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Mass spectrometry (MS) is an ideal tool for analyzing multiple 
types of (bio)molecular information simultaneously in complex 
biological systems. In addition, MS provides structural informa-
tion on targets, and can easily discriminate between true analy-
tes and background. Therefore, imaging mass spectrometry 
(IMS) enables not only visualization of tissues to give posi-
tional information on targets but also allows for molecular 
analysis of targets by affording the molecular weights. Matrix- 
assisted laser desorption/ionization-time of flight (MALDI-TOF) 
MS is particularly effective and is generally used for IMS. 
However, the requirement for an organic matrix raises several 
limitations that get in the way of accurate and reliable images 
and hampers imaging of small molecules such as drugs and 
their metabolites. To overcome these problems, various organic 
matrix-free LDI IMS systems have been developed, mostly util-
izing nanostructured surfaces and inorganic nanoparticles as 
an alternative to the organic matrix. This minireview highlights 
and focuses on the progress in organic matrix-free LDI IMS and 
briefly discusses the use of other IMS techniques such as 
desorption electrospray ionization, laser ablation electrospray 
ionization, and secondary ion mass spectrometry. [BMB Reports 
2020; 53(7): 349-356]

INTRODUCTION

In living organisms, the compositions of biomolecules such as 
proteins, nucleic acids, sugars, lipids, and metabolites change 
continuously and dynamically in response to a variety of 
environmental factors. The levels of these molecules in living 
tissues are precisely regulated to maintain homeostasis. There-
fore, in many cases, the distribution of these molecules in 
tissues or cells can provide valuable information for basic 
biological research, diagnosis of certain diseases, and identifi-
cation of therapeutic targets. Conventionally, the biodistribu-

tion of such molecules has been examined by cell/tissue 
‘homogenization’ methods, which provide only biochemical 
information, not information on the spatial distribution of 
target molecules in tissues. On the contrary, spectroscopic 
visualizations such as fluorescence tissue imaging can reveal 
the spatial distribution of molecules; however, they do not 
allow for molecular analysis. For these reasons, imaging mass 
spectrometry (IMS) has been developed and extensively 
studied; IMS allows for both visualization of tissues to give 
positional information on targets and molecular analysis of 
targets by affording the molecular weights (1-3). In addition, 
the advantages of mass spectrometry (MS) are manifold: i) MS 
provides chemical and structural information on targets, ii) MS 
can easily discriminate between true analytes and background 
and, therefore, eliminate false positive signals, and iii) MS can 
be used to monitor multiple analytes simultaneously. Matrix- 
assisted laser desorption/ionization-time of flight (MALDI-TOF) 
MS is particularly effective and is generally used for IMS due 
to its suitability for tissue analysis and the ‘soft’ ionization of 
large biomolecules such as proteins and oligonucleotides (4, 
5). In general, a solution of organic matrix, including 2,5- 
dihydroxybenzoic acid, sinapinic acid, -cyano-4-hydroxycin-
namic acid, and 2,4,6-trihydroxyacetophenone, depending on 
the types of analytes present, is deposited on a thin section of 
a tissue, which is then scanned by MALDI-TOF MS to give a 
raster image of the distribution of biomolecules as revealed by 
relative signal intensities. However, the requirement for an 
organic matrix limits the applicability of MALDI IMS. The 
signals in MALDI IMS, in many cases, are strongly affected by 
the choice of a proper matrix and solvents, co-crystallization of 
a matrix and analytes, and, particularly, homogeneity of matrix 
deposition, leading to poor shot-to-shot and sample-to-sample 
reliability. Therefore, peak intensities, i.e. raster images, would 
not represent the real spatial distribution of target molecules in 
tissues. In addition, the requirement for an organic matrix ham-
pers imaging of small molecules such as drugs and their 
metabolites owing to interference of the matrix in the low- 
mass region. Thus, various organic matrix-free LDI IMS systems 
have been developed to avoid the problems described above, 
mostly utilizing nanostructured surfaces and inorganic nano-
particles (NPs) as an alternative to the organic matrix. 

