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Abstract
Recently, a new form of autosomal recessive early-onset parkinsonism (PARK20), due to mutations in the gene
encoding the phosphoinositide phosphatase, Synaptojanin 1 (Synj1), has been reported. Several genes responsible for
hereditary forms of Parkinson’s disease are implicated in distinct steps of the endolysosomal pathway. However, the
nature and the degree of endocytic membrane trafficking impairment in early-onset parkinsonism remains elusive.
Here, we show that depletion of Synj1 causes drastic alterations of early endosomes, which become enlarged and
more numerous, while it does not affect the morphology of late endosomes both in non-neuronal and neuronal cells.
Moreover, Synj1 loss impairs the recycling of transferrin, while it does not alter the trafficking of the epidermal growth
factor receptor. The ectopic expression of Synj1 restores the functions of early endosomes, and rescues these
trafficking defects in depleted cells. Importantly, the same alterations of early endosomal compartments and trafficking
defects occur in fibroblasts of PARK20 patients. Our data indicate that Synj1 plays a crucial role in regulating the
homeostasis and functions of early endosomal compartments in different cell types, and highlight defective cellular
pathways in PARK20. In addition, they strengthen the link between endosomal trafficking and Parkinson’s disease.

Introduction
Synaptojanin 1 (Synj1) is an inositol-phosphatase

belonging to the family of Sac domain-containing pro-
teins1,2. Remarkably, with respect to the other lipid phos-
phatases, Synj1 contains two distinct phosphatase domains:
the Sac1 domain and the 5′-phosphatase domain2,3. The
Sac1 domain of Synj1 predominantly dephosphorylates
phosphatidylinositol (PI) monophosphates localised at
Golgi and endosome membranes3,4, whereas the 5′-

phosphatase domain dephosphorylates PI bi- or trispho-
sphates localised at the plasma membranes2,5. Hence,
thanks to this double enzymatic activity, Synj1 is involved in
different pathways depending on the cellular context6. So
far, it has been shown that Synj1, together with its inter-
acting partners dynamin and endophilin, is required for
synaptic vesicle endocytosis2,5,7,8. Moreover, Synj1 appears
to participate in the actin cytoskeleton polymerisation/
depolymerisation events9,10. Recently, it has also been
implicated to play a critical role in proper membrane traf-
ficking in zebrafish cone photoreceptors11,12.
Parkinson’s disease (PD) is the second most common age-

related progressive neurodegenerative disorder13,14.
Although 90% of PD cases are idiopathic, at least 10% are
inherited, and several causative genes have been identi-
fied13–15. Although these PD genes encode a functionally
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diverse set of proteins, many of them are implicated in
several steps of the endolysosomal pathway14,16. However,
the nature and degree of endocytic membrane trafficking
impairment in early-onset parkinsonism remains to be
elucidated16. Recently, mutations in the Synj1 gene have
been reported to be associated with PARK2017–19. The
same homozygous mutation, R258Q, was identified inde-
pendently in three families: one of Iranian and two of Italian
origin17–19. Afterwards, a novel homozygous mutation
(c.1376C>G, p.R459P) in Synj1 was identified in an Indian
family20. Both mutations are in the Sac1 domain. R258Q
has been reported to abolish both 3- and 4-phosphatase
activities, and do not affect the activity on PI(4,5)P2

18.
To give further insights into the role of Synj1 in the

control of endocytic pathways, we analysed the morphol-
ogy and dynamics of endosomal trafficking in neuronal
and non-neuronal cells in which the expression of Synj1
was suppressed. We show that loss of Synj1 impairs vesi-
cular trafficking at the plasma membrane/early endosome
(EE) boundary. Remarkably, a similar loss of endosomal
function was also revealed in primary cultures of fibro-
blasts derived from patients bearing the Synj1 homozygous
R258Q mutation, suggesting that defective endocytic
trafficking might be implicated in PARK20 pathogenesis.

Results
The loss of Synj1 drastically impairs the homeostasis of EEs
To analyse the role of loss of Synj1 function on endo-

somal trafficking, we produced two human cell lines,
HeLa and neuroblastoma-derived SH-SY5Y cells, in
which the expression of Synj1 was interfered by plasmid
vectors encoding specific short hairpin RNAs (shRNAs;
see Materials and methods section).
For each cell line, several pool of clones and single

clones (in the case of HeLa cells), ranging from 30 to 80%
of silencing, were selected (Fig. 1), and those with a
reduction of about 40–45% were used for further
experiments. Remarkably, in all selected HeLa clones, the
expression of Synj1 shRNAs reduced the expression of
both isoforms of the protein, 170 and 145 kDa (Figs. 1a-d).
To assess the potential impact of Synj1 deficiency on the

endocytic pathway, we analysed the morphology and
dynamics of the endolysosomal compartment in either
Synj1-silenced cells (Synj1i) or scrambled RNA trans-
fected control cells (Ctli) by immunofluorescence assays
using different markers of the endocytic route (Figs. 2, 3).
We observed that the depletion of endogenous Synj1

