Antioxidants from plant sources, especially carotenoids, flavonoids, phenols, and vitamins have
been shown to suppress early and late stages of carcinogenesis [9]. These reducing agents exert
anticancer effects via several modalities, including alterations in cell signalling, changes in the cell
cycle progression and, modulation of enzymatic activities [15]. Understanding these mechanisms of
action of antioxidants is critical in developing and using novel antioxidants in cancer therapy.

Vitamin A is generated from {3-carotene and a vital antioxidant against systemic diseases, especially
coronary heart diseases due to its ability to reduce the circulating low-density lipoproteins [39].
Carotenoids are lipid soluble antioxidants existing as « or {3 isoforms on membranes as lipoproteins
and scavenge singlet oxygen (107,) as well as peroxyl (*ROO) radicals [40]. Vitamin C (ascorbic acid)
is a well-known water-soluble free radical scavenger capable of regenerating vitamin E («-tocopherol)
in lipid membranes using reducing equivalents or in combination with GSH (Equation (8)). It is
important to note that ascorbic acid is converted to ascorbate radicals during lipid peroxidation,
and then, two molecules of ascorbate radicals combine to produce ascorbate and dehydroascorbate.
Ascorbic acid is again regenerated from dehydroascorbate by the addition of two electrons in the
presence of oxidoreductase enzyme [15]. The lipid soluble vitamin E exerts its antioxidant activity by
terminating lipid peroxidation of cell membranes as well as low-density lipoproteins. Thus, vitamin E
protects cells from lipid peroxidation with a structural role in stabilizing membranes. The regeneration
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of vitamin E occurs at the aqueous interface with ascorbates, glutathiones, or urates. Alternatively,
it may be oxidized to form tocopherol quinone or dimerize to remain stable in the cell [41].

Lipid water
interface
S Dehydro-
NADP*+H GSH asco¥bate a-tocopherol
)
Glutathione Vitamin C Vitamin E
NADPH GSSG Ascorbate a-tocopheroroxyl* ﬁ

The natural antioxidant, «-lipoic acid, is a thiol antioxidant with metal-chelating (helps to remove
toxins) and antiglycation properties. The active form of a-lipoic acid is dihydroxy lipoic acid capable
of increasing glutathione and vitamin C or E levels in the cytosol. Flavonoids are benzo-y-pyrone
derivatives consisting of phenolic and pyrane rings, capable of chelating redox-active metals viz. copper
and iron and inhibiting lipid peroxidation by scavenging peroxyl (*ROO) radicals. In rare situations,
flavonoids can influence cell signalling and exhibit pro-oxidant activity when the concentration of
hydroxyl groups increases [42]. Conversely, melatonin (N-acetyl-5-methoxytryptamine) is secreted
from the pineal gland in the brain to function as a hormone capable of stimulating several other
antioxidant and prooxidant enzymes [43].

Synthetic antioxidants are substances that function by inhibiting the production of ROS enzymes,
sequestration of metal ions and scavenging of free radicals in the biological systems. For example,
allopurinol and pyrazolopyrimidines are inhibitors of xanthine oxidase enzyme, desferrioxamine
is an iron chelator that can prevent the production of oxide radicals, dimethyl thiourea and
butylphenylnitrone are scavengers of hydroxyl (*OH) radical. N-acetyl cysteine is a potent antioxidant
with the capacity to deacteylate and generates cysteine, which is required for the synthesis of GSH [44].
The most commonly used synthetic antioxidants in the food industry are butylated 4-hydroxytoluene
and butylated 4-hydroxyanisole. New synthetic antioxidants are tested and used in cancer therapy
despite the concerns regarding their efficacy and safety [5].

4. Redox Potential of Antioxidants

Living cells experience ‘oxidative stress” when the number of free radicals exceeds the capacity
of antioxidants to balance and neutralize the excessive levels of free radicals. The presence of two
unpaired electrons in separate electronic orbitals renders oxygen more susceptible for free radical
formation by stepwise addition of electrons. These oxygen radicals play a fundamental role in oxidative
stress and damage in living cells [16]. Thus, the free radical induced cellular toxicity is a consequence
of the generation of oxygen radicals that give rise to ROS. There are several important sources of
free radical formation viz. mitochondrial ETC, oxidation of endoplasmic reticulum, chemotherapy,
radiations, and a wide range of enzymatic activities in the cell. A rise in the free radicals can lead to
pathological conditions, when it oxidizes and damages the cellular components [14,45]. Consequently,
there will be an increase in the level of oxidation of several biomolecules and cellular structures leading
to disease conditions.

