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Abstract

To explore novel genetic loci for diabetic nephropathy, we performed genome-wide associa-

tion studies (GWAS) for diabetic nephropathy in Japanese patients with type 2 diabetes. We

analyzed the association of 5,768,242 single nucleotide polymorphisms (SNPs) in Japanese

patients with type 2 diabetes, 2,380 nephropathy cases and 5,234 controls. We further per-

formed GWAS for diabetic nephropathy using independent Japanese patients with type 2

diabetes, 429 cases and 358 controls and the results of these two GWAS were combined

with an inverse variance meta-analysis (stage-1), followed by a de novo genotyping for the

candidate SNP loci (p < 1.0 × 10−4) in an independent case-control study (Stage-2; 1,213
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cases and 1,298 controls). After integrating stage-1 and stage-2 data, we identified one

SNP locus, significantly associated with diabetic nephropathy; rs56094641 in FTO, P = 7.74

× 10−10. We further examined the association of rs56094641 with diabetic nephropathy in

independent Japanese patients with type 2 diabetes (902 cases and 1,221 controls), and

found that the association of this locus with diabetic nephropathy remained significant after

integrating all association data (P = 7.62 × 10−10). We have identified FTO locus as a novel

locus for conferring susceptibility to diabetic nephropathy in Japanese patients with type 2

diabetes.

Introduction

Diabetic nephropathy is a leading cause of end-stage renal disease (ESRD), and its prevalence

is progressively increasing according to the increase of number of patients with diabetes melli-

tus [1,2]. Prolonged persistent hyperglycemia is a principal cause of diabetic microvascular

complications, but it has been shown that only ~30% of all patients with diabetes develop overt

nephropathy, whereas most patients develop diabetic retinopathy 20–30 years after the onset

of diabetes [3]. In addition, familial clustering of diabetic nephropathy has been observed in

both type 1 and type 2 diabetes [4–6], implying that genetic factors are involved in the develop-

ment and/or progression of diabetic nephropathy. Identification of disease susceptibility loci

for many common diseases such as type 2 diabetes, has been achieved by the introduction of

genome-wide association studies (GWAS). Worldwide efforts to identify susceptibility loci for

diabetic nephropathy, however, have not yet met with success so much. Several susceptibility

loci to diabetic nephropathy or its related traits which showed their lowest p-values close to or

with a genome-wide significance level have been unveiled; rs2268388 in ACACB [7],

rs7583877 in AFF3 locus, rs17709344 in RGMA-MCTP2 locus [8], rs4972593 in Sp3-CDCA7
locus [9], rs1801239 in CUBN locus [10], rs161740 in EPO locus [11]. However, the results

have not been conclusive, and thus most susceptibility loci for diabetic nephropathy remain to

be un-identified, suggesting heterogeneity of the disease or contribution of non-genetic fac-

tors, which have not been taken into account, may produce inconsistent results among the

studies.

In this study, to identify novel susceptibility loci to diabetic nephropathy, we performed a

GWAS meta-analysis for diabetic nephropathy using existing Japanese GWAS data for

patients with type 2 diabetes.

Materials and methods

Study subjects

Discovery stage (Stage-1). We selected 7,641 individuals having type 2 diabetes registered

in Biobank Japan, and divided these patients into two groups (stage-1, set-1); 1) 2,380

nephropathy cases, defined as patients with overt albuminuria or under renal replacement

therapy and 2) 5,234 controls with normoalbuminuria and with diabetes duration of 5 years or

longer or with diabetic retinopathy. We also used independent patients with type 2 diabetes

who were extracted from previously reported GWAS data [12], and performed GWAS for dia-

betic nephropathy (stage-1 set 2, cases, n = 429, controls, n = 358). There was no overlap

between set-1 and set-2. Diabetes was diagnosed according to the World Health Organization
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(WHO) criteria [13], and those who were diagnosed as type 1 diabetes, mitochondrial diseases

or maturity-onset diabetes of the young were excluded.

Validation analysis (Stage-2). We examined independent 2,511 patients with Japanese

patients with type 2 diabetes, 1,213 diabetic nephropathy cases and 1,298 controls, from the

BioBank Japan that were not included in the discovery stage.

Clinical characteristics of participants for Stage-1 (set-1, set-2) and Stage-2 are shown in

Table 1. Genomic DNA was extracted from peripheral leukocytes using the standard proce-

dure. All individuals provided written informed consent to participate in this study.