causes striking changes of EE structures (Fig. 2). As revealed
by the EEA1 antibody, the EEs increased in both number and
size in HeLa (Figs. 2a-e) and SH-SY5Y (Figs. 2l-o) Synj1i cells
when compared with EEs in Ctli cells. Strikingly, silenced
HeLa cells displayed numerous EEA1-positive tubular
structures (Figs. 2f-h), and the percentage of cells containing
these structures was drastically higher in Synj1i than in Ctli

cells (Fig. 2i). Furthermore, in both HeLa and SH-SY5Y
Synj1i cells, the endosomal structures displayed higher
fluorescence intensity with respect to control cells (Figs. 2d,
e, n, o), indicating an enlargement of these compartments.
Consistently, western blot analysis showed higher levels of
EEA1 both in HeLa (Figs. 2j, k) and in SH-SY5Y (Figs. 2p, q)
Synj1i with respect to Ctli cells, possibly due to its altered
dynamics. In addition, we obtained comparable results for
Rab5, another early endosomal marker, by immuno-
fluorescence (Supplementary Figures S1a-f) and western blot
(Supplementary Figures S1g-j) assays in both cell lines, thus
providing further evidence for EE alterations.
Furthermore, to rule out potential “off-target” effect

generated by shRNAs we analysed the morphology of EEs
by immunofluorescence assays upon transient transfec-
tion of three different specific small interfering RNAs
(siRNAs) against Synj1 in HeLa cells (Supplementary
Figures S2a-j), confirming the aforementioned results.
In contrast, in both cells lines we found no major

alterations of the late endosomes labelled with anti-Rab7
antibody both by immunofluorescence (Figs. 3a-f) and
immunoblot (Figs. 3g-j) experiments. Similar results were
obtained by staining early and late endocytic compart-
ments of Ctli and Synj1i HeLa cells with GFP-Rab5 and
GFP-Rab7, respectively (Supplementary Figure S3).
In general, our results indicate that the loss of Synj1 may

exclusively alter the homeostasis of EEs in both HeLa and
SH-SY5Y silenced cells, suggesting that Synj1 plays a similar
role in the control of EE homeostasis in different cell types.
In addition, Synj1 was localised in proximity of plasma

membrane as shown by double immunofluorescence
assays with a secretory membrane protein, PrPc
(Supplementary Figures S4a-c). Moreover, Synj1 was in
close contact with EEA1-positive dots (Supplementary
Figures S4d-g). These findings further support the
hypothesis of its involvement in the control of endocytic
functions.

The loss of Synj1 affects recycling trafficking, but not
trafficking to lysosomes
EEs represent an important sorting station for recycling

back to plasma membrane internalised molecules or even-
tually for their targeting to the lysosome for degradation or
transportation to early secretory compartments21,22.
Therefore, to determine whether the loss of Synj1 not

only alters the morphology of EEs, but might also inhibit
the functions of these organelles, we performed endocy-
tosis assays in both the Synj1-silenced cells and in the
scrambled shRNA-transfected cells. To this aim, we
examined the endocytic pathway of the transferrin (Tf)
receptor (TfR) and the epidermal growth factor (EGF)
receptor (EGFR), which upon internalisation follow two
different distinct itineraries: recycling and degradation,
respectively21,22.
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To monitor the trafficking of TfR, cells were incubated
with Alexa Fluor-488 or -546-conjugated Tf at 37 °C for
different time periods (5, 10, and 30min). At 5 min of
internalisation, the signal of Tf was comparable between
control and silenced cells (Supplementary Figure S5a and
c,e), indicating that the loss of Synj1 does not affect its
uptake and endocytosis. Conversely, at later time points, a
strong increase (of about 2.5-fold) of Tf signal was
observed in Synj1i cells (Supplementary Figure S5b and d-
e), indicating that Tf accumulates intracellularly and, on
the other hand, that its recycling to the surface is
impaired. Strikingly, in Synj1-depleted cells 30 min after
internalisation, Tf-positive compartments were mis-
localised in the paranuclear region (Supplementary Figure
S5b and d). A similar result was obtained when HeLa and

SH-SY5Y cells were incubated with Tf at 37 °C for 7 min
(pulse), washed to remove the unbound Tf, and then
incubated at 37 °C for different time periods in the culture
medium (chase; Figs. 4a-h and 5a-h). In these
experimental conditions, we found no difference in the
fluorescent signal and pattern in Ctli and Synj1i cells upon
pulse (Figs. 4a, d and 5a, d), confirming that the absence
of Synj1 does not interfere with Tf internalisation. As
expected, we observed a progressive decrease in Tf signal
at the chase times, both in HeLa (Figs. 4b, c, g, h) and SH-
SY5Y (Figs. 5b, c, g, h) control cells. On the contrary, in
Synj1i-depleted cells the fluorescent signal remained
higher at the same chase time points (Figs. 4e-h and 5e-h),
indicating that Tf is intracellularly stalled. The specificity
of Tf trafficking alterations is supported by the finding

