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Abstract
The SARS-CoV-2 virus that is the cause of coronavirus disease 2019 (COVID-19) affects not only peripheral organs
such as the lungs and blood vessels, but also the central nervous system (CNS)—as seen by effects on smell, taste,
seizures, stroke, neuropathological findings and possibly, loss of control of respiration resulting in silent hypoxemia.
COVID-19 induces an inflammatory response and, in severe cases, a cytokine storm that can damage the CNS.
Antimalarials have unique properties that distinguish them from other anti-inflammatory drugs. (A) They are very
lipophilic, which enhances their ability to cross the blood-brain barrier (BBB). Hence, they have the potential to act
not only in the periphery but also in the CNS, and could be a useful addition to our limited armamentarium against the
SARS-CoV-2 virus. (B) They are non-selective inhibitors of phospholipase A2 isoforms, including cytosolic phospho-
lipase A2 (cPLA2). The latter is not only activated by cytokines but itself generates arachidonic acid, which is metab-
olized by cyclooxygenase (COX) to pro-inflammatory eicosanoids. Free radicals are produced in this process, which can
lead to oxidative damage to the CNS. There are at least 4 ways that antimalarials could be useful in combating COVID-
19. (1) They inhibit PLA2. (2) They are basic molecules capable of affecting the pH of lysosomes and inhibiting the
activity of lysosomal enzymes. (3) They may affect the expression and Fe2+/H+ symporter activity of iron transporters
such as divalent metal transporter 1 (DMT1), hence reducing iron accumulation in tissues and iron-catalysed free radical
formation. (4) They could affect viral replication. The latter may be related to their effect on inhibition of PLA2

isoforms. Inhibition of cPLA2 impairs an early step of coronavirus replication in cell culture. In addition, a secretory
PLA2 (sPLA2) isoform, PLA2G2D, has been shown to be essential for the lethality of SARS-CoV in mice. It is
important to take note of what ongoing clinical trials on chloroquine and hydroxychloroquine can eventually tell us
about the use of antimalarials and other anti-inflammatory agents, not only for the treatment of COVID-19, but also for
neurovascular disorders such as stroke and vascular dementia.
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COVID-19 Outbreak and the Use
of Chloroquine and Hydroxychloroquine
Against COVID-19

The first cases of coronavirus disease 2019 (COVID-19) were
reported near the end of 2019 in Wuhan, China. In
March 2020, BBC and CNN news reported President
Donald Trump’s ‘fantastic’ treatment for coronavirus, chloro-
q u i n e a nd hyd r o x y c h l o r o q u i n e . A s a r e s u l t ,
hydroxychloroquine was snapped up by medical institutions
at more than twice the typical pace, as US hospitals sought to
build large inventories in anticipation of the medication’s po-
tential use in patients with COVID-19 (https://www.
bloomberg.com/news/articles/2020-03-20/hospitals-
stockpile-malaria-drug-trump-says-could-treat-covid-19).
Nevertheless, the US Food and Drug Administration cautions
against the use of chloroquine and hydroxychloroquine for
COVID-19 outside of a hospital setting or a clinical trial due
to risk of heart rhythm problems. While there are some reports
suggesting that hydroxychloroquine could be a promising
treatment intervention there have been, as yet, no large-scale
randomized controlled trials to support those claims.
Chloroquine and hydroxychloroquine have been used for the
treatment of malaria, lupus and rheumatoid arthritis for many
years. From the literature, serious side-effects seem quite rare
when they are used to treat these diseases, apart from
hemolysis in some patients with glucose-6-phosphate dehydro-
genase deficiency and possible ocular side effects [1]. In this
paper, we point out why they and other antimalarials might be
effective in combatting certain aspects of COVID-19 infection,
and the clinician has to balance this with the risk of side effects.