Genotyping, quality control and imputation in the discovery stage

Set-1 individuals in stage 1 were genotyped using the Human Omni Express Exome Bead

Chip. There were 628,670 autosomal SNPs that passed quality control, a call rate� 0.99,

Hardy-Weinberg equilibrium test P� 1 × 10−6 in controls and minor allele frequency (MAF)

� 0.01. Set-2 samples were genotyped using the Illumina Human 610K SNP array, and

504,984 autosomal SNPs passed the quality control described above and used for further analy-

sis. For sample quality control, we evaluated cryptic relatedness for each sample using an iden-

tity-by-state method and removed samples that exhibited second-degree or closer relatedness.

We performed principal component analysis to select individuals belong to the major Japanese

cluster (Hondo cluster, S1 Fig) as reported previously [14], and data for 7,614 individuals

(2,380 diabetic nephropathy cases and 5,234 controls) in set-1 and 787 individuals (429 dia-

betic nephropathy cases and 358 controls) in set-2 were used in subsequent analyses. We per-

formed genotype imputation with MACH and Minimac [15,16] using linkage disequilibrium

data in the 1000 Genomes Project (phased JPT, CHB and Han Chinese South data n = 275,

March 2012) as reference populations. To evaluate the potential effect of population stratifica-

tion, we used a quantile-quantile (qq) plot of the observed P-values.

De novo genotyping

We genotyped 1,213 individuals with diabetic nephropathy and 1,298 controls (Stage-2) regis-

tered as type 2 diabetes in BioBank Japan, who were not included in a discovery stage using a

multiplex PCR-invader assay [17] for SNPs with p values < 10−4 in the meta-analysis. We also

genotyped additional 2,123 Japanese patients with type 2 diabetes (902 diabetic nephropathy

cases and 1,221 controls), who visited out-patient clinics of Tokai university hospital, Shiga

university of medical science hospital, Juntendo university hospital, Kawasaki medical school

hospital, Tokyo women’s medical university hospital, Iwate Medical University, Toride Kyodo

Table 1. Clinical characteristics of participants.

Stage1 Stage2

Set1 Set2

case control case control case control

n 2,380 5,234 429 358 1,213 1,298

M/F 1,611/769 3,162/2,072 304/125 226/131�� 833/380 759/539

Men% 67.6 60.4 70.9 63.1 68.6 58.5

age 65.9 ± 10.5 66.3 ± 9.6 67.2 ± 10.0 66.9 ± 9.2 63.9 ± 11.0 63.9 ± 10.5

BMI 23.9 ± 4.0� 23.6 ± 3.6 23.5 ± 4.0 23.8 ± 3.8 24.1 ± 3.9 23.6 ± 3.8

Diabetes duration 13.1 ± 9.8� 14.4 ± 8.5 13.4 ± 10.2 13.2 ± 10.0 12.0 ± 9.5 10.5 ± 8.8

� P < 0.01 vs. control

�� information of sex for one participant is not available

https://doi.org/10.1371/journal.pone.0208654.t001
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Hospital, Kawai Clinic, Osaka City General Hospital, Chiba Tokusyukai Hospital or Osaka

Rosai Hospital.

Genotyping success rates < 95% or concordance rates < 99.9% were excluded from the

analyses.

Statistical analysis

The association between each SNP and diabetic nephropathy was assessed using the logistic

regression test with an additive model with or without adjusting for age, sex, and log-trans-

formed body mass index (BMI) using Mach2dat. We combined data from the each GWAS,

validation and replication studies using METAL [18] as an inverse variance method. Heteroge-

neity in effect sizes among the studies was evaluated with a Cochran’s Q test. Regional associa-

tion plots were generated using LocusZoom [19].

Ethics approval

The protocol of this study conformed to the provisions of the Declaration of Helsinki and was

approved by the ethical committees at the RIKEN Yokohama Institute, Tokai university hospi-

tal, Shiga university of medical science, Juntendo university, Kawasaki medical school, Tokyo

women’s medical university and Iwate Medical University, and the institutional review boards

at Toride Kyodo Hospital, Osaka City General Hospital, Chiba Tokusyukai Hospital and

Osaka Rosai Hospital.

Results

A meta-analysis of GWAS for diabetic nephropathy in the Japanese

patients with type 2 diabetes

We obtained genotype data for 7,521,074 SNPs by imputation, and among them, 5,768,242

SNPs those passed quality control (r2 > 0.7) in both studies (Stage-1 set-1 and set-2) were eval-

uated in this meta-analysis (Fig 1).