Fig. 1 The expression of Synj1 was stably interfered in HeLa and SH-SY5Y cells by using short hairpin RNAs. HeLa a, c and SH-SY5Y e cells
stably transfected with scrambled (sh-ctl) or specific anti-Synj1 (sh-1 and sh-2) shRNA were tested for the expression of Synj1 by western blotting.
Tubulin was used as loading control. Representative immunoblotting is shown. The molecular weight of protein markers is indicated. H and L
correspond to 170 and 145 kDa isoforms, respectively. As previously described60, only the 145 kDa isoform has been found in neuronal cells. b, d, f
Densitometric analyses of three different experiments are shown. Results are expressed as mean values ± SD of the Synj1-interfered pool and clones
compared with scrambled interfered cells (set equal to 100%)
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Fig. 2 The loss of Synj1 drastically affects the homeostasis of early endosomes in HeLa and SH-SY5Y cells. Ctli and Synj1i HeLa a-c, f-h and
SH-SY5Y l, m cells were stained with EEA1 (early endosome antigen 1) antibody detected with Alexa-546-conjugated secondary antibodies. Serial
confocal sections were collected from the top to the bottom of the cells. a-c Representative images showing that the early endosomes are more
abundant and enlarged in Synj1i than in Ctli HeLa cells. Scale bars, 10 μm. For each condition, pictures at higher magnification (a1-c1) and 3D
reconstruction (a2-c2) are shown. Scale bars, 5 μm. The mean fluorescence intensity (d, arbitrary unit, a.u.) and the percentage e of larger EEA1-
positive structures (>1.1 μm) are strongly increased in Synj1i than in Ctli cells. The bars show relative mean values ± SD of three independent
experiments in four stably interfered HeLa cells (pool2 and cl1 for sh-1; pool1 and cl1 for sh-2), n ≥ 50 cells. f-h Representative 3D reconstruction
images show a greater number of EEA1-positive tubular structures in Synj1i cells than controls. i The bars show mean values ± SD of three
independent experiments in interfered HeLa cells (the aforementioned pools for both shRNAs); n ≥ 50 cells. j Representative immunoblotting of EEA1
in Ctli and Synj1i HeLa cells. Tubulin was used as loading control. The molecular weight of protein markers is indicated. k Densitometric analysis of
three different experiments performed in stably interfered HeLa cells (same pools and clones as in e) is shown. l, m Representative images showing
early endosomes more enlarged in Synj1i than in Ctli SH-SY5Y cells. Scale bars, 10 μm. For each condition, pictures at higher magnification (l1, m1)
and 3D reconstruction (l2, m2) are shown. Scale bars, 5 μm. n, o Mean fluorescence intensity (arbitrary unit, a.u.) in Ctli and Synj1i SH-SY5Y cells is
shown. Experiments were performed three independent times (using pool1 for sh-1, pool2 for sh-2), n ≥ 50 cells. p, q Immunoblot detection of EEA1
and densitometric analysis in Ctli and Synj1i SH-SY5Y pools as above described. Error bars, means ± SD. *p < 0.05 **p < 0.01, Student’s t-test
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that the same effect was observed upon siRNAs transient
transfection (Supplementary Figures S2k-t). To confirm
these results, we monitored the amount of TfR at the
surface after Tf exposure (30 min at 4 °C, time 0) for
different chase times by biotinylation assays (Figs. 4i, j).
Whereas at later time points, the extent of biotinylated
TfR increased in Ctli cells, it remained low in Synj1i cells
(Figs. 4i, j), indicating that recycling of the receptor is
impaired upon Synj1 silencing.
To further examine the effect of Synj1 inactivation on

endosomal trafficking, we analysed the dynamics of the
EGFR in the Ctli and Synj1i cells. For this purpose, Ctli or
Synj1i HeLa cells were transiently transfected with a plas-
mid vector bearing the complementary DNA (cDNA)
coding for the green fluorescent protein (GFP)–EGFR
fusion protein. As previously described23, 48 h after trans-
fection, cells were serum starved for 3 h in order to prevent
ligand-dependent internalisation. As expected, following
starvation (time 0), a higher amount of the GFP–EGFR
protein was found at the cell surface (Figs. 6a, d). The
GFP–EGFR protein entered the cells after EGF stimulation

(100 ng/mL) with a kinetic comparable between control and
silenced cells (Figs. 6a-h), strongly indicating that trafficking
towards the lysosomes was not affected in the Synj1-
deficient cells. Moreover, we evaluated EGFR levels upon
EGF induction at different times in presence of cyclohex-
imide (Figs. 6i, j). We observed no differences between Ctli
and Synj1i cells, further suggesting that EGFR degradation
is unaffected by Synj1 silencing.
Conclusively, these results clearly indicate that Synj1 is

crucial for the recycling pathway in the early endosomal
compartment.