A major consequence of the excess oxide radicals is the damages imparted to various amino acids
of the cell, especially in the presence of the trace metals ions, Cu?>* and Fe?*. Moreover, these free
radicals are capable of lipid peroxidation and oxidizing free fatty acids leading to physiological and
metabolic changes to cells [19]. Antioxidants might be useful in controlling and even reducing this
‘oxidative stress’ that might result in an increased efficacy of anti-cancer drugs. Redox status is defined
as the reduction potential of all antioxidant molecules in the cellular constituents or biological fluids.
In fact, redox balance is maintained towards a state of negative redox potential values due to the activity
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of cellular homeostasis mechanisms. This cellular redox balance may be disturbed due to changes in
physiological conditions and when there is reduction in the levels of cellular antioxidants [14]. The net
result can be manifested as functional damages to health or various disease conditions, including cancer.

Antioxidant molecules exists as either large (Catalase, GPx, SOD) or small (carotinoids, GSH,
vitamins C and E) capable of controlling the redox balance in malignant cells [15]. So, one of the
strategies for inducing tumor reduction is targeting the redox metabolism by increasing the antioxidant
capacity of the cancer cell. For instance, the oxidized form of vitamin C (dehydroascorbic acid) enters
into metabolically active cells through glucose transporters and gets reduced into ascorbic acid by
GSH (the oxidized GSSG is reduced to GSH by NADPH-dependent glutathione reductase). Water
soluble antioxidants, especially vitamin C rely on the reducing equivalence of NADPH. Therefore,
administration of high doses of vitamin C may deplete cellular NADPH pool causing an increase in the
cellular oxidative stress [46]. In fact, the entry of the small molecule antioxidant, dehydroascorbic acid,
which is the oxidized form of vitamin C, is higher into cancer cells as the uptake of glucose is much
higher. Alongside, cancer cells have also developed a higher protective effect to these antioxidants as
their survival mechanism [47,48].

In healthy cells, Askl induces apoptosis during excessive oxidative stress by mediating
the activation of both c-Jun N-terminal Kinase (JNK) and Mitogen Activated Protein Kinases
(MAPK) pathways (Figure 1). The primary role of p38 MAPK is the inhibition of tumor growth,
although its prooncogenic role is also identified in different cancer cell lines [49]. Usually, healthy
cells receive stimulation by cell surface receptor binding of various growth factors that signals
through phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways.
This results in the normal levels of glycolytic flux and fatty acid synthesis, leading to the onset of
anabolic pathways and production of bioenergy for cellular activities [50]. However, tumor cells
hold mutations in the PI3K/AKT/mTOR signaling network causing aberrant activation of anaplerotic
pathways leading to the excessive production of Kreb’s cycle intermediates, which make entry from
various sites in the Kreb’s cycle for massive energy output [51]. During hypoxia, the PI3K/Akt signaling
activates NADPH-oxidase increasing oxidative stress leading to the increase in genomic instability and
onset of tumor growth.

An imbalance in the cellular homeostasis activates several genes and transcription factors
leading to the increase in the production of ROS viz. cycloxygenase-2, NOS, nitric oxide-2, xanthine
oxidoreductases etc. Activation of nuclear factor-«B (NF-kB) may lead to the upregulation of several
genes responsible for the angiogenesis, proliferation and transformation of cells leading to the onset of
malignancy and metastasis as observed in the colorectal cancer and in hepatocellular carcinomas [52,53].
Altogether, the activity of NFkB is dependent on the level of oxidative stress as well as tumor and
organ type. On the contrary, activation of NF«B also lead to expression of antioxidant genes encoding
catalase, glutathione S-transferases, GPx, heme oxygenase and various types of SOD [54,55]. Excessive
ROS in tumor cells is also responsible for the activation of antioxidant genes and other transcription
factors viz. Activator protein 1 (AP-1), Nrf2, and p53. In fact, tumor cells possess higher level of
antioxidant enzymes than the normal cells for scavenging excessive free radicals produced during rapid
proliferation. These enzymes prevent free radical induced activation of cell death pathways viz. JNK
and p38 MAPK [19]. Perhaps, this makes the cancer therapy using additional antioxidants questionable.