There was no genomic inflation in the qq plots in the both studies (S2 Fig). We selected 77

loci associated with diabetic nephropathy in the meta-analysis (P< 1 × 10−4, S1 Table), and the

associations of the lead SNPs from the 77 loci with DN were examined in an independent case-

control study (Stage-2, 1,213 cases and 1,298 controls). In stage-2 analyses, we successfully

obtained the genotype data for 65 loci by the multiplex-PCR invader assay. After combining all

association data (Stage-1 set-1, set-2 and Stage-2) using the inverse-variance fixed-effects meta-

analysis, we found that one SNP locus, rs56094641 in FTO at chromosome (Chr) 16, 16q12.2,

showed a genome-wide significant association with diabetic nephropathy (P = 7.74 × 10−10,

odds ratio (OR) = 1.23, 95% confidence interval (CI) 1.15−1.31, Table 2 and S2 Table). The

association of the FTO locus with overt nephropathy was not affected by an adjustment for age,

sex and BMI (rs9936385, r2 = 1 with rs56094641, S3 Table). We additionally identified sugges-

tive evidence for the associations of six SNP loci with diabetic nephropathy (5.0 × 10−8 <

P< 5.0 × 10−7, Table 2 and S2 Table): rs895157 in PRCD (17q25.1, P = 7.70 × 10−8, OR = 1.28,

95% CI 1.17−1.41), rs10144968 near RAD51B (14q24.1–24.2, P = 1.22 × 10−7, OR = 1.35, 95%

CI 1.21−1.51), rs13306536 in LRP8 (1p32.3, P = 2.70 × 10−7, OR = 1.33, 95% CI 1.19−1.48),

rs7544082 near TRABD2B (1p33, P = 3.08 × 10−7, OR = 1.17, 95% CI 1.10−1.24), rs11101179 in

CHAT (10q11.2–21.1, P = 3.85 × 10−7, OR = 1.19, 95% CI 1.11−1.28), rs710375 near CCNH
(5q14-15, P = 3.96 × 10−7, OR = 1.21, 95% CI 1.12−1.30). Regional plots for these 7 loci are

shown in S3 Fig.
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Replication study

We examined the association of rs56094641 in FTO with overt nephropathy in 2,123 Japanese

patients with type 2 diabetes (cases n = 902, controls n = 1,221). As shown in Table 3,

rs56094641 in FTO showed the same direction of effect with the original finding in the discov-

ery stage. The association of rs56094641 in FTO with overt nephropathy was still genome-wide

significant level after integration of all association data (P = 7.62 × 10−10, OR = 1.21, 95% CI

1.14−1.29, Table 3) though the association was not statistically significant in the replication

study alone (P = 0.258, OR = 1.11, 95% CI 0.93−1.32, Table 3).

By in silico replication using SUMMIT consortium data for type 2 diabetes, the association

of FTO variants with diabetic nephropathy was not replicated in European patients with type 2

diabetes (Table 3).

Evaluation of previously reported loci

We reflected our results (meta-analysis of Stage-1 set-1 and set-2) on previously- reported sus-

ceptibility loci to overt nephropathy. There was no overlap between the above seven SNP loci

Fig 1. Outline of this study. � r2 > 0.7 in both studies, SNP; single nucleotide polymorphism, MAF; minor allele frequency, HWE P; Hardy-Weinberg Equilibrium test

P, RSQ, r square.

https://doi.org/10.1371/journal.pone.0208654.g001
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and 21 loci from previously-reported GWAS for susceptibility to overt nephropathy (S4

Table). None of the SNPs in the original reports showed significant association with overt

nephropathy in the discovery stage (P> 2.38 x 10−3 = 0.05/21). Regional lead SNPs within the

ELMO1, RGMA-MCTP2, ERBB4 and SP3-CDCA7 in the discovery stage attained the threshold

of the correction of multiple testing error.

Discussion

From a result of GWAS meta-analysis for diabetic nephropathy followed by validation studies

in Japanese patients with type 2 diabetes, which comprising in 4,022 cases and 6,890 controls,

we identified significant association between rs56094641 in FTO and susceptibility to diabetic

nephropathy in Japanese patients with type 2 diabetes.

FTO locus has been repeatedly reported to be associated with obesity and/or adiposity [20],

and, in this study, we have shown that the risk allele for obesity was significantly associated

with susceptibility to diabetic nephropathy in Japanese patients with type 2 diabetes.