The loss of Synj1 slightly alters morphology of lysosomes
Furthermore, to investigate whether the loss of Synj1

could affect the late steps of endocytic pathway, we ana-
lysed the morphology of the lysosomal compartments. As
shown by lysotracker dye labelling (Figs. 7a-f), in the
major part of HeLa and SH-SY5Y-silenced cells, lyso-
somes resulted enlarged and appeared as fluorescent dots
with more intense signal, indicating an alteration of these
organelles. Comparable results were observed for the

Fig. 3 The loss of Synj1 does not alter the homeostasis of late endosomes in HeLa and SH-SY5Y cells. Ctli and Synj1i HeLa a, b and SH-SY5Y c,
d cells were stained with Rab7 antibody detected with Alexa-546-conjugated secondary antibodies. Serial confocal sections were collected from the
top to the bottom of the cells. Representative images showing comparable late endosomes in Ctli and Synj1i cells a-d. Scale bars, 10 μm. Pictures at
higher magnification (a1-d1) are shown; scale bars, 5 μm. e, f Mean fluorescence intensity (arbitrary unit, a.u.) in Ctli and Synj1i cells is shown. The bars
show relative mean values ± SD of three independent experiments performed in pools and clones as described in Figs. 2e and n; n ≥ 50 cells. g-j
Immunoblot detection of Rab7 g, i and densitometric analyses h, j of three different experiments performed in aforementioned stably interfered HeLa
and SH-SY5Y cells. Calnexin and tubulin were used as loading control. The molecular weight of protein markers is indicated. Error bars, means ± SD
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Fig. 4 The loss of Synj1 leads to intracellular accumulation of transferrin in HeLa cells. (a-h) Internalisation assay of Alexa-488-conjugated
transferrin (Tf) in Ctli and Synj1i HeLa cells (see also Materials and methods section). Briefly, Tf was added to the cells at 37 °C for 7 min (pulse; a, d).
After washing out, cells were incubated in culture medium for different indicated times (chase; b, c, e, f). Representative single confocal sections a-f
show that Tf is uptaken similarly in control and silenced cells, whereas it is more intracellularly stalled in Synj1-interfered cells. Bars, 10 μm. Higher
magnification pictures are shown in the insets. 3D reconstructions are shown in Supplementary Figure S6a-f. g Mean fluorescence intensity (arbitrary
unit, a.u.) of Tf is shown. Experiments were performed three independent times in different silenced cells (pool2 and cl1 for sh-1; pool1 for sh-2). Error
bars, means ± SD; n ≥ 50 cells, **p < 0.01, Student’s t-test. (h) Curves of Tf internalisation expressed as mean values of fluorescence measured at chase
times compared with the fluorescent signal after pulse (set to 1) are shown (p < 0.001, Bonferroni test after significant ANOVA). i, j Immunodetection
of Tf receptor at the surface upon Tf induction by biotinylation assay (see Materials and methods section) in Ctli and Synj1i cells. Briefly, cells were
incubated with Tf for 30 min at 4 °C to prevent its internalisation (time 0), washed and then warmed at 37 °C in culture medium. At the end of each
chase time, cells were labelled with LC-biotin. One-tenth of lysates (total) was kept before streptavidin precipitation. Densitometric analysis is shown j,
and the results were expressed as percentage of the amount of protein at the time 0. Error bars, means ± SD; **p < 0.01, Student’s t-test
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lysosomal associated membrane protein 1 (Lamp-1) in
both cell lines (Supplementary Figures S7a-f). No sig-
nificant differences of two lysosomal markers, Lamp-1
and cathepsin D, were detected by western blot analyses
(Figs. 7g-l). Overall, all these findings indicate the Synj1-
silencing slight affects lysosomal compartments.

The re-expression of Synj1 restores proper functions of
early endosomal compartments
To rule out the possibility that the effects observed on the

endosomal pathway is not directly linked to Synj1, we tran-
siently transfected Synj1-depleted HeLa cells with a plasmid
vector encoding the wild-type Synj1 protein. In these
experimental conditions, we assessed the internalisation of Tf
by performing pulse-chase experiments as described in Fig. 4.
Differently to silenced cells, no intracellular accumulation of

Tf was found in Synj1-transfected cells after 20min of chase
(Fig. 8), indicating that the re-expression of Synj1 restores
proper trafficking of Tf.
These data confirm the critical role of Synj1 in reg-

ulating the functions of early endosomal compartments.

Patient fibroblasts show enlarged EEs and an impairment
of recycling trafficking
All the data obtained in the knocked-down cells indicate

that Synj1 is crucial for the homeostasis and functions of EEs
in different human cell types. Hence, to further corroborate
our hypothesis, we assessed the morphology of EEs and the
recycling trafficking in fibroblasts of PARK20 patients17,19.
In agreement with the results obtained in silenced cells,

we found that in the fibroblasts of patients, EEs were
expanded, as shown by the presence of larger and more

Fig. 5 The loss of Synj1 leads to intracellular accumulation of transferrin in SH-SY5Y cells. a-h Internalisation assay of Alexa-488-conjugated
transferrin (Tf) in Ctli and Synj1i SH-SY5Y cells. Cells were pulsed with Tf for 7 min and then chased for different indicated times as described in Fig. 4.
Representative single confocal sections show that Tf is uptaken similarly in control and silenced cells, whereas it is more intracellularly stalled in Synj1-
interfered cells. Bars, 10 μm. Higher magnification pictures are shown in the insets. 3D reconstructions are shown in Supplementary Figure S6g-l. g
Mean fluorescence intensity (arbitrary unit, a.u.) of Tf is shown. Experiments were performed three independent times in the two aforementioned
pools. Error bars, means ± SD; n ≥ 50 cells, **p < 0.01, Student’s t-test. h Curves of Tf internalisation expressed as mean values of fluorescence
measured at chase times compared with the fluorescent signal after pulse (set to 1) are shown (p < 0.001, Bonferroni test after significant ANOVA)
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intense fluorescent spots (Figs. 9a-g). Moreover, Tf was
greatly accumulated inside the cells of patients versus
fibroblasts from healthy controls and idiopathic PD
patients, confirming that its recycling was impaired
(Figs. 9h-m). Interestingly, the fibroblasts from healthy
heterozygous p.R258Q carriers displayed an intermediate
phenotype (Figs. 9b, i) because they showed, for both
analysed parameters (EEA1 staining and Tf internalisa-
tion), a statistically significant difference with respect to
both controls and PARK20 fibroblasts (Figs. 9f-g, m).
Altogether these results indicate that alteration of