The tumor suppressor p53 gene can activate either antioxidant or prooxidant responses. It is
capable of inducing expression of antioxidants, Mn-50D, and heme oxygenase-1 by directly binding to
their gene promotors leading to cell survival mechanisms [56,57]. In fact, NAC, which increases the
GSH, is found to enhance tumor growth when administered with vitamin E by reducing the expression
levels of p53 and depleting ROS [58]. The p53 is also capable of altering the expression of p53-Inducible
Genes 1-13 (PIG1-13) that encodes redox-active proteins and TP53-induced Glycolysis and Apoptosis
Regulator (TIGAR) to block glycolysis and shuttling of metabolites to Pentose Phosphate Pathway
(PPP) [59,60]. Thus, p53 increases PPP-mediated NADPH production for the reduction of GSSG to
GSH in the presence of the enzyme glutathione reductases. Moreover, p53 acts on the glutaminase-2
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to convert glutamine to glutamate, which is used for generating GSH by modification of cellular
metabolism [61]. On the contrary, ROS-generating enzymes viz. quinone oxidoreductases, proline
oxidase, and redox active proteins, are upregulated by the stress-induced p53 activation [19]. The p53
induced overproduction of ROS may also occur by the redox-active proteins viz. Bax and Puma,
resulting in changes to the mitochondrial membrane permeability [62]. The loss of p53 along with
the activation of oncogenes, c-Myc and K-ras stimulates transcriptional regulation of metabolic genes,
which increases glycolytic flux to promote anabolism and expansion of the tumor mass [63].

|

Adenylate
cyclase

{f

c-Jun NFkB Nrf Satl/3

DNA

Figure 1. Redox potential of antioxidants: In healthy cells, oxide free radicals generated from
mitochondria and cell membrane NADPH Oxidases (NOX) are detoxified by the endogenous
antioxidants, catalases (CAT), Glutathione Peroxidases (GPx) and Superoxide Dismutases (SOD).
A constitutively low level of Reactive Oxygen Species (ROS) stimulate Protein Kinases (PK) B/C
for maintaining cellular homeostasis while, higher levels can result in the change in mitochondrial
membrane potential leading to apoptosis or cell death. Cancer cells have higher levels of oxidative
stress as compared to the normal cells allowing them to activate several signaling pathways and
transcription factors. Any imbalances in the redox-sensitive signaling pathways, Mitogen Activated
Protein Kinases (MAPK) and PK B/C may result in the tumor growth. The Ras-Raf-MEK-ERK pathway
(also known as the MAPK/ERK pathway) is the signaling cascade from cell membrane receptor complex
to the nucleus. During excessive oxidative stress, Apoptosis Signal-regulating Kinase 1 (Ask1) induces
apoptosis by activating c-Jun N-terminal Kinases (JNK) and p38 MAPK pathways. It may also lead to
the inactivation and proteolytic degradation of PK molecules leading to the initiation of apoptosis or
cell death signaling. The redox regulation of cellular oxidative stress is achieved either by activation
or repression of the antioxidant genes through several transcription factors, acting individually or in
combination. Objects in RED show the pathways activated directly by oxides radicals and the objects
in GREEN indicate pathways regulating the cellular antioxidant mechanisms. Abbreviations: cAMP,
cyclic Adenosine Monophosphate; ATP, Adenosine Triphosphate; ERK, Extracellular Signal-regulated
Kinases; O,, oxygen.

Tumor cells often increase their antioxidant potentials by activating the transcription factor Nrf2
following disruption with its binding partner Kelch-like ECH-associated protein 1 (Keapl) [64]. In fact,
the harmful effects of oxide radicals are neutralized by Keap1-Nrf2 signaling cascade, where Keapl
acts as a sensor and Nrf2 act as a transcription factor for the key antioxidant enzymes. Nrf2 remains
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bound to Keapl and sequestrated in the cytoplasm for the regulation of antioxidants, multi-drug
resistance associated protein transporters as well as drug metabolizing enzymes. During oxidative stress
conditions, Nrf2 is detached from Keap1 and translocated into the nucleus, where it binds to ARE located
in the regulatory elements of target genes after dimerization with small Maf (musculoaponeurotic
fibrosarcoma) protein. Following activation, Nrf2 induces transcription of enzymes for GSH synthesis
as well as antioxidant proteins. Further, Nrf2 activates enzymes for increasing the cytosolic NADPH
levels by regulating the serine biosynthesis pathway for maintaining the redox potential during hypoxia.
Further, thioredoxin reductase 1 also regulates the activity of Nrf2 for enhancing the redox potentials
of cells [65,66]. Overall, Nrf2 activation results in the expression of cytoprotective or stress-responsive
enzymes viz. catalase, glutathione S-transferases, glutathione reductases, GPx, heme oxygenase-1,
SOD, thioredoxin, and quinone oxidoreductases [67,68]. Not surprisingly, mutations in the Nrf2 and
Keap1 are responsible for the alterations in the expression of wide range of antioxidant/oxidant genes
that favor either cancer progression or prevention (Table 1).