Smemo et al. mentioned that obesity-associated noncoding sequences within FTO are func-

tionally connected, at megabase distances, with the homeobox gene IRX3 [21]. IRX3 is a

Table 2. Association of 7 SNP loci with diabetic nephropathy in Japanese patients with type 2 diabetes.

SNP ID

Gene

Chromosome

Alleles study RAF OR (95%CI) P Phet

rs56094641 G/A Stage-1, set-1 0.247/0.211 1.22 (1.13–1.32) 1.19 × 10−6

FTO Stage-1, set-2 0.236/0.207 1.19 (0.93–1.52) 0.164

Ch16 Stage-2 0.252/0.209 1.27 (1.11–1.46) 3.76 × 10−4

Combined 1.23 (1.15–1.31) 7.74 × 10−10 0.85

rs895157 C/A Stage-1, set-1 0.130/0.108 1.28 (1.14–1.43) 2.85 × 10−5

PRCD Stage-1, set-2 0.126/0.113 1.14 (0.83–1.58) 0.422

Ch17 Stage-2 0.140/0.109 1.35 (1.13–1.60) 7.02 × 10−4

Combined 1.28 (1.17–1.41) 7.70 × 10−8 0.67

rs10144968 G/T Stage-1, set-1 0.078/0.062 1.27 (1.11–1.46) 3.75 × 10−4

RAD51B Stage-1, set-2 0.083/0.060 1.41 (0.95–2.10) 8.48 × 10−2

Stage-2 0.078/0.051 1.58 (1.25–1.99) 1.15 × 10−4

Combined 1.35 (1.21–1.51) 1.22 × 10−7 0.28

rs13306536 T/C Stage-1, set-1 0.089/0.068 1.27 (1.11–1.46) 3.75 × 10−4

LRP8 Stage-1, set-2 0.068/0.075 0.87 (0.58–1.30) 0.496

Ch1 Stage-2 0.076/0.058 1.35 (1.08–1.69) 1.15 × 10−4

Combined 1.33 (1.19–1.48) 2.70 × 10−7 0.1

rs7544082 A/C Stage-1, set-1 0.525/0.492 1.18 (1.09–1.27) 3.22 × 10−5

TRABD2B Stage-1, set-2 0.550/0.514 1.15 (0.77–1.72) 0.164

Ch1 Stage-2 0.552/0.514 1.16 (1.04–1.31) 8.70 × 10−3

Combined 1.17 (1.10–1.24) 3.08 × 10−7 0.97

rs11101179 C/T Stage-1, set-1 0.231/0.197 1.22 (1.12–1.33) 2.23 × 10−6

CHAT Stage-1, set-2 0.205/0.205 1.00 (0.77–1.31) 0.977

Ch10 Stage-2 0.226/0.198 1.17 (1.02–1.34) 2.10 × 10−2

Combined 1.19 (1.11–1.28) 3.85 × 10−7 0.37

rs710375 C/T Stage-1, set-1 0.201/0.169 1.24 (1.14–1.36) 2.23 × 10−6

CCNH-TMEM161B Stage-1, set-2 0.197/0.154 1.38 (1.04–1.77) 0.977

Ch5 Stage-2 0.187/0.176 1.08 (0.93–1.24) 2.10 × 10−2

Combined 1.21 (1.12–1.30) 3.96 × 10−7 0.16

https://doi.org/10.1371/journal.pone.0208654.t002
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member of the Iroquois homeobox gene family and plays a role in an early step of neural

development [22]. Members of this family including IRX3 and IRX5 appear to play multiple

roles during pattern formation of vertebrate embryos [23]. However, there is no evidence

showing functional link between IRX3/IRX5 and diabetic nephropathy.

Obesity has been recognized as an important risk factor for chronic kidney disease (CKD)

[24,25]. The incidence of obesity has actualized an increase the number of patients with obe-

sity-related glomerulopathy and proteinuria [26]. Furthermore, obesity has been reported to

be an independent risk factor for ESRD by a large historical cohort study of 177,570 adults

after adjustment for multiple epidemiologic and clinical conditions including diabetes [27]

Moreover, a FTO variant, rs17817449, which are in absolute linkage disequilibrium to

rs56094641, was shown to be associated with ESRD [28], suggesting FTO variants confer sus-

ceptibility to CKD/ESRD through the mechanisms mediated by obesity/adipocity.