This minireview starts with a brief introduction to organic 
matrix-free LDI MS for small molecule analysis and focuses on 
the progress that has been made in organic matrix-free LDI 
IMS methods, which are categorized into i) nanostructured 
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Fig. 1. LDI IMS with organic matrix-free systems harnessing nano-
structured surfaces or nanoparticles.

surface-assisted LDI IMS and ii) inorganic nanoparticle-assisted 
LDI IMS. In addition, IMS methods using other ‘soft’ ionization 
methods such as desorption electrospray ionization (DESI) and 
laser ablation electrospray ionization (LAESI) will be discussed, 
followed by a brief discussion on the use of secondary ion 
mass spectrometry (SIMS), which have the advantages of little 
or no preparation, ease of implementation, and simplified analy-
sis in ambient environments. 

The main purpose of this minireview is to give the reader an 
unbiased description of the approaches for molecular level 
analyses of biological sample surfaces using MS, particularly 
for small molecules. This minireview, therefore, will not only 
offer a starting point for students and researchers entering this 
field but also be valued by active researchers requiring small 
molecule analyses of tissues in various areas including disease 
pathology, diagnostics, drug delivery systems, metabolomics, 
lipidomics, and pharmacokinetics.

ORGANIC MATRIX-FREE LDI MS

Organic matrix-free LDI MS mostly utilizes nanostructured 
surfaces and inorganic NPs and is known as surface-assisted 
LDI (SALDI) MS (6-8). SALDI materials transfer sufficient 
energy from the irradiated laser to analytes for desorption/ioni-
zation without damaging the analytes and causing fragmenta-
tion, and therefore have been used as matrices for analysis of 
small molecules. In addition, nanostructures of the SALDI 
materials can provide efficient loading capacities due to large 
surface area, and analytes can be concentrated on the NPs by 
ionic strength, hydrophobic interactions, covalent binding, or 
bio-specific interactions through surface modifications, resulting 
in high sensitivity (9). As a pioneering work, Siuzdak and 
co-workers reported desorption-ionization on a porous silicon 
(DIOS) surface which was produced from flat nanocrystalline 
silicon through a simple etching procedure (10). Small mole-
cule analytes including peptides (m/z 500-2000), small organic 
molecules (m/z 150-650), and saccharides (m/z 200-350) can 
successfully be analyzed using an organic matrix-free format 
on a porous silicon surface. In addition to DIOS, tailored 
surfaces with nanostructures such as layer-by-layer films of 
gold nanoparticles (AuNPs) (11), Si nanowires (12), and grap-
hite-coated films (13) have reportedly been used as nano-
structured surfaces. Inspired by the first example by Tanaka et 
al., in which 30 nm cobalt NPs mixed with glycerol were used 
as a matrix (4), various inorganic NPs including Au, Ag, Pt, 
SiO2, TiO2, Fe2O4, and ZnO have been widely used and 
examined for their compatibility in LDI MS (14). Particularly, 
AuNPs are most commonly used in biological studies owing to 
advantageous optical and physiochemical properties. There 
are pros and cons to using surface-type and particle-type 
organic matrix-free formats; for example, surface-type formats 
are robust and can be manufactured as a target plate for 
MALDI-TOF MS instruments, whereas particle-type formats 
facilitate protocol optimization for MS analysis and can act as 

a solid phase for extraction/enrichment of analytes in complex 
samples. 

The following two sections describe organic matrix-free LDI 
IMS with grafting, the distinct feature of SALDI MS in small 
molecule analysis, as discussed above: i) nanostructured surfaces 
on which thin tissues are deposited, and ii) inorganic NPs 
which are sprayed onto thin tissues (Fig. 1).