Table 1. Mutations in the Nrf-Keapl system responsible for cancer [69].

Gene Somatic Mutations Cancer Types References
C23Y, D256G Breast cancer [70,71]
R234W, T3301, V660M, Colorectal adenocarcinoma [70,72]
R470C Cervical squamous carcinoma [73]
F107L, A159T, A188V, P412S, E611K Epithelial ovarian cancer [74]
Keapl Q82H, S233N, F280L Gastric adenocarcinoma [70]
S338L, G379D, Gall bladder adenocarcinoma [75]
N183S, D236Y, L.342M Hepatocellular carcinoma [70]
C249Y, W554X Liver cholangiocarcinoma [75]
E244K, G364C, R415G, G430C, W591L Lung adenocarcinoma [70,76]
G333C Lung non-small-cell carcinoma [77]
V42A, S45F, R320Q Lung squamous cell carcinoma [70,78]
Y255H, T314M, D357N, Prostrate adenocarcinoma [70,75]
W24C, D29Y, R34Q, D77A, G81D Cervical squamous carcinoma [73,79]
D27Y, E78K, E79K, T80K, G81V, E82L  Esophagus squamous carcinoma [79,80]
D29G, Q75H, T801 Head and neck cancer [75]
Nrf2 D29H, D77N, E79G Larynx carcinoma [80]
E79Q, Lung adenocarcinoma [75]
D77V, E79K, R34L, R34Q, R34Q Lung non-small-cell carcinoma [75,81]
D77A, E79K, T80R, G81D, E82G Lung squamous cell carcinoma [75,76,80]
L30F Malignant melanoma [79]
G31A Skin squamous cell carcinoma [80]

Compelling evidences suggest that protein Kinase C isoenzymes may promote either tumor
progression or prevention. Excessive ROS can result in the inactivation by proteolytic degradation and
the modification of the enzymatic structure of protein kinase C while, low levels of its stimulation
is required for cellular homeostasis [82]. Excessive ROS will also result in the inactivation of tumor
suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 10), which has a role
in reducing the oxidative stress in malignant cells. This will increase the prooncogenic tyrosine kinase
receptor activity through PI3K/Akt pathway resulting in the progression of tumor growth by inhibition
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of apoptosis [83]. The inactivation of PTEN may also increase the secretion of matrix metalloproteinases
as well as telomerase enzyme activity for EMT, promoting the growth and metastasis of cancer [84].
An elevated level of oxide radical is the hallmark of cancer, although, an excessive production of
oxidative stress lead to cell death. Low to medium levels of free radicals can reversibly oxidize the
cysteine residues of cellular proteins by adaption to metabolic stress. However, when the oxidative
stress increases, excess hydrogen peroxide (H,O;) is converted to hydroxyl radical (*OH) that can
damage various cellular components [19]. The capacity of invasiveness and the ability to metastasize is
also dependent up on the level of ROS generated by primary tumors [85]. Several studies have identified
that the inhibition of mitochondrial ROS is an effective therapeutic strategy for control and prevention
of metastasis [86,87]. On the contrary, melanoma cells circulating in the blood stream undergoes
several reversible metabolic changes to withstand higher oxidative stress [88]. Here, antioxidants may
quench the excessive ROS in the circulating blood that cause severe cellular damages and facilitate
metastasis. Perhaps, this is one of the reasons where antioxidant therapy succeeds or fails to bring
effective remission and recovery of malignant tumours. Therefore, it is necessary to device strategies
to eliminate ROS from both mitochondrial and cellular compartments using antioxidant compounds.

5. Metabolic Effects of Antioxidants

The accumulation of ROS and Kreb’s cycle metabolites cause the constitutive activation of Hif-1
even under normoxic conditions. Under hypoxic conditions, the activation of Hif-1 is capable of
inducing metabolic genes facilitating the tumor growth [89]. The term ‘oncometabolites’ relates to
the specific metabolites that arise in the neoplastic cells as a result of the altered or reprogrammed
metabolic pathways. The common oncometabolites found in the cancer cells are 2-hydroxybutarate
(2-HG), fumerate, maleate and succinate. They can assist in reprogramming metabolic pathways and
change mitochondrial dynamics leading to pathologies. These include increase in EMT, metastasis
of cancer cells, induction of dedifferentiation, changes in epigenetic, inflammatory, and paracrine
signaling properties [90,91].