homeostasis and function of early endosomal compart-
ments is Synj1 dependent and might be involved in
PARK20 neurodegeneration and pathogenesis.

Discussion
The mechanistic link between Synj1 and early-onset

parkinsonism is still unknown. This study demonstrates
that Synj1 plays a crucial role in the homeostasis and
function of EEs in different cell types, including neuronal
cells.

Defects of Synj1 loss
We showed that upon Synj1 depletion EEs, but not late

endosomes, are enlarged and, sometimes, mislocalised in
the paranuclear region. Moreover, although the inter-
nalisation of different ligands, such as Tf or EGF, is
unaffected in Synj1-depleted cells, the loss of Synj1
impairs the recycling of the TfR to the plasma membrane.

Fig. 6 The loss of Synj1 does not alter the trafficking of EGF receptor upon EGF binding in HeLa cells. a-h Ctli and Synj1i HeLa cells were
transiently transfected with cDNA coding for GFP–EGFR. 48 h after transfection, cells were serum starved for 3 h (time 0; a, d), incubated with EGF
(100 ng/ml) for different indicated times b, c, e, f, fixed and stained with a plasma membrane marker, CD55 (red). Serial confocal sections were
acquired from the top to the bottom of cells. The overlay of green and red fluorescence is shown in insets. Representative images show that EGFR
follows a comparable kinetic of internalisation upon EGF binding in Ctli and Synj1i cells. Bars, 10 μm. g, h Mean fluorescence intensities at the surface
g and in the intracellular compartments h were measured at the different chase times and expressed as percentages of total fluorescence. i, j
Representative immunoblotting of EGFR upon EGF stimulation. Cells were treated as aforementioned, and after each chase time they were lysed and
subjected to western blot analysis i. Tubulin was used as loading control. The molecular weight of protein markers is indicated. Densitometric analysis
is shown j, and the results were expressed as percentage of the amount of protein at the time 0. Error bars, means ± SD
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In contrast, it does not alter the trafficking of EGFR to the
lysosomes, indicating that the recycling pathway is spe-
cifically affected by the lack of Synj1. Altogether, these
data unravel a novel role for Synj1 in regulating mem-
brane trafficking in human cells. Consistently, a fraction
of Synj1 is recruited to EEs, as shown by its partial colo-
calisation with EEA1.
Although in presynaptic terminals, the role of Synj1 in

synaptic vesicle endocytosis and recycling is well estab-
lished2,5,7,24–26, only few studies have reported an invol-
vement of Synj1 in membrane trafficking. Loss of Synj1
has been shown to lead to defects in the endolysosomal
pathway in photoreceptor neurons of zebrafish12,27. These
defects include enlarged acidic vesicles, abnormal late

endosomes, an increase in autophagosomes, as well as an
abnormal accumulation of synaptic proteins within pho-
toreceptor cell bodies12,27. Contrary to this, our observa-
tions clearly highlight that, in human cells, Synj1 is
required for controlling the homeostasis of EEs and their
sorting functions. Consistently, the expression of the
DNAJC13 mutant, associated with autosomal dominant
PD, leads to accumulation of Tf in endosomal compart-
ments, also affecting their morphology28. Moreover,
mutations in other proteins associated with PD have been
shown to alter functions of these compartments29–31.
Furthermore, the accumulation of abnormal early endo-
somal structures have also been reported in the cell bodies
of neurons from mice overexpressing Synj132, indicating

Fig. 7 The loss of Synj1 slightly affects the lysosomal compartments in HeLa and SH-SY5Y cells. a-d Lysosomes of Ctli and Synj1i HeLa a, b
and SH-SY5Y c, d cells were labelled by using Lysotracker dye, which was added to living cells for 1 h at 37 °C (see Materials and methods section).
Serial confocal sections were collected from the top to the bottom of the cells. Representative images showing a slight alteration of these organelles
in Synj1i compared with Ctli cells a-d. Scale bars, 10 μm. Higher magnification pictures are shown in the insets (a1-d1). Bars, 5 μm. e, f Mean
fluorescence intensity (arbitrary unit, a.u.) in Ctli and Synj1i cells is shown. Experiments were performed three independent times in different silenced
clones as aforementioned. Error bars, means ± SD; n ≥ 50 cells. g-l Representative immunoblotting of Lamp-1 and cathepsin D in Ctli and Synj1i HeLa
g and SH-SY5Y j cells and densitometric analysis (h, i and k, l for HeLa and SH-SY5Y, respectively). Tubulin was used as loading control. The molecular
weight of protein markers is indicated. Mature (M; 33 kDa) and immature (I; 52 kDa) forms of cathepsin D are shown. Error bars, means ± SD. **p < 0.01
Student’s t-test
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that the level of expression of this phosphatase has to be
very finely tuned.
Interestingly, rod photoreceptors from zebrafish