COVID-19 Is a Proinflammatory Condition

The SARS-CoV-2 virus, which is the cause of COVID-19,
is known to infect both the upper airways and the lungs.
The virus replicates in the lungs and can spread to other
parts of the body through the vascular and possibly lym-
phatic systems (Fig. 1). COVID-19 causes an imbalance
between adaptive and innate immunity. On one hand, there
is decreased function of immune cells such as lymphocytes
and T cell exhaustion, [2] but on the other, there is in-
creased response from macrophages that are a key part of
the innate immune response [3]. In some cases, a dysfunc-
tional and hyperactive immune response can trigger a cyto-
kine storm that mediates widespread lung inflammation. It
has been observed that patients with severe COVID-19 that
require intensive care in hospitals have greater macrophage
inflammatory protein 1 in the plasma [4] and monocyte-
derived FCN1+ macrophage population in the bronchoal-
veolar fluid [5]. Not only can the virus spread through the
bloodstream, it can also infect endothelial cells in the vessel

walls [6]. This could lead to an inflammatory response in
these cells and an increase in blood coagulation. Hence,
COVID-19 may predispose patients to thrombotic disease
in the venous and arterial circulations due to excessive in-
flammation, platelet activation, endothelial dysfunction and
stasis [7].

The problems of COVID-19 are aggravated by pre-existing
medical conditions, in particular metabolic and cardiovascular
diseases [8]. A common feature of these diseases is high levels
of cholesterol oxidation products or oxysterols in the blood-
stream [9]. In particular, 7-ketocholesterol has marked ability
to induce cytokine expression and inflammation in cells. It
induces the expression of the cytokines VEGF, IL-6 and IL-
8 through the AKT-PKCζ-NFκB, p38 MAPK and ERK path-
ways in ARPE-19 cells [10] and increases IL-1β, TNF-α, IL-
6 and IL-1β secretion and inflammation in these cells [11].
The oxysterol also markedly increases the formation and ac-
tivation of NLRP3 inflammasomes and elevates IL-1β levels
in mouse carotid arterial endothelial cells [12]. This could
aggravate damage to endothelial cells that are exposed to
SARS-CoV-2. Serum 7-ketocholesterol level is associated
with increased risk of cardiovascular events and mortality in
patients with stable coronary artery disease [13]. Likewise,
elevated plasma 7-ketocholesterol level is associated with
the incidence of cardiovascular disease in a population-based
cohort [14]. Increased 7-ketocholesterol levels are found in
patients with diabetes or hypercholesterolemia [15].

Another factor that could be related to neuroinflam-
mation is dysregulation of iron homeostasis [16]. Many
patients with COVID-19 have increased iron, as
reflected by an increased level of the iron storage pro-
tein, ferritin [17]. Excess iron is stored in cells by being
bound to ferritin, but the latter can be downregulated by
high levels of oxidative stress, resulting in release of
iron ions that are capable of catalysing free radical re-
actions [18]. Iron transport across enterocytes in the
intestines and across the blood-brain barrier (BBB) is
dependent on the iron transporter, DMT1 [19]. The gene
encoding the latter contains putative AP-1 and NF-κB
binding sites, a possible interferon γ-responsive element
and a hypoxia-inducible factor-1 (HIF-1)-like motif [20,
21]. It is therefore possible that increased AP-1 or
NF-κB activation during a COVID-19-induced cytokine
storm could result in activation of these sites on the
DMT1 promoter, resulting in increased expression of
the iron transporter and iron accumulation in tissues.

The ability of COVID-19 to produce a cytokine storm and
inflammationmight be at the centre of the pathogenicity of the
virus, yet little is known about the component(s) of SARS-
CoV-2 that is pro-inflammatory. In the case of HIV, it is the
gp120 protein that has been found to be pro-inflammatory in
neurons [22]. Research is urgently needed to identify the pro-
inflammatory component(s) of SARS-CoV-2.
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COVID-19 Affects the CNS