NANOSTRUCTURED SURFACE-ASSISTED LDI IMS

Noncarbon-based surfaces
By utilizing the DIOS technique, which allows for small 
molecule analysis, Liu et al. accomplished imaging of small 
molecules in biological tissues at the cellular level on a porous 
silicon substrate (15). In that study, phosphatidylcholine in 
mouse liver tissue was analyzed by LDI MS, and then further 
indirect visualization of mammalian cells was demonstrated by 
constructing an ion map of the detected phosphatidylcholine. 
Rudd et al. investigated the biological role of two classes of 
secondary metabolites, brominated indoles and choline esters, 
in reproduction of Muricidae molluscs by observing changes 
in distribution of metabolites in mollusc tissue using DIOS (16, 
17). IMS facilitated detection of the metabolites at different 
stages of the reproductive cycle of mature female D. orbita, 
one of molluscs, and proposed the biological roles of the 
metabolites based on temporal changes in their distribution. 
The DIOS substrates were further employed for the detection 
of drugs, lipids and metabolites (18, 19).

As an advanced use of DIOS, nanostructure initiator MS 
(NIMS) was introduced by the Siuzdak group for porous 
silicon-based mass analysis (20). NIMS uses a nanostructured 
silicon surface composed of roughly 10 nm pores to trap 
initiator molecules, such as fluorinated siloxane, lauric acid, 
and polysiloxane. The NIMS surface is exposed to laser irradi-
ation resulting in vaporization or fragmentation of the initiator 
molecules and subsequent desorption/ionization of the absor-
bed analyte on the NIMS surface. The lipids (m/z 700-800) on 
the mouse embryo tissue section were visualized by NIMS 
(20), and this method was further extended to clinical appli-
cations for analysis of xenobiotics (m/z 200-350) and endo-
genous metabolites (m/z 150-350) in brain tissue and fluids 
with high sensitivity, no fragmentation, and no background 
interference (21). Although NIMS is well suited for the detec-
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tion of various biological molecules in tissues, detection of 
carbohydrates and steroids is challenging because of their poor 
ionization efficiency. For this reason, Patti et al. combined 
NIMS and spray deposition of NaCl or AgNO3, which pro-
vided a uniform environment with a source of cations ([M+ 
Na]+ or [M+Ag]+), for analysis of carbohydrates (m/z 180-400) 
and steroids (m/z 493) in Gerbera jamesonii stem and mouse 
brain tissue, respectively (22). This technique was further de-
veloped for imaging with essentially single-cell resolution, and 
NIMS was used to monitor drug exposure and metabolite 
biotransformation in single cells for the study of cancer meta-
bolism (23). In addition, Ag films were sputter-coated thinly on 
porous silicon substrates, resulting in a dramatic improvement 
in the mass accuracy of fingerprint NIMS (24). For a discussion 
of the basic principles of NIMS for tissue imaging and various 
surface modifications and alternative nanostructured surfaces 
for NIMS, see the review by Calavia et al. (25). 

Recently, Li et al. prepared a nanostructured surface consis-
ting of a silver nanoisland on nanodiamonds which had a 
localized surface plasmon resonance wavelength very close to 
the laser wavelength of MALDI MS instruments, therefore 
demonstrating the enhanced efficiency of LDI for small 
molecule analysis (26). Those authors went on to apply the 
silver nanoisland surface to hexagonal boron nitride for IMS of 
ischemic brain damage with both small metabolites (m/z ＞ 
500) and sulfatides resulting in enhanced signal intensity of 
many small molecules and dramatic improvement in the 
visibility of raster images (27).