Oncometabolites are generated due to the mutations in gene encoding Kreb’s cycle enzymes viz.
isocitrate dehydrogenase 1, 2, and 3 (IDH1/2/3), fumarate hydratase, and succinate dehydrogenase.
Among these three isoforms of IDH in human cells, the homodimeric IDH1/2 utilize NADP+
for the reversible conversion of isocitrate to a-ketoglutarate (x-KG), while IDH3 utilizes NAD+
for the irreversible conversion of the same metabolites [92]. The metabolite 2-HG exists as
enantiomers D-2-hydroxyglutarate (D2HG) and the L-2-hydroxyglutarate (L2HG). Mutations in
isocitrate dehydrogenase 1 or 2 (IDH1/2) results in the up rise of oncometabolite, D-2-hydroxyglutarate
(D2HG), a reduced form of the x-ketoglutarate (Figure 2). This leads to the depletion of o-ketoglutarate
in the cytoplasmic pool, which is a cosubstrate for the dioxygenases. Net result is the changes in
epigenetics leading to the onset of neoplasms [93,94].

Oncometabolites are capable of inducing a ‘pseudohypoxic’ state for growing tumor mass due
to the overexpression of mutant IDH1 and the elevated levels of Hif-1, as detected in the human
cancer cell lines [95]. The increased expression of Hif-1 stimulates the activity of glucose transporters
as well as hexokinase-2 resulting in the increased flux of glucose during glycolysis. However, the
outcome of these changes on tumor mass and angiogenesis is variable with the enantiomers of 2-HG
viz. D2HG and L2HG [96,97]. Similar to 2-HG, high levels of fumerate and succinate leaked into the
cytoplasm are also capable of inducing Hif-1 and creating a “pseudohypoxic’ response [98]. An increase
in fumerate may result in the inactivation of fumarate hydratase leading to oxidative stress due
to depletion of NADPH and succination of glutathione leading to the formation of succinic-GSH
(a covalent adduct of fumarate and glutathione) [99,100]. Moreover, succinate dehydrogenase will
also alter the cellular redox potential facilitating tumorigenesis while participating in the transfer of
electrons in the mitochondrial respiratory chain [101].
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Figure 2. Metabolic regulation of antioxidants: Highly proliferative cancer cells rely on glycolysis to
meet its exceedingly high energy demands. Activation of Hypoxia inducible factor-1 (Hif-1) cause the
suppression of Pyruvate Dehydrogenase (PDH) resulting in the opening up of glucose transporters and
increase in the flux of glucose in glycolytic cycle. During hypoxia, Hif-1 switches cell gene expressions
from glycolysis to production and utilization of lactates (Warburg effect). The oncometabolites, fumerate
and succinate may act on Hif-1 for inducing a “pseudohypoxic” response. Besides, mutations in p53
attenuate TP53-induced Glycolysis and Apoptosis Regulator (TIGAR) causing a lack of inhibition on the
Glucose-6-Phosphate Dehydrogenase (G6PD) enzyme activity leading to the increase in the metabolic
flux through glycolytic and Pentose Phosphate Pathway (PPP). The D-2-hydroxyglutarate (D2HG) and
the L-2-hydroxyglutarate (L2ZHG) are enantiomers of the metabolite 2-HG arising from the mutations in
the Isocitrate Dehydrogenase 1/2/3 (IDH1/2/3). Eventually, these changes may cause altered metabolic
flux responsible for the initiation of neoplasms. Thick solid lines indicate strong and dotted lines
indicate weak flux of metabolites. Abbreviations: HK, Hexokinase; G-6-P, Glucose-6-Phosphate; LDH,
Lactic Dehydrogenase.

In healthy cells, p53 reduce glycolysis for the lowering of intracellular fructose-2,6-bisphosphate
by increasing the expression of TIGAR. However, when p53 is mutated and TIGAR is attenuated,
there will be a lack of inhibition on the Glucose-6-Phosphate dehydrogenase (G6PD) enzyme activity
leading to the increase in the metabolic flux through glycolytic and PPP [60,102]. In fact, the catalysis
of G6PD enzyme is the first irreversible step of the PPP for the generation of NADPH that is required
for neutralizing intracellular oxidative stress. Thus, cancer cells are able to generate higher amount
of NADP that helps them to tolerate higher oxidative stress during increased metabolic activity.
Moreover, folate (an essential vitamin) metabolism, which involves the transfer of a carbon from serine
hydroxymethyltransferase to tetrahydrofolate and methylene-tetrahydrofolate utilizes NAD+ and
NADP+ for generating the reducing intermediates NADH as well as NADPH [103,104]. Perhaps,
the use of target-specific antioxidant inhibitors against NADP/NADPH can elevate oxidative stress
and attenuate tumor growth. Pre-clinical assays for understanding the side-effects of such antioxidant
inhibitors have to be experimented in animal models.