Besides peripheral effects, COVID-19 has also been reported
to cause neurologic dysfunction (Fig. 1). Anosmia, stroke,
paralysis, cranial nerve deficits, encephalopathy, delirium
meningitis and seizures are some of the complications in pa-
tients with COVID-19 [23–25]. Many patients who have
contracted COVID-19 report a loss in smell or taste [26].
The sense of smell originates from olfactory neurons in the
olfactory epithelium in the upper part of the nasal cavity. It
travels via bundles of the olfactory nerves to the olfactory bulb
and thereafter along the olfactory tract to the septum, cerebral
cortex and other parts of the brain. Damage to either the ol-
factory neurons or their supporting cells and/or the olfactory
bulb could lead to anosmia [27]. Recent MRI studies have
shown transient changes in the olfactory bulb that accompany
COVID-19-related anosmia, consistent with CNS involve-
ment in some of the patients [28, 29]. Study of the intracere-
bral distribution of gold nanoparticles after inhalation expo-
sure in rats shows that the nanoparticles are found in nuclei
connected to the olfactory and limbic systems, including the
olfactory bulb, hippocampus, frontal cortex, striatum,

entorhinal cortex and septum [30, 31]. This could be an indi-
cation of the potential areas of spread of viruses from the
olfactory bulb. The SARS-CoV virus, which is taxonomically
very similar to SARS-CoV-2, is able to enter the brain via the
olfactory bulb, and infection results in rapid, transneuronal
spread to connected areas of the brain. CNS infection is
thought to be the main cause of death in mice experimentally
infected with the SARS-CoV virus since intracranial inocula-
tion with low doses of this virus results in lethality, even
though little infection is detected in the lungs [32]. Besides
the olfactory axonal route, SARS-CoV-2 may pass from non-
neuronal olfactory epithelium cells directly to the cerebrospi-
nal fluid surrounding olfactory nerve bundles and enter the
brain [33]. Other viruses, e.g. herpesvirus-6 [34] or rabies
virus, are also known to hijack existing vesicular axonal trans-
port machineries to travel within the brain (reviewed in [35]).

Taste is also often affected by COVID-19. This modality is
conveyed via axons in the facial, glossopharyngeal and vagus
nerves that terminate in the nucleus of the tractus solitarius in
the medulla oblongata. The loss of taste strongly suggests
damage to this nucleus, possibly via retrograde transport of
the virus along axons. It is interesting to note that the caudal
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part of the nucleus of the tractus solitarius receives visceral
afferent signals from the airway that mediate the cough reflex,
and it is possible that irritation of this nucleus could contribute
to coughing, which is a common symptom of patients with
COVID-19. Chemoreceptors in the carotid body or aortic
body in the walls of the internal carotid artery or the aorta
sense the level of oxygen or carbon dioxide in the blood and
convey these signals via the glossopharyngeal and vagus
nerves to the nucleus of the tractus solitarius. Moreover, af-
ferent fibres in the vagus nerve convey the sense of stretch
from the lungs to the same nucleus, and these are involved in
the reflex control of respiratory rate. It is possible that inter-
ference with chemoreceptors as a result of vasculitis or inflam-
matory changes in the vessel walls [6, 36] and/or the nucleus
of the tractus solitarius [37] could lead to loss of feedback
control to regulate the oxygenation in the blood and might
explain the ‘silent hypoxia’ or ‘happy hypoxia’ even without
lung exudates in many patients with COVID-19 [33, 38].
Localized perivascular and interstitial encephalitis with neu-
ronal cell loss and axon degeneration in the dorsal motor nu-
cleus of the vagus nerve, trigeminal nucleus and nucleus
tractus solitarii have been detected in the brains of patients
with COVID-19 [37]. COVID-19 may also be associated with
unexplained altered mental status or loss of consciousness in
13% of patients [39]. Study of 26 critically ill hospitalized
SARS-CoV-2 patients with unexplained neurological symp-
toms found that 5 patients had EEGs with biphasic delta peri-
odic discharges indicative of CNS injury [40].