Carbon-based surfaces
In addition to porous silicon-based surfaces, carbon-based 
surfaces have also been used for matrix-free IMS. Many types 
of carbon-based materials, including functionalized carbon 
nanotubes and graphene oxides, have been suggested as 
alternative matrices for matrix-free IMS due to their absorption 
properties and efficient energy transfer to analytes. Kim et al. 
developed an LDI platform using a double layer of graphene 
oxide (GO) and aminated multi-walled carbon nanotube 
(MWCNT) for mouse brain tissue imaging (28). The deposition 
of aminated MWCNTs to the GO-coated surface yielded 
enhanced surface roughness and surface area for analyte 
adsorption, and, thus, increased LDI efficiency. This double 
layer effectively converted the absorbed UV light into thermal 
energy, allowing for imaging of glycerophosphocholine (m/z 
800-860) and phosphatidylcholine (m/z 730-755) in mouse 
brain tissue as well as MS analysis of various biochemical 
small molecules. They also prepared multilayers of alternating 
MWCNT and GO and investigated the effect of thickness, 
assembly sequence, and surface roughness on LDI efficiency 
for small molecule analysis and IMS (29). Huang et al. 
demonstrated an interesting approach in which the protein 
mucin1, which is overexpressed in most adenocarcinomas, 
was utilized as a target for tumor cell analysis with LDI IMS 
(30). In their approach, a mucin1-binding aptamer was conju-

gated to AuNPs which were subsequently immobilized on a 
GO-coated surface. The resulting surface provided the mucin1- 
binding aptamers with ultrahigh density and high flexibility for 
cooperative and multivalent binding of mucin1 on cell 
membranes. By using LDI-MS to monitor Au cluster ions, four 
different mucin1 expression cell lines were analyzed on this 
surface, and this platform could be utilized further as a 
labeling agent for tumor tissue imaging. As additional carbon- 
based surfaces, a pulse laser-engineered functional graphene 
paper with graphitic nanospheres and a graphene-coated glass 
substrate combined with a continuous-wave laser for atmos-
pheric pressure mass spectrometric analysis were demonstra-
ted for IMS (31, 32).

NANOPARTICLE-ASSISTED LDI-IMS

Inorganic nanoparticles
The performance of inorganic NPs as matrices for LDI MS 
depends strongly on their size, morphology, composition, and 
concentration. In this respect, AuNPs and AgNPs are the most 
often studied and widely used materials in LDI-MS because 
their size is readily tunable and various shapes and composi-
tions can be prepared depending on the researcher’s purpose. 
Goto-Inoue et al. visualized the distribution and localization of 
glycosphingolipids (m/z ＜ 950) – amphiphilic molecules 
involved in various biological processes – in mouse brain 
sections using AuNPs as a matrix (33). Compared with dihydro-
xybenzoic acid, a conventional organic matrix for glyco-
sphingolipids, AuNPs provided approximately 20 times more 
sensitive detection of glycosphingolipids and successfully 
enabled visualization of ionic images of glycosphingolipids 
including 14 kinds of sulfatides and 10 kinds of gangliosides in 
mouse brain samples. Recently, Phan et al. compared three 
different sample preparation methods, including sublimation 
with two conventional organic matrices followed by recrys-
tallization with trifluoroacetic acid, and surface modification 
with AuNPs to profile and image the lipids (m/z 500-900) in 
Drosophila brain tissue, which is an important model orga-
nism used in biological and neurological studies (34). They 
suggested that the different sample preparation methods made 
with a particular matrix material are suitable for detection of 
different biomolecules in the fly brain, and therefore, comple-
mentary analysis using a suitable matrix will allow for precise 
and diverse imaging of lipids in tissue samples.

AgNPs are also actively used for IMS. Hayasaka et al. 
harnessed AgNPs modified with alkylcarboxylate and alkyla-
mine to visualize fatty acids (m/z ＜ 300), such as stearic, 
oleic, linoleic, arachidonic, and eicosapentaenoic acid, and 
palmitic acid in mouse liver that are not detectable using a 
dihydroxybenzoic acid matrix (35). Additionally, they prepared 
mouse retinal tissue sections with a thickness of 10 m and 
analyzed them with a scan pitch of 10 m using AgNPs, 
revealing the six-zonal distribution of fatty acids in different 
layers of the retina. The Wood group introduced an AgNP 
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implantation method where AgNPs were formed with a 
magnetron and accelerated to 50 eV to be deposited across 
entire tissue sections for uniform and reproducible AgNP layer 
formation (36, 37). Gas phase AgNP ions were generated by 
magnetron sputtering and grown to 0.5-15 nm diameter, and 
then selected particles at 6 nm were implanted in the tissue 
section. This method produced high spatial resolution LDI 
images of various lipid species (m/z 600-1700) in rat heart and 
kidney tissues. Similarly, Dufresne et al. conducted simulta-
neous imaging of cholesterol along with olefins using metallic 
silver coatings at nanometer thicknesses with a sputter coating 
system (38). The Yeung group performed profiling and imaging 
of metabolites (m/z 400-700) on plant leaves, flowers, and 
roots by utilizing IMS with spray deposition of AgNPs (39, 40). 