mutants lacking Synj1, with respect to cones develop
normally and do not display morphological defects11, thus
postulating a differential role of Synj1 in these cell types.
However, Synj1 is ubiquitous and in humans it has a
broad tissue distribution, where it is expressed at com-
parable levels. Differently to what occurs in other species,
we found similar defects in endosomal trafficking in
human neuronal and non-neuronal cells, clearly indicat-
ing its ubiquitous role in human cells.
Together with previous findings, our data provide clear

evidence that Synj1 plays a pivotal role in regulating
membrane trafficking, not only at the synaptic terminals,

where it is required for synaptic vesicle reavail-
ability5,7,26,33, but also in the cell body of neurons, as in
other cell types where it is crucial for endosomal
recycling.
Furthermore, we also observed an enlargement of

lysosomes in Synj1-silenced cells. This could be a con-
sequence of the altered membrane trafficking from EEs.
However, this hypothesis is not supported by the fact that
late endosomes are not altered upon Synj1 loss, as the
trafficking of EGFR to lysosomes and its lysosomal
degradation appear to be unaffected. On the other hand,
the alteration of lysosomes could be due to increased
levels of autophagy. According to this hypothesis, a role
for Synj1 in regulating autophagy has been proposed in
zebrafish cone photoreceptors27 as in flies34. Moreover, in
an Alzheimer’s mouse model, altering Synj1 expression
causes changes in the delivery of amyloid beta to lyso-
somes35. Whether Synj1 might play a similar role in
mammalian cells and whether this could be concurrent
with the pathogenesis of PD will have to be explored in
future studies.
How the loss of Synj1 might alter EE homeostasis and

function? It has long been known that phosphoinositides
(phosphorylated derivatives of PI) are essential compo-
nents of cellular membranes and, thanks to the versatility
of the inositol group, have been implicated in many fun-
damental biological processes36–39. In the last decade,
they have emerged as important regulators of membrane
trafficking36,40–42. Because of their differential subcellular
distribution, phosphoinositides might allow the selective
recruitment of proteins containing PI recognition mod-
ules to specific membrane compartments. Thus, the levels
of phosphoinostides must be finely regulated in time and
space, and this is achieved by strict control of the sub-
cellular distribution, membrane association and activity
state of kinases and phosphatases.
Thanks to two consecutive phosphatase domains, Sac1

and 5′-phosphatase, Synj1 mainly dephosphorylates PI bi-
or trisphosphates localised in plasma membranes, and PI
monophosphates, PI(4)P and PI(3)P, enriched in the
membranes of Golgi apparatus and endosomes, respec-
tively36. For this peculiarity, Synj1 might be responsible of
different functions. The conversion of PI(4,5)P2 to PI(4)P
has been shown to be required for the clathrin uncoating
and vesicle endocytosis5,7. Although the deficiency of PI
(4)P might affect the structure and functions of the Golgi
complex43, its role in the plasma membrane is still
unclear, except for an indirect action as a crucial substrate
to generate PI(4,5)P2. It has been shown that PI(3)P
contributes to controlling the function of EEs as sorting
stations in the biosynthetic and the endocytic path-
ways36,42. Moreover, a variety of endosomal proteins
contain PI(3)P-binding modules, such as EEA1 and Hrs
(hepatocyte growth factor-regulated tyrosine kinase

Fig. 8 Ectopic expression of wild-type Synj1 restores the proper
trafficking of transferrin. a-d Synj1i HeLa were transiently
transfected with cDNA coding for wild-type Synj1 (+ Synj1, c, d) or
untransfected (just electroporated, a, b). Forty-eight hours after
transfection, cells were subjected to a Tf internalisation assay as
described in Fig. 4. After fixation, cells were stained with a specific
antibody anti-Synj1 (green). Representative images corresponding to
20 min chase of Tf a-d and mean fluorescence intensity (arbitrary unit,
a.u.; e) in untransfected and transfected cells are shown. Error bars,
means ± SD, n ≥ 30 cells; **p < 0.01, Student’s t-test. Scale bars, 5 μm
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Fig. 9 The homeostasis of early endosomes and transferrin trafficking is altered in patient fibroblasts. a-e Early endosomes of fibroblasts
from health control (wt/wt), heterozygous R258Q carrier (wt/R258Q), homozygous PARK20 (R258Q/R258Q) and idiopathic PD patients were labelled
with EEA1, detected with Alexa-546-conjugated secondary antibodies. Serial confocal sections were collected from the top to the bottom of the cells.
Scale bars, 5 μm. f, g The mean fluorescence intensity (arbitrary unit, a.u.; f) and the percentage of larger EEA1-positive structures (>1.1 μm; g) were
significantly higher in affected individuals than in control or PD fibroblasts. The bars show mean values ± SD of three independent experiments
performed in two individuals per each condition; n ≥ 50 cells. **p < 0.001, Bonferroni test after significant ANOVA. h-m Fibroblasts were subjected to
a Tf internalisation assay as described in Fig. 4. Representative images corresponding to 20-min chase of Tf h-l and mean fluorescence intensity
(arbitrary unit, a.u.;m) are shown. Scale bars, 10 μm. The bars show mean values ± SD of three independent experiments performed in two individuals
per each condition; n ≥ 50 cells. **p < 0.001, Bonferroni test after significant ANOVA
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substrate)44–46, and therefore the proper recruitment,
both in spatial and temporal terms, to these compart-
ments through PI binding could be crucial to exert their
functions. Thus, it is likely that the imbalance of PI(3)P
levels might lead to the alteration of EEs. Among endo-
somal proteins, it is conceivable that the dysfunction of
EEA1, which is a Rab5 effector and is required for
endosomal tethering, could be responsible for the
observed defects. Further studies will be needed to elu-
cidate this aspect.