Previous studies have shown the ability of SARS-CoV to
induce neuronal death in mice by invading the brain via the
olfactory epithelium [32]. Entry of coronavirus into the pri-
mate CNS has also been demonstrated after peripheral infec-
tion [41]. SARS-CoV is present in brain tissue from human
autopsies, and tissue oedema and neuronal degeneration were
prominent findings in sections [42]. Moreover, the SARS ge-
nomic sequence has been detected by in situ hybridization
histochemistry in brain neurons of a patient infected by
SARS-CoV [42]. In the current pandemic, gene sequencing
confirmed the presence of SARS-CoV-2 in the cerebrospinal
fluid of a 56-year-old patient with novel coronavirus in
Beijing Ditan Hospital [43]. COVID-19 effects on the brain
may be an extension of its effects on the periphery. The same
cytokines that cause inflammation in the periphery, most com-
monly, IL-1β, TNF-α and IL-6, may also induce neuroin-
flammation in the brain [44]. Brain inflammation has been
shown to underlie, at least in part, the CNS damage associated
with infection by West Nile, Zika and herpes simplex viruses,
conditions in which long-lasting inflammatory processes de-
velop within the CNS [35]. Intracranial cytokine storm has
been implicated in causing COVID-19-related acute necrotiz-
ing haemorrhagic encephalopathy. This can lead to symmetric
thalamic encephalitis as well as similar symmetric lesions in
other brain regions [45]. Cerebral microbleeds and

leukoencephalopathy have also been detected in critically ill
patients with COVID-19 [46]. It is likely that the paucity of
brain imaging studies being performed in critically ill
COVID-19 patients may be an important factor in the lack
of wider recognition of such complications.

Besides a possible route to the brain via peripheral nerves,
the SARS-CoV-2 virus might gain entry into the brain by
infecting endothelial cells [6]. Observations of viral-like par-
ticles in brain capillary endothelium and active budding across
endothelial cells suggest a role of brain microvessels as a route
of SARS-CoV-2 entry into the brain [47]. Damage to cerebral
blood vessels may also predispose the patients to stroke [48]
and possibly vascular dementia. The intense systemic inflam-
matory response linked to viral infections may lead to damage
to the blood-brain barrier (BBB), thus allowing more virus or
peripheral cytokines including TNF-α (which is neurotoxic
[49]) to enter the brain where they may trigger or exacerbate
neuroinflammation. Since the hippocampus is well known to
be particularly susceptible to global ischemia, this structure
could also be damaged by prolonged silent hypoxemia in pa-
tients with severe COVID-19, with resultant effects on declar-
ative memory.

Like the SARS-CoV virus, SARS-CoV-2 uses a spike pro-
tein S1 to enable the virus to gain entry to cells by attaching to
the host ACE2 receptor [50] and TMPRSS2 priming on the
cell membrane. ACE2 receptor is highly expressed in the
lungs, heart, liver and CNS, which includes the olfactory bulb
while TMPRSS2 is expressed in the liver, peripheral nervous
system and CNS [51].

Phospholipase A2 (PLA2) Plays a Critical Role
in Coronavirus Replication and Pathogenicity

The enzyme cytosolic phospholipase A2 (cPLA2) is a key
enzyme in innate immunity. It acts on membrane
glycerophospholipids to release a free fatty acid (arachidonic
acid) and a lysophospholipid. Arachidonic acid can be further
metabolized by cyclooxygenases (COX) to prostaglandins
and other pro-inflammatory mediators. Hence, inhibition of
cPLA2 has been found by many groups to have an anti-
inflammatory and neuroprotective effect (for reviews, see
[52, 53]). Increased cPLA2 activity is found in microglial cells
that are stimulated by lipopolysaccharide (LPS) or interferon
gamma (IFNγ). On the other hand, LPS- and IFNγ-induced
production of reactive oxygen species (ROS) and nitric oxide
(NO) are inhibited by a selective inhibitor of cPLA2,
arachidonyl trifluoromethyl ketone (AACOCF3) [54]. ROS
such as superoxide radicals, hydrogen peroxide and hydroxyl
radicals and reactive nitrogen species such as nitric oxide or
peroxynitrite can cause damage to cellular components if pres-
ent in excess [18]. cPLA2 could be a link between the in-
creased cytokine production that is found in COVID-19 and
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inflammation and oxidative stress. MAPKs and NF-κB have
been shown to be involved in IL-1β-induced cPLA2 expres-
sion in canine tracheal smooth muscle cells [55], and TNFα
has been shown to induce cPLA2 expression in lung epithelial
cells [56]. A pathway for cPLA2 activation via IL-13 has also
been described [57]. Since cPLA2 expression is increased by
cytokines and itself forms eicosanoids that are pro-inflamma-
tory, it could be a key enzyme in a feed-forward cycle to
propagate a cytokine storm.