Since the first introduction of the graphite surface-assisted 
detection of proteolytic digests (m/z 150-1700) of cytochrome 
c by Sunner et al. (41), colloidal graphite materials have also 
been utilized for IMS. Yeung’s group used an aerosol spray of 
colloidal graphite for the detection and localization of 
cerebrosides (m/z 800-880) in rat brain tissue (42) and small 
metabolites (m/z 130-450) such as organic acids, flavonoids, 
and oligosaccharides in fruits (43). Furthermore, they analyzed 
flavonoids (m/z 285-755) and cuticular waxes (m/z 280-615) 
in intact leaves of plants such as Arabidopsis, one of the most 
important model systems in plant biology (44). 

Metal oxide nanoparticles
NPs of metal oxides have been utilized for SALDI materials 
due to their unique structures and compositions. The Setou 
group demonstrated IMS of lipids and peptides at cellular 
resolution (15 m) using extremely small iron oxide NPs (3.7 
nm in diameter) flanked by amorphous silicates with hydroxyl 
and amino groups on their surfaces (45). These hydrophilic 
functional groups facilitate the ionization of adsorbed analytes 
through not only efficient energy transfer but also preferential 
sodium/potassium adduct formation. This material was further 
used to determine the distribution of sulfatide (m/z ＜ 910) in 
the dentate gyrus region of the hippocampus (46). They also 
utilized TiO2 NPs for LDI MS identification and visualization 
of low molecular weight metabolites in mouse brain tissue 
(47). In their work, IMS identification of the metabolites using 
TiO2 NPs, AuNPs, and dihydroxybenzoic acid as matrix 
molecules were compared. While only 4 signals were specific 
to dihydroxybenzoic acid, 179 metabolites were specific to 
TiO2 NPs. In addition, TiO2 NPs provided a higher number of 
molecular signals than AuNPs without any NP-related peaks in 
visualization of mouse brain tissues.

Recently, metal oxide laser ionization (MOLI) MS was re-
ported as an organic matrix-free system for lipid analysis using 
powders of various metal oxides such as ZnO, MgO, FexOy, 
CoxOy, and CuO as an alternative to organic matrices (48). In 
this method, lipid molecules were ionized by protonation or 
sodiation which can be attributed to Lewis acid-base 
interactions between analytes and metal oxide. As such, the 

MOLI MS method can offer a new approach for the analysis of 
lipids. For example, CaO as a matrix replacement provided 
reproducible lipid cleavage, enabling lipid profiling for 
bacterial identification (49, 50). MOLI MS was also applied to 
IMS by Basu et al., who used cerium(IV) oxide to induce 
laser-catalyzed fatty acyl cleavage for bacterial identification, 
and to detect and image fatty acids in brain tumor tissues (51). 