In European patients with type 1 or type 2 diabetes, a genetic risk score constructed from

confirmed obesity related SNP loci was associated with diabetic nephropathy [29–31],

although FTO variant alone did not have significant effect on any of renal phenotype.

Table 3. Replication studies for 7 loci associated with diabetic nephropathy.

SNP ID

gene

Alleles Ethnicity RAF OR (95%CI) P Phet

rs56094641 G/A Japanese Discovery 1.23 (1.15–1.31) 7.74 × 10−10

FTO Replication 1.11 (0.93–1.32) 0.258

Combined 1.21 (1.14–1.29) 7.62 × 10−10 0.67

Europeans 1.06 (1.19–0.95) 0.300

rs895157 C/A Japanese Discovery 1.28 (1.17–1.41) 7.70 × 10−8

PRCD Replication 0.96 (0.77–1.21) 0.748

Combined 1.23 (1.13–1.34) 1.15 × 10−6 0.11

Europeans 0.92 (0.80–1.06) 0.195

rs10144968 G/T Japanese Discovery 1.35 (1.21–1.51) 1.22 × 10−7

RAD51B Replication 1.04 (0.76–1.41) 0.808

Combined 1.31 (1.18–1.45) 4.23 × 10−7 0.17

Europeans 0.91 (0.80–1.03) 0.289

rs13306536 T/C Japanese Discovery 1.33 (1.19–1.48) 2.70 × 10−7

LRP8 Replication 0.98 (0.72–1.34) 0.914

Combined 1.30 (1.16–1.42) 1.38 × 10−6 0.05

Europeans N/A N/A

rs7544082 A/C Japanese Discovery 1.17 (1.10–1.24) 3.08 × 10−7

TRABD2B Replication 0.99 (0.86–1.15) 0.946

Combined 1.16 (1.04–1.31) 2.58 × 10−6 0.24

Europeans N/A N/A

rs11101179 C/T Japanese Discovery 1.19 (1.11–1.28) 3.85 × 10−7

CHAT Replication 0.92 (0.77–1.10) 0.365

Combined 1.15 (1.08–1.23) 9.36 × 10−6 0.03

Europeans N/A N/A

rs710375 C/T Japanese Discovery 1.21 (1.12–1.30) 3.96 × 10−7

CCNH Replication 0.85 (0.70–1.03) 9.86 × 10−2

Combined 1.16 (1.08–1.24) 3.02 × 10−5 0.002

Europeans 1.12 (0.999–1.12) 3.58 × 10−2

N/A, data is not available

https://doi.org/10.1371/journal.pone.0208654.t003
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Therefore, our report is the first to show a robust association of FTO variant with diabetic

nephropathy. In addition, adjustment for BMI did not influence the association of the SNP

with diabetic nephropathy in this study, suggesting that the SNP gets involved in susceptibility

to diabetic nephropathy through the mechanism other than increasing BMI. Values of BMI

used in this study, however, were obtained after making diagnosis of type 2 diabetes and some

therapeutic interventions might affect the BMI values used in this study. Therefore, we might

underestimate the effects of BMI on susceptibility to diabetic nephropathy.

We also obtained six SNP loci, which have shown borderline associations with overt

nephropathy at the discovery stage (Table 1: 5 × 10−8 < combined P� 5 × 10−7), but all candi-

date SNPs did not show significant effects in the replication stage in an independent Japanese

case-control study (Table 3). In this study, we could not replicate almost all of variants identi-

fied by meta-analysis of stage 1 and stage 2 in the additional dataset with a comparable sample

size with stage 2 GWAS. Although genome-wide SNPs data are not available for individuals in

the replication stage, all samples for the replication stage were collected in the Japan main-

island, and it has been shown individuals living in Japan main-island are genetically homoge-

neous [14]; therefore, we think there is no evidence for population heterogeneity between the

discovery stage and the replication stage.

We further performed a GWAS meta-analysis for diabetic nephropathy including patients

with microalbuminuria as cases, and found that rs56094641 in FTO was significantly associ-

ated with diabetic nephropathy also in this analysis (P = 2.40 × 10−9, OR = 1.18, 95% CI 1.15

−1.31, S5 and S6 Tables). However, the association was not stronger than that in the analysis

using overt nephropathy as cases, suggesting the FTO variant was associated with advanced

stages of diabetic nephropathy.