As a cellular defence against such oxidative damage, ara-
chidonic acid that is formed by cPLA2 is bound by the
lipocalin apolipoprotein D (apoD) and prevented from
forming toxic lipid peroxides [58]. It is interesting to note that
overexpression of human apoD in neurons of Thy-1/apoD
transgenic mice resulted in a threefold increase in the number
of mice surviving coronavirus (HCoV-OC43) infection [59].
cPLA2 is also found to be essential for coronavirus replication.
Inhibition of this enzyme is reported to impair an early step of
coronavirus replication in cell culture, probably due to inter-
ference with the formation of lysophospholipids [60].

A critical role of another member of the PLA2 superfamily,
secretory phospholipase A2 (sPLA2) Group IID in age-related
susceptibility to SARS-CoV infection, has also been reported.
Strikingly, infection of mice lacking PLA2G2D (Pla2g2d (−/−)
mice) converted a uniformly lethal infection to a nonlethal one
(> 80% survival), together with enhanced antivirus T cell re-
sponses and diminished lung damage [61].

Effects of Antimalarials on Phospholipase A2

How might antimalarials help in COVID-19? There are at
least four possibilities: (1) They inhibit PLA2; (2) they are
basic molecules capable of affecting the pH of lysosomes
and inhibiting the activity of lysosomal enzymes; (3) they
may affect the expression and Fe2+/H+ symporter activity of
iron transporters such as divalent metal transporter 1 (DMT1),
hence reducing iron accumulation in tissues and iron-
catalysed free radical formation [62]; and (4) they may affect
viral replication (Figs. 2, 3 and 4). Chloroquine,
hydroxychloroquine and quinacrine are known to be non-

selective inhibitors of different PLA2 isoforms. They enter
and accumulate in lysosomes and are thought to act by altering
the pH of lysosomes. This results in inhibition of lysosomal
enzymes in the malarial parasite and interference with parasite
feeding [63]. Among the lysosomal enzymes are a wide range
of proteases, lipases and nucleases. An inhibitory effect on
malarial PLA2 has been shown with chloroquine, quinine
and arteether (derived from artemisinin) [64]. Moreover, chlo-
roquine and mepacrine (quinacrine) inhibit cPLA2 in rat heart
homogenates [65]. Antimalarial drugs inhibit PLA2 activation
and induction of IL-1β and TNFα in macrophages.
Chloroquine, quinacrine and, to a lesser extent ,
hydroxychloroquine inhibit arachidonic acid release and ei-
cosanoid formation induced by phorbol diester in macro-
phages. This effect is due to inhibition of arachidonic-acid
preferring PLA2 (cPLA2) [66]. Besides inhibition of PLA2

activity, Northern blot analyses showed that quinacrine re-
duced cPLA2 mRNA expression in the rat hippocampus after
kainate-induced excitotoxic injury [67]. It also reduced cPLA2

immunoreactivity and protected neurons from cellular injury
in hippocampal slice cultures after kainate treatment [68].
Moreover, quinacrine reduced cPLA2 immunoreactivity in
glial cells and protected neurons from damage after intra-
cerebroventricular lipopolysaccharide injection [69].
Quinacrine has been found to block the binding of the tran-
scription factor AP-1 to its binding site on DNA and could
reduce AP-1-induced gene expression in target cells [70], i.e.
it both inhibits and deceases the expression of cPLA2. All
isoforms of bovine brain PLA2 are strongly inhibited by anti-
malarial drugs in a dose-dependent manner. Chloroquine,
quinacrine, hydroxychloroquine and quinine inhibit bovine
brain cPLA2 with IC50 values of 125, 200, 185 and 250 μM
[53, 71]. Chloroquine or quinacrine have been found to reduce
cPLA2 immunoreactivity in hippocampal slice cultures fol-
lowing kainate treatment. Interestingly, the effects on cPLA2

expression are observed at 10 μM chloroquine or quinacrine,
i.e. concentrations that are about an order of magnitude lower
than the IC50 of these inhibitors for cPLA2. These drugs may
therefore not only inhibit cPLA2 enzymatic activity at higher
concentration but also induce downregulation of cPLA2 pro-
tein expression at lower concentrations [71]. Other isoforms of
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pH change in
lysosomes (inhibits
lysosomal func�on)