Glutathione (GSH) is the most abundant antioxidant in living cells and is synthesized from
glutamine-derived glutamate through condensation with the amino acids viz. cysteine (produced from
extracellular cysteine) by glutamate-cysteine ligase and from glycine by glutathione synthase. In fact,
maintenance of cysteine pool during glutamine oxidation supplies carbon to malic enzymes while
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producing NADPH for the cellular redox homeostasis. Among the various types of antioxidants, GSH
play a major role in the protection of normal cells from excessive oxidative stress and maintenance
of cellular redox balance. However, in neoplasms GSH has a decisive role in cell survival during
hypoxia and nutrient deprivation, which is the rationale for the use of antioxidant inhibitors and
GSH antagonists in anti-cancer therapy [22]. In proliferating cancer cells, GSH is responsible for
(i) production of NADPH used for the biosynthesis of lipids and (ii) protection from oxidative stress
by the reduction of oxidized GSH. However, an excess glutathione may promote tumor progression
by detoxification of xenobiotics conferring therapeutic resistance and creating an environment for
metastasis [105,106].

A high level of ROS is encountered in the cancer cells due to the loss of function of tumor
suppressor genes along with the activation of oncogenes for signaling as well as metabolic pathways.
Cancer cells make use of the excess glucose and oxygen availability to generate NADPH that helps to
survive in the excessive oxidative stress environment. During hypoxic and low glucose conditions
ROS will increase, which again will activate the antioxidant systems by altering the central carbon
metabolism. Such conditions will also cause loss of matrix attachment leading to cell death or metastasis
of tumor mass to distant locations [94]. Perhaps, antioxidants targeting mitochondria generated oxide
free radicals and the inhibitors of oxidative stress enzymes can reduce the hypoxia induced activation of
Hif-1. It is necessary to find the therapeutic relevance of these findings by estimating the proliferation
and metastasis of tumor.

6. Antioxidants in Chemotherapy

Anti-cancer drugs are mostly cytotoxic and are associated with a wide range of side effects
due to the alteration of the cellular oxidative status. Chemotherapeutic drugs often damage DNA
by production of free radicals that interfere with cell cycle leading to cell death by apoptosis or
necrosis [107]. Most of these chemotherapeutic agents act on fast dividing cells viz. bone marrow,
epithelial cells etc. and a variety of tissues and organs viz. cardiomyocytes, hepatocytes, lungs,
and kidneys. They may damage different organs and cause systemic problems while interfering with
rapidly dividing cells. A possible solution would be the use of antioxidants along with the cancer
chemotherapy that increase cellular oxidative stress. Thus, both antioxidants and prooxidants have
clear advantages and disadvantages in cancer therapy (Table 2).

Table 2. Advantages and disadvantages of anti- and pro-oxidant therapies in cancer.

Advantages Disadvantages References
Antagonize excess free Cancers may also benefit [13,45,58]
radicals in healthy cells from the use of antioxidants e
Enhancement of host Antioxidants might prevent [47,108]
antitumor immunity cancers than curing them !
Antioxidants Difficulty in delivery to

Available in a wide variety

of fruits and vegetables fumor mass or [109,110]

internal organs

Short-lived and ultra-fast Acts on DNA causing
acting oxidizing mutations and [111-113]
biomolecules increasing cancer
Increase oxidative stress Damage healthy tissues,
. o ; ; [23,114]
Prooxidants hindering cancer growth especially the internal organs
Synergistic action with many  Increase cytotoxicity during [115,116]

anti-cancer drugs radiotherapy

In general, the mode of action of anti-cancer agents involves increasing the oxidative stress leading
to the interference of DNA replication and proliferation of the neoplastic cells. However, incorporation
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of antioxidants may reduce the efficacy of the anti-cancer therapy by interfering with the production
of free radicals. Thus, many clinicians are reluctant to use the antioxidants during anti-neoplastic
chemotherapeutic regimen. However, there are situations where antioxidants can work in synergy with
many of the anti-cancer drug. Quantitatively, these antioxidants will allow higher and longer duration
of intake of anti-neoplastic agents thereby increasing the effectiveness of therapy. A meta-analysis
conducted on the use of antioxidants alongside the cancer chemotherapy indicates that they increase
the therapeutic potential as well as survival times in cancer patients [6].