Our study has some limitations. Firstly, the detail clinical information, i.e. blood pressure,

Hemoglobin A1c, lipid profiles, prescription of antihypertensive treatments, was not available

in many participants in Stage-1 samples. It means that we cannot exclude the possibility that

the association of the SNP with diabetic nephropathy is mediated by some risk factors except

age, sex and BMI. Second, by in silico replication using SUMMIT consortium data for type 2

diabetes, the association of FTO variants with diabetic nephropathy was not replicated in

European patients with type 2 diabetes (Table 3, S7 Table), and the association of FTO variants

with diabetic nephropathy showed a genome-wide significant association only in a joint analy-

sis for the discovery stage; therefore, these observations may not be in line with standards for

GWA studies; further study, such as a large-scaled longitudinal study, is required to elucidate

the association of FTO locus with diabetic nephropathy.

Conclusions

We performed GWAS for diabetic nephropathy in Japanese patients with type 2 diabetes. One

SNP locus, FTO locus, showed a significant association with susceptibility to diabetic nephrop-

athy, and the association attained a genome-wide significant level. Further studies are required

to confirm the association of this locus with diabetic nephropathy.

Supporting information

S1 Fig. Results of principal component analysis in stage-1 and stage-2.

(PDF)

S2 Fig. Quantile-quantile plot. A: Stage-1, set-1, B: Stage-1, set-2.

(PDF)

FTO and susceptibility to diabetic nephropathy

PLOS ONE | https://doi.org/10.1371/journal.pone.0208654 December 19, 2018 8 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208654.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0208654.s002
https://doi.org/10.1371/journal.pone.0208654


S3 Fig. Regional plot of each candidate locus. Results of stage-1 GWAS meta-analysis are

shown. Red, diamond-shaped plots indicate the most significant variants in each locus after

combining stage 1 and stage 2 data. r2, linkage disequilibrium coefficient; chr., chromosome.

(PDF)

S1 Table. SNPs with p values < 10−4 in the discovery stage.

(PDF)

S2 Table. Candidate SNP loci for overt diabetic nephropathy in the discovery stage.

(PDF)

S3 Table. Effects of the adjustment for age, sex and BMI on association of the FTO locus

with susceptibility to diabetic nephropathy.

(PDF)

S4 Table. Association of previously reported loci with overt diabetic nephropathy in the

stage 1 analysis.

(PDF)

S5 Table. Six SNP loci associated with diabetic nephropathy including microalbuminuria

(Meta-analysis in Discovery Stage, P < 5 x 10−7) in Japanese patients with type 2 diabetes.

(PDF)

S6 Table. Six SNP loci associated with diabetic nephropathy including microalbuminuria

(Meta-analysis in Discovery Stage, P<5x10-7) in Japanese patients with type 2 diabetes.

(PDF)

S7 Table. In silico replication of candidate loci for Diabetic Nephropathy in the data from

the SUMMIT Consortium.

(PDF)

S8 Table. Contributors for SUMMIT consortium.

(PDF)

S1 File. Meta-analysis-on-genetic-association-studies-form.

(DOCX)

Acknowledgments

The authors thank all participating doctors, staff, and patients from the collaborating institutes

for providing DNA samples. We also thank Mr. Takashi Morizono, Drs. Michiaki Kubo,

Momoko, Horikoshi, RIKEN Center for Integrative Medical Sciences for their support of data

managements, and technical staffs of the Laboratory for Endocrinology, Metabolism and Kid-

ney diseases, RIKEN Center for Integrative Medical Sciences for performing de novo

genotyping.

Members of the SUMMIT consortium.

Michael Mark, Markus Albertini, Carine Boustany, Alexander Ehlgen, Martin Gerl, Jochen

Huber, Corinna Schölch, Heike Zimdahl-Gelling at Boehringer-Ingelheim, Ingelheim,

Germany

Leif Groop, Elisabet Agardh, Emma Ahlqvist, Tord Ajanki, Nibal Al Maghrabi, Peter Almg-

ren, Jan Apelqvist, Eva Bengtsson, Lisa Berglund, Harry Björckbacka, Ulrika Blom-Nilsson,

Mattias Borell, Agneta Burström, Corrado Cilio, Magnus Cinthio, Karl Dreja, Pontus Dunér,

Daniel Engelbertsen, Joao Fadista, Maria Gomez, Isabel Goncalves, Bo Hedblad, Anna

Hultgårdh, Martin E. Johansson, Cecilia Kennbäck, Jasmina Kravic, Claes Ladenvall, Åke
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