Inhibi�on of PLA2 Modula�on of
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viral replica�on

Fig. 2 Potential effects of
antimalarials on COVID-19
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PLA2, such as sPLA2, are also important in inflammation, but
even then, their ability to induce arachidonic acid release is
dependent on cPLA2 [72]. Gene knockout of cPLA2 results in
downregulation of its downstream enzyme cyclooxygenase-2
(COX-2) leading to a reduction in eicosanoid production in-
cluding the pro-inflammatory PGE2. sPLA2 and calcium-
independent phospholipase A2 (iPLA2) do not compensate
for the loss of brain cPLA2 [73].

The CNS penetration ability of drugs has been reported to
be a critical factor in the treatment of SARS-CoV-2 brain
infection [74]. Among antimalarials, there is compelling evi-
dence to support the BBB permeability of mefloquine, a
quinolinemethanol that is structurally related to quinine [75,
76]. Less is known of the potential of chloroquine and

hydroxychloroquine to transverse the BBB. Studies have
shown that certain structural properties may be used to predict
the BBB permeability of solutes [77]. One such set of empir-
ical rules was articulated by Clark [78] and Lobell et al. [79]
who stated that access into the central nervous system required
molecules to fulfil the following threshold values: (i) molec-
ular weight < 450; (ii) polar surface area (PSA) < 60–70 Å2;
(iii) total number of N and O atoms < 6; (iv) distribution co-
efficient Log D 7.4 between 1 and 3; (v) clogP – (N + 0) > 0.
Functional groups with N and O atoms and the H atoms at-
tached to them contribute to the polar surface area of the mol-
ecule, and together, both parameters are surrogate measures of
the hydrogen bonding capacity of the molecule. Lipophilicity
is assessed from clogP, which is derived from the neutral

Chloroquine and hydroxychloroquine 
- against malaria, COVID-19

Red: hydrophobic domains in molecule
Blue : basic centres in molecule.

Quinacrine – against malaria, prions.
COVID-19 – not known.

Quinacrine analogs – against prions (in vitro).
Malaria or COVID-19 – not tested.

Monoprotonated chloroquine and 
diprotonated chloroquine

a

b

Monoprotonated
chloroquine
– membrane permeable

Diprotonated
chloroquine – membrane 
impermeable

Chloroquine Hydroxychloroquine

Quinacrine Quinacrine analogs

Fig. 3 Structure of chloroquine,
hydroxychloroquine, quinacrine
and quinacrine derivatives. a
Monoprotonated chloroquine and
diprotonated chloroquine. b
Red—hydrophobic domains in
molecules; blue—basic centres in
molecules
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Astrocy�c Endfeet
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(Upregulated by 
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Fig. 4 Effect of quinacrine on iron transport through DMT1 in the
duodenum and blood-brain interface. Ferric iron is converted to ferrous
iron by duodenal cytochrome B (DCTB). Thereafter ferrous iron is taken
up into enterocytes, endothelial cells or astrocytes by divalent metal

transporter-1 (DMT1) together with a proton (H+). Antimalarials reduce
the number of protons available for the H+/Fe2+ symporter activity of
DMT1. Quinacrine also reduces DMT1 expression itself
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(non-ionized) state of the molecule, and logD, which mea-
sures the contribution of both non-ionized and ionized states
of the molecule at a stated pH, usually pH 7.4. Here, we
obtained the parameters (i–v) of chloroquine and
hydroxychloroquine and compared them with those of meflo-
quine (Table 1). The parameters of quinacrine were also in-
cluded as this compound was found to possess a PAMPA Pe
value that was indicative of BBB permeability [80]. As seen
from Table 1, both chloroquine and hydroxychloroquine ful-
filled the requirements stated for molecular weight, polar sur-
face area and hydrogen bonding propensity (PSA, number of
N, O atoms; clogP – [N + O]) required for CNS penetration.
The size, lipophilicity and H bonding capability of
hydroxychloroquine are, in fact, closely aligned to that of
mefloquine, and the parameters obtained for quinacrine lend
support to its ‘CNS +’ status as implicated from its PAMPA
Pe.