OTHER IMS TECHNIQUES

Electrospray ionization-based IMS
The Cooks group first introduced the DESI method for analysis 
of diverse analytes including small non-polar compounds, 
peptides, and proteins (52). In this method, solvent microdrop-
lets were electrosprayed onto the sample surface, and the 
impact of electrosprayed charged particles on the surface 
resulted in desorption and ionization of analytes. The resulting 
desorbed gas-phase ions were then transferred to a distant 
mass spectrometer which gave mass spectra similar to normal 
ESI MS. Using DESI MS, small molecule RDX (m/z 334) and 
coniceine (m/z 125) were observed on a porcine leather 
surface and Conium maculatum seed section, respectively. 
Furthermore, the same group carried out in vivo sampling of 
living tissue surfaces by analyzing the antihistamine loratadine 
on the human finger, suggesting that DESI can be used for IMS 
of biological materials in ambient conditions. As an expansion 
of DESI MS to IMS, the Cooks group reported the direct and 
specific determination of the distribution of epinephrine (m/z 
184.1) and norepinephrine (m/z 170.1) along with various 
phospholipids (m/z 750-1000) in the porcine adrenal gland 
(53). In addition, localization of lipids in human prostate 
cancer and injured rat spiral cord tissue (54, 55) and se-
condary metabolites in plant materials (56) were also verified. 
Furthermore, three-dimensional images were constructed from 
a suitable set of two-dimensional images obtained using DESI 
IMS (57). For more details regarding DESI IMS, see the recent 
review by Parrot et al., which includes discussion of ionization 
mechanisms, sample preparations, and applications (58).

Another approach to electrospray ionization-based IMS, the 
combination of infrared (IR) laser ablation with electrospray 
ionization (LAESI), was introduced by the Vertes group (59). In 
LAESI-MS, biological and medical analytes and organisms with 
sufficient water content are analyzed using a mid-IR laser at 
2940 nm, corresponding to the frequency of the O-H bond’s 
vibration in water, resulting in strong absorption of the 
wavelength by the water. Because the sample absorbs mid-IR 
energy, a gas phase plume is created from the sample surface. 
These laser-ablated particulates from the sample surface then 
interact with electrospray droplets, which provide a source of 
ions, allowing ionization of the laser-ablated particulates and 
subsequent analysis by a detector. Using this method, excre-
tion of the antihistamine fexofenadine (m/z 502.3) in urine 
samples of humans who had taken fexofenadine caplets orally 
was analyzed without the use of organic matrices (59). In ad-
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Table 1. Analytical methods and target analytes discussed in this review

Analytical Method Analyte Imaging Target Ref.

LDI-MS DIOS Porous silicon surface Phosphatidylcholine (PC) Mouse liver tissues, HEK 293 cells 15
Metabolites Molluscs tissues 16, 17

Fingerprints 18, 19
NIMS Initiator coated surface Lipids Mouse embryo tissue 20

Fingerprints 24
Metabolites (Clozapine, Ketamine) Mouse brain tissues 21
Glucose, steroids Gerbera jamesonii stem 22
Cholesterol Mouse brain tissues 23

Carbon-based 
Surface

Graphene oxides, 
Carbon nanotubes

Glycerophosphocholine, 
phosphatidylcholine

Mouse brain tissues 29

Mucin 1 Tumor tissues 30
Adenine Hippocampal tissues 32

Inorganic NP Au Glycosphingolipids Mouse brain tissues 33
Lipids Drosophila brain tissues 34

Ag Fatty acids Mouse liver and retinal tissues 35
Lipids Rat heart tissues, Rat kidney tissues 36, 37, 38
Metabolites Plants (flower, root) 39, 40

Fe3O4 Lipids, peptides Rat cerebellum tissues 45
Sulfatides Rat hippocampal tissues 46

TiO2 Metabolites 
(putrescine, uracil, ornithine)

Mouse brain tissues 47

Colloidal graphite Proteolytic digests Cytochrome c 41
Cerebroside, metabolite, 

oligosaccharides
Rat brain tissues,  fruits 42, 43

Flavonoids, cuticular wax Arabidopsis intact leaf 44
ESI-MS DESI Electrosprayed 

microdroplets
RDX, coniceine  Porcine leather, 

Conum maculatum seed
52

Epinephrine, norepinephrine Porcine adrenal gland 53
Sulfatides, phosphatidylserine, 

phosphatidylinositol
Mouse brains 54, 55, 57

Hyperforin, hypericin Plant (leaf) 56
LAESI Infrared laser ablation Fexofenadine (antihistamine) Urine (human) 59