Defects of the Synj1 mutation
Our immunofluorescence studies and endocytosis

assays revealed that EEs of PARK20 fibroblasts with the
homozygous missense R258Q are enlarged and the recy-
cling of Tf is impaired in these cells. Fibroblasts of healthy
R258Q heterozygous carriers show minor alterations in
endosome trafficking and recycling. These findings sug-
gest that alterations of homeostasis and functions of EEs
may account for the occurrence of the disease and that
endosomal trafficking is related principally to the Sac1
domain. In agreement with this, it has been shown that
the R258Q mutation abolishes both 3- and 4-phosphatase
activities raised by the Sac1 domain, whereas it does not
affect the activity on PI(4,5)P2

18. Previous studies showed
that both enzymatic domains contribute to synaptic
vesicle recycling in mice and in nematode worms7,25,47,
although the loss of 5′ phosphatase activity had more
severe consequences than the loss of Sac1 domain activ-
ity7. Moreover, the 5′ phosphatase, but not the Sac1
domain of Synj1, has been described as being involved in
regulating endolysosomal and autophagic trafficking in
zebrafish cones12,27.
In contrast, our data from fibroblasts of patients and

healthy R258Q carriers suggest that the Sac1 domain is
necessary for proper endosomal trafficking, and its activity
should be at least 50% to guarantee correct functionality.

Role of endosomal pathways in PD
Much evidence has highlighted that vesicle trafficking

pathways are implicated in PD mechanisms. In particular,
current emerging data highlight the pivotal role of the
autophagy–lysosome pathway in PD pathogenesis14,16,48–50.
Mutations in ATP6AP2, responsible of a X-linked parkin-
sonism with spasticity, reduce the activity of the vacuolar
(H+)-ATPase proton pump compromising lysosomal acid-
ification51. The expression of mutated leucine-rich repeat
kinase 2 (LRRK2), associated with PARK8, delays the
degradative trafficking of EGFR and causes enlarged lyso-
somes52,53. These defects may be ascribed to the decreased
levels of active Rab5 (due to enhanced kinase activity) with
reduced early to late endosome maturation54. The zinc
pump ATP13A2, mutated in PARK9, localises to

multivesicular bodies and has been found to promote the
extracellular release of alpha-synuclein via exosomes55–57.
Hence, through different mechanisms, these PD proteins
might lead to the dysfunction of these pathways, with
consequent impairment of lysosomal degradation, therefore
resulting in protein accumulation (among them alpha-
synuclein) and neurotoxicity. On the other hand, the
endosomal system, at crossroads of distinct intracellular
pathways, is a fundamental sorting station and is essential
for the maintenance of cellular homeostasis. In the last few
years, mutations in VPS35 (PARK17) and VPS26A (both
components of retromer complex) and in the endosomal
DNAJC13 (PARK21) have been associated with familial and
sporadic forms of PD28–31, suggesting that the dysfunction
of this critical cellular hub is a pathological mechanism of
disease. Our data provide new evidence for the implication
of EEs in PD, and together with past observations,
emphasise the role of endosomal trafficking in the patho-
genesis of this disease.
Regarding other cell types, neurons are more dependent

on these pathways, to ensure the fine balance between
recycling and degradation of synaptic proteins and/or of
specific cargoes, such as neurotransmitters or growth
factor receptors, as well as to supply bulk membrane flow
required for the continuous turnover of neuritis48. Our
observations that in the SH-SY5Y cells the altered endo-
somal trafficking was exhibited by a lower degree of Synj1
silencing and the number of knock down surviving cells
was lower compared with non-neuronal cells support the
hypothesis that neurons are more susceptible to the dys-
function of these pathways with respect to other cell
types. In addition, this phenomenon may help to explain
the central nervous system tissue-specific susceptibility of
PARK20.
We can hypothesise that the dysfunction of early