Anti-cancer antioxidant therapies can be divided into two categories as any other types of medical
supplementations (1) prophylactic dose, which is a lower dose rendering protection to normal cells
and tumor cells and (2) therapeutic dose, which is a higher dose inhibiting the growth of cancer cells
without interfering with normal cell growth. It is quite difficult to make meaningful comparisons
due to the variations in the cancer types, study designs, therapeutic regimen, and statistical analysis
between the studies. However, there are enough evidences to conclude that antioxidants enhance
cytotoxic effect of chemotherapy by promoting therapeutic benefits of anti-cancer therapy and an
increase in patient survival.

Chemotherapy increases oxidative stress, which is instrumental for the killing of cancer cells,
although, a higher level of oxidative stress may often result in the ineffectiveness of some anti-cancer
drugs. During higher oxidative stress conditions cancer cell replicates slowly, which may decrease the
efficacy of chemotherapy [117]. Alternatively, free radicals can increase oxidation of cellular proteins
into carbonyls resulting in the inhibition of caspases and the consequent inhibition of apoptosis
reduces the efficacy of cancer chemotherapy. Antioxidants may reduce the formation of carbonyls
viz. aldehydes and ketones, which allows the functioning of caspases and enhanced efficacy of
anti-cancer drugs [7]. Antioxidants may also increase cytotoxic effects of anti-neoplastic drugs to
undergo apoptosis instead of necrosis. Concomitantly, they can reduce cytotoxicity arising from the
action anti-cancer drug on normal cells.

The beneficial effect of antioxidants may be attributed to its capacity to lower the side-effects
from excessive free radical formation, while maintaining the necessary cellular oxidative stress
during anti-cancer chemotherapeutic regimen. In effect, chemotherapy reduces the serum levels of
antioxidant vitamins and minerals due to lipid peroxidation resulting in higher levels of oxidative
stress. The supplementation of antioxidants and vitamin C and E was found to reduce the risk of
recurrence of breast cancer [118]. Vitamin C makes its entry into cells through glucose transporters
to exert antioxidant effects, thereby keeping the oxidative stress low. Vitamin E has the additional
benefit of decreasing chemotherapy mediated toxicity by suppressing lipid peroxidation and inducing
apoptosis of tumor cells [119].

7. Role of Photodynamic Therapy

Mitochondrial energy metabolism is the primary source of oxide free radicals. Free radicals such as
hydrogen peroxide (H,O,) and superoxide (*O;) radicals increases the rate of cellular DNA replication
and proliferation. An excess number of free radicals may result in harmful consequences leading to
systemic diseases and cancer. Any imbalances in the cellular redox status either by an increase in
free radicals or an escalation of reducing agents, favors growth arrest and apoptosis [120]. In fact,
the mechanism of action of non-ionizing and ionizing radiations in killing cancer cells involves the
generation of abnormally high levels of free radicals in the body. Photodynamic therapy (PDT) using
non-ionizing radiation engages light-sensitive compound (photosensitizer) to react with molecular
oxygen (O,) for generating excess free radicals, especially hydrogen peroxide (H,O;) and superoxide
(*Oy) radicals to evoke growth arrest and cell death. On the contrary, radiation therapy with ionizing
radiations result in the formation of oxygen radicals in the living cells by interaction of radiation with
water, a process known as radiolysis [121].

A combination of synthetic and natural antioxidants serves as radioprotectants for patients on
radiation therapy. Antioxidants such as vitamin E («-tocopherol), melatonin and retinol palmitate has
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been effective against radiation-induced mucositis, brain cancer and radiation-induced proctopathy
respectively [122]. Instead, PDT can serve as therapeutic modality for inducing oxide free radicals
that can stimulate cell signaling leading to antitumor immune response, reduction of tumour mass,
apoptosis, and necrosis [123]. Unlike the action of ionizing radiations on biological systems resulting in
the formation of excessive amounts of oxide radicals by untargeted radiations, PDT cause a controlled
production of oxidative stress by using specific drug(s) and targeted response. However, the presence
of antioxidants in photodynamic reactions reduces the efficacy of PDT, although, a few of them viz.
ascorbic acid, x-tocopherol or butyl-4-hydroxyanisole may possibly enhance the photodynamic effect
in malignant cells [124]. And, the exact reasons behind the variable nature of these antioxidants on
cancers need closer investigations.