Lipids Rat brain tissues 61
Metabolites Plant (leaf) 60

Epidermal cells 62, 63
SIMS Primary ions Lipopolysaccharides Rat brain tissues 66

Phosphocholine and Adenine Single cells 69

dition, in vivo spatial metabolite profiling of French marigold 
seedlings was performed to observe the various metabolite 
peaks (m/z 150-770) on the leaf, stem, and root. As a further 
extension of this strategy for atmospheric pressure IMS, that 
group reported the distribution of various lipids (m/z 130-770) 
and metabolites (m/z 100-900) in mouse brain and plant leaf 
tissue sections (60, 61). The LAESI method was also applied for 
in situ profiling of metabolites in single cells, which is chal-
lenging due to the complexity and small size of the samples. 
Cells exhibit a large degree of metabolic diversity depending 
on age, nutrition, and environmental factors, and therefore, 
chemical imaging and analysis of individual cells in a cell 

population would have broad applicability in biomedical 
research and clinical diagnostics. The Vertes group utilized 
LAESI for metabolic profiling (62) and in situ cell-by-cell 
imaging (63) of single cells in different cell populations. The 
localization of various metabolites (m/z 100-650) was deter-
mined in onion and daffodil epidermal cells.

IMS with TOF-SIMS
SIMS is a desorption and ionization technique used to analyze 
the composition of surfaces by sputtering the surfaces with an 
energetic primary ion beam and analyzing secondary ions 
emitted from the surfaces (1, 64, 65). These secondary ions 
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can directly produce high-resolution chemical images, so this 
platform is well-suited for the analysis of surface composition 
of biological materials. Although LDI- and ESI-based methods 
are widely used for visualization of molecular distribution on 
biological surfaces due to their efficiency and simplicity, these 
methods produce limited-resolution raster images. In this re-
spect, SIMS ionization is advantageous over these methods, as 
it allows not only high mass resolution but also high spatial 
resolution of low molecular weight analytes. In terms of spatial 
resolution, a commonly used LDI method is capable of 
resolution as small as 5-100 m because it uses laser light 
which has a focused spot size as small as 1 m. However, 
SIMS offers enhanced resolution because it uses a primary ion 
beam that can be focused as sharply as 10 nm, allowing IMS 
of single cells and even different organelles within cells. For 
example, Todd et al. reported organic ion imaging of rat brain 
tissues with an enhanced resolution using TOF-SIMS (66). In 
general, the monatomic primary ions (Ar+, Ga+, In+, Au+, 
Xe+, Bi+) are commonly used for SIMS, which sometimes 
causes extensive fragmentation of analytes, hampering highly 
sensitive IMS of tissue surfaces. This drawback can be 
overcome by using lower energetic polyatomic primary ion 
beams such as C60

+, SF5
+, Bi3+, Aun

+, and Csn
+ for IMS, which 

does not result in extensive fragmentation (67, 68). 
Furthermore, TOF-SIMS has been successfully employed in 
3‐D IMS of biological systems. Fletcher et al. reported the 
visualization of cellular features and 3‐dimensional mass 
spectral imaging using C60

+ as a primary ion source (69). 
Phosphocholine and adenine in HeLa cells were detected and 
analyzed for MSI of single cells and identifying cellular 
organelles such as the nucleus and endoplasmic reticulum. 
Thus, TOF-SIMS can provide favorable conditions for tissue 
imaging as an alternative to LDI- and ESI-based IMS techniques 
owing to the highly enhanced resolution and capability of 3D 
imaging. On the other hand, TOF-SIMS suffers from the 
drawback of fragmentation of surface molecules and the high 
cost of equipment compared with LDI- and ESI-based facilities 
resulting in limited accessibility. Therefore, researchers must 
use caution when determining which analytical tools to use 
depending on the specifics of their biological samples and 
target molecules. Analytical methods and target analytes dis-
cussed in this review are summarized in Table 1.
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