The ability of antimalarials to cross the BBB could be
particularly important, in view of the neuroinvasive poten-
tial of SARS-CoV and SARS-CoV-2 and the observations
noted above that many COVID-19 patients have loss of
control of respiration and silent hypoxemia even without
lung exudates [38, 81]. Rats that received a fimbria-fornix
lesion showed increased cPLA2 in the septum (cell body of
some of the transected axons), accompanied by an increase
in the oxidative stress marker, 4-hydroxynonenal (4-HNE)
[18]. The latter is a breakdown product of peroxidized ara-
chidonic acid that has been released from membrane
glycerophospholipids by the action of cPLA2. It contains
reactive alkene and aldehyde groups and can form adducts
with and inhibit the function of cellular proteins.
Intraperitoneal injection of quinacrine to rats results in sig-
nificant reduction of both cPLA2- and HNE-positive cells
in the septum [82]. Observation of the brains of rats that
have received prior intraperitoneal quinacrine injections
showed that the brains were stained yellow due to the anti-
malarial drug, demonstrating clearly that it can cross the
BBB. This confirms the findings of an early study in pri-
mates that quinacrine is able to enter almost all tissues in the
body from the bloodstream and remain detectable for at

least a week even after blood levels have subsided [83].
The ability of quinacrine and other antimalarials to function
as cPLA2 inhibitors that are able to cross the BBB could
enable them to act centrally within the brain, in addition to
their peripheral effect, and could be a unique action among
existing anti-inflammatory agents, which is perhaps shared
with some of the brain-permeable statins [84–86].

Effect of Antimalarials on pH and Lysosomal
Enzymes

Chloroquine and hydroxychloroquine are lipophilic mole-
cules as seen from their estimated clogP values (Table 1;
Fig. 3). They are also strong bases with two ionizable basic
groups—a weakly basic quinoline ring N (pKa 6.3) and a
strongly basic side chain tertiary amine (pKa 10.5, 8.9)
(Table 1). Chloroquine is a known lysosomotropic agent. It
accumulates within lysosomes, which are highly acidic organ-
elles. Accumulation within lysosomes is driven by the physi-
cochemica l cha rac t e r o f thes e molecu l e s . The
monoprotonated state, which is the main species at physiolog-
ical pH, diffuses across the lysosomal membranes and, once
within the highly acidic environment of the lysosomes, ac-
quires protons to become the less permeable diprotonated
form. The latter is consequently trapped within the lysosomes,
thus inducing an increase in the pH of the compartment due to
the acquisition of protons to form the diprotonated state.
Hence, enzyme activity or any metabolic process within the
lysosomes that requires a low pH is impaired. For the malarial
parasite, this translates to an interferencewith parasite feeding.
This is one way by which chloroquine and related compounds
exert their antimalarial properties. We have earlier synthesized
and reported two acridine derivatives that have greater activity
than quinacrine against prions [87]. These compounds retain
the motif that is associated with lysosomotropic activity (lipo-
philic and with two basic centres). The structures of chloro-
quine, hydroxychloroquine, quinacrine and derivatives of
quinacrine are shown in Fig. 3.

Table 1 Assessment of the BBB
permeability of mefloquine,
chloroquine, hydroxychloroquine
and quinacrine based on
predictive physicochemical
properties [78, 79]

Antimalarial Molecular
weight

PSA
(Å2)a

Log
D7.4

b
Number of N and
O atoms

cLogPa clogP minus
(N+O) > 0

Mefloquine 377 46.7 0.5 3 4.0 Yes

Chloroquinec 319 27.6 1.6 3 5.1 Yes

Hydroxychloroquinec 335 47.9 2.0 4 4.1 Yes

Quinacrine 399 36.9 2.3 4 6.2 Yes

a Determined from ChemDraw Professional, Ver 15
bDetermined from ACD /Labs Version 12
c pKa values of chloroquine are 10.5 and 6.3. pKa values of hydroxychloroquine are 8.9 and 6.3. Determined from
ACD/Labs Version 12
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Effect of Antimalarials on Iron Metabolism