PDT involves in the production of free radicals leading to the oxidation of proteins and a
consequent remission of angiogenesis in tumour mass. Although, free radicals are short-lived and
survive only up to microseconds, their secondary metabolites bring out changes in the redox status as
well as biophysiological activities leading to the cellular activities viz. proliferation, differentiation,
migration etc. An increase in hypoxia and ROS results in the stimulation of the signaling pathways
involving Askl-induced immediate early stress response followed by the activation of Hif-1. Oxidative
stress induced by PDT is also instrumental for the onset of survival mechanisms by the tumor mass
viz. activation of transcriptional factors (AP-1, Hif-1, NFkB, Nrf2 etc.) leading to antioxidant response.
Moreover, PDT is also responsible for the oxidation of proteins by activating transcription factor
(Atf) 4 and 6, heat shock factor-1 (Hsf-1), and X-box binding protein 1 (Xbp1) [123]. In general,
cells undergone PDT may follow survival mechanisms by activating various cellular stress responses
and restoring intracellular redox status [125].

An excessive oxidative stress is characterized by acute cellular death, while sub-lethal levels of
oxidative stress leads to up regulation of antioxidants, cellular efflux mechanisms and detoxifying
enzymes. Till date, no specific studies have been conducted to analyze the effect of PDT on various
antioxidant enzymes and transcription factors. It is speculated that PDT increase ROS by activating the
Askl pathway leading to the transmission of signal through JNK1 and p38 MAPK to phosphorylate
Nrf2 at Ser40. This results in the translocation of Nrf2 to the nucleus and dimerization with AP-1
transcription factors leading to the expression of GSH and various multidrug transporters [126]. PDT
induces the expression of several genes involved in the angiogenesis, inflammation, proliferation,
and survival by activation of NFkB [127]. Hypoxia induced by PDT results in the suppression of
angiogenesis as well as reduction in the enzymatic activity of prolyl hydroxylase domain enzymes and
the factor inhibiting Hif. This results in the stabilization of Hif-1 for nuclear translocation, dimerization,
and binding of ARE sequences. Ultimately, this leads to the upregulation of genes involved in the
survival mechanisms, angiogenesis and proliferation or apoptosis and tumor regression [123].

In summary, PDT can modulate cellular antioxidant responses through Nrf2, proinflammatory
response through NFkB and survival response during oxidative stress through Hif-1. Additionally;,
PDT is responsible for stress response mediated by Askl, JNK, MAPK and a wide range of
transcription factors. Thus, blocking of these signaling modulators or their downstream protein
products cycloxygenase-2, heme oxygenase-1, or heat shock protein-70 may alter the levels of free
radicals and improve the efficiency of PDT. Nanomedicine-aided PDT has greater specificity for
the destruction of cancer cells with minimal side-effects. Photosensitizers along with target-specific
molecules can also accumulate in the lipid bilayer of cancer stem cells to generate free radicals upon
irradiation with light of suitable wavelength leading to the remission of tumor mass. Indeed, targeted
PDT along with suitable adjuvants and immunostimulants will be another feasible option to eradicate
such recalcitrant tumors [128].

8. Conclusions

Antioxidants are molecules often referred to as ‘scavengers of free radicals’ that are capable of
interacting with free radicals and neutralizing them in the living systems. It can be synthesized either
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by the body (endogenous antioxidants) or obtained from the external (exogenous) sources, mainly from
the diet. Although, several pre-clinical and clinical studies have shown mixed results, researchers
believe that the exogenous antioxidants (especially dietary antioxidants) can quench the excess levels of
free radicals, which may be useful to reduce cellular damages associated with cancer chemotherapy and
radiotherapy [129]. Chemotherapy and radiotherapy increase the oxidative and nitrosative radicals
that can lead to increase in cytotoxicity for anti-cancer effects. Use of antioxidants during anti-cancer
therapy may help to protect both diseased as well as healthy cells, thereby compromising the efficacy
of treatment. Thus, many clinicians are wary on prescribing antioxidants, especially vitamins and
supplements during intense chemo/radio therapies. Research has found that several antioxidants
work selectively on the diseased as well as normal cells, based on their biodistribution as well as
mechanism of action. There are also observations that the antioxidants reduce the cytotoxic effects
of the anticancer agents on the healthy cells. It is noteworthy that the supplementation of vitamin
C is found to protect healthy cells against the damages caused by excessive oxidative stress and the
risk for developing cancer due to cigarette smoking [130]. Moreover, both clinicians and researchers
believe that the concurrent use of antioxidants remove the excessive levels of free radicals and create a
congenial environment for healthy cell and tissue repair. Perhaps, it is more suitable to stick to selected
antioxidants as dietary supplementation during the course of the disease.
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