Interference with iron accumulation has been postulated as
one of the mechanisms by which chloroquine and
hydroxychloroquine are beneficial against COVID-19 [62].
This could occur via an inhibitory effect of antimalarials on
iron uptake into tissues (Fig. 4). An increase in brain iron level
is found by nuclear microscopy of the rat hippocampus un-
dergoing neuroinflammation after excitotoxic injury induced
by kainate [88]. The increased iron in the brain is accompa-
nied by increased expression of both a ferrireductase
DCYTB1 [89] and DMT1 [89, 90]. Intraperitoneal injections
of quinacrine resulted in reduced DMT1 expression and de-
creased numbers of ferric or ferrous iron–containing glial cells
in the degenerating hippocampus after kainate lesions [90].

Basic drugs such as antimalarials are also able to affect iron
uptake by inhibiting iron release from its transport protein,
transferrin [91]. Moreover, DMT1 is a H+/Fe2+ symporter that
needs a proton electrochemical potential gradient to drive the
transport of iron from endosomes into the cytoplasm [92], and
antimalarials could alter the pH environment that is necessary
for DMT1 transporter activity in endosomes.

Effect of Antimalarials on Viral Replication

It has been shown in cell culture that antimalarials can affect
coronavirus replication (reviewed in [93]). For example, chlo-
roquine was found to have significant effects on viral cell
entry and replication in vitro [94]. The exact mechanism is
unknown, although one possibility is that it may be related
to inhibition of cPLA2, which as mentioned, was found to
be essential for an early step in coronavirus replication [60].

Summary and Perspectives for Future
Development

COVID-19 is a pro-inflammatory-driven condition with loss
of smell and taste, suggesting that it may affect the olfactory
and gustatory systems and the brain. These effects may persist
even after the virus has been cleared from the body [43].
Antimalarials could have a beneficial effect on COVID-19
through (1) PLA2 inhibition, (2) pH change in lysosomes,
(3) modulation of iron metabolism [62] and (4) possible direct
antiviral activity. At the same time, antimalarials have the
ability to cross the BBB and thus be beneficial in alleviating
COVID-19-induced changes in the CNS. Chloroquine and
hydroxychloroquine were found to be effective in controlling
neurosarcoidosis in human patients. The drugs may be bene-
ficial in inexorable disease progression, in patients where cor-
ticosteroids are clearly contraindicated [95]. On the other
hand, anti-inflammatory treatment with hydroxychloroquine

for 18 months does not slow the rate of decline in early stage
or mild Alzheimer’s disease [96]. Further studies are needed
to determine the structure–activity relationships of antimalar-
ials to improve their efficacy for treatment of COVID-19.
Such research may also be fruitful in combatting other forms
of neuroinflammation associated with age-related neurologi-
cal disorders.

Non-randomized or randomized controlled trials on pa-
tients with COVID-19 have identified benefits in clinical
and v i ro log ica l ou tcomes wi th ch lo roqu ine o r
hydroxychloroquine treatment [97–99]. Other studies have
reported no positive effects [100]. One meta-analysis of pub-
licly available clinical reports suggests that chloroquine deriv-
atives are effective in reducing mortality by a factor of 3 in
patients infected with COVID-19 [101]. Few studies, howev-
er, have looked at CNS effects. At the time of writing of this
paper, there are 35 ongoing trials investigating the use of the
a n t im a l a r i a l d r u g s s u c h a s c h l o r o q u i n e a n d
hydroxychloroquine against COVID-19, with another 34
more registered [102]. It is important to take note of what
these ongoing clinical trials can eventually tell us about the
use of antimalarials and other anti-inflammatory agents [99],
for the treatment not only of COVID-19 but also of neuroin-
flammation and neurological/neurovascular disorders such as
stroke and vascular dementia.
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