endocytic compartments correlates with the alteration of
neuronal plasticity or with the loss of neuronal viability. A
diffuse, nonspecific brain atrophy was observed only in
the Sicilian family by MRI, whereas a marked decrease of
dopamine transporter density in the striatum has been
found in all the patients subjected to single-photon
emission computed tomography with intravenous injec-
tion of 185MBq of [123I]FP-CIT (DaT-SCAN)17,19. These
data suggest that the defective EEs might lead to dys-
function of neuronal functions. A recent study showing
that neurons of mice carrying the R258Q mutation also
displayed endocytic defects and a delay in synaptic vesicle
endocytosis upon electrical stimulation26 further supports
this hypothesis. However, we cannot exclude that the
dysfunction of these compartments could also affect cell
survival over time and this can correlate with the pro-
gression of the disease. Further studies will be important
to elucidate these aspects.
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Materials and methods
Reagents and antibodies
Primary antibodies include the following: mouse mono-

clonal anti-EEA1 (Abcam) and rabbit polyclonal anti-EEA1
(ThermoFisher Scientific) for western blotting, monoclonal
rabbit anti-EGF receptor (Cell Signalling), goat polyclonal
antibody anti-cathepsin D (Santa Cruz), mouse monoclonal
anti-Lamp-1 (BD Phamigen); mouse monoclonal anti-Rab7
(Santa Cruz); mouse monoclonal anti-Rab5 (BD Trans-
duction Laboratories); rabbit polyclonal anti-Synj1
(Abcam); mouse monoclonal anti-Tf receptor (Thermo-
Fisher Scientific). LysoTracker® Red DND-99 and fluor-
escent Tf conjugates were from Molecular Probes
(Invitrogen). Alexa Fluor secondary antibodies were from
Life Technologies, and horseradish peroxidase (HRP)-
conjugated secondary antibodies used for western blot
analysis were from GE Healthcare. Basic chemicals were
from Sigma-Aldrich or AppliChem GmBH.

Cell cultures
Cell lines
HeLa and SH-SY5Y cells were maintained in RPMI-

1640 with 10% fetal bovine serum (FBS), and 2mM L-
glutamine. All cells lines were maintained at 37 °C in a
saturated humidity atmosphere containing 95% air and 5%
CO2.

Human fibroblasts
Fibroblasts from two patients (p.R258Q/p.R258Q) and

two heterozygous carriers (p.R258Q/wt) from the two
Italian PARK20 families were obtained after culturing skin
punch biopsies17,19. Written informed consent was
obtained from all the patients.
As controls, we used fibroblast cell lines derived from

two healthy, age-/gender-matched individuals and two
idiopathic PD patients. These cells were obtained from
our institutional biobank. All cells were investigated at
similar culture passages (P4–P6).
Cells were grown in Dulbecco’s modified Eagle’s med-

ium (DMEM) supplemented with 2 mM glutamine, 10%
FBS (PAA Laboratories GmbH, Pasching, Austria), and
penicillin/streptomycin, at 37 °C and 5% CO2.

Cell transfection and RNA interference
RNA interference was obtained by transfecting specific

shRNAs (from Open Biosystems) inserted in pShag Magic
version 2.0 (pSM2c) vector: shRNA-1 5′-TGAAC
ATATGCTAAGTAAAT-3′; shRNA-2 5′-AAATACTCT
GAATAGTGATT-3′. As negative control, we used an
shRNA against GFP, 5′-GGCACAAGCTGGAGTACA
ACTA-3′.
Transfection was performed using Lipofectamine 2000

(Invitrogen) according to the manufacturer’s protocol.
Stably transfected cells were obtained after selection with

puromycin (0.6 μg/ml, Sigma). In particular, we collected
both pool of clones or single clones derived from single-
cell colonies. For most experiments, both pool of clones
or single clones were used to better validate the effect of
Synj1 silencing.

Western blot analysis
Cells, grown on 100mm Petri dishes, were lysed with JS

lysis buffer (Hepes pH 7.5 50mM, NaCl 150mM, glycerol
1%, Triton X-100 1%, MgCl2 1.5 mM, EGTA 5mM) con-
taining a cocktail of protease inhibitors (Sigma). Lysates
were run on sodium dodecyl sulfate–polyacrylamide gel
electrophoresis, transferred onto polyvinylidene difluoride
or nitrocellulose membranes and revealed by western
blotting using specific antibodies.

Fluorescence microscopy
Cells, grown on coverslips, were washed with

phosphate-buffered saline (PBS), fixed with 4% paraf-
ormaldehyde (PFA) and quenched with 50 mM NH4Cl.
Then, cells were permeabilised with 0.2% Triton X-100
for 5 or 7 min (depending on the antibody) and blocked
for 30min in PBS containing 10% FBS and 1% bovine
serum albumin (BSA). Primary antibodies were detected
with Alexa Fluor-conjugated secondary antibodies.
For lysosome staining, cells were incubated for 1 h with

Lysotracker (1:1000) in complete medium before fixing.
Images were collected using a laser scanning confocal
microscope (LSM 510; Carl Zeiss MicroImaging, Inc.)
equipped with a planapo 63× oil-immersion (NA 1.4)
objective lens by using the appropriate laser lines. Images
were acquired with the confocal pinhole set to one Airy
unit, taking Z-slices from the top to the bottom of the cell
by using the same setting (laser power, detector gain), as
well as the same threshold of fluorescence intensity in all
experimental conditions (control and silenced cells).
Quantification and colocalisation analyses were carried
out using LSM 510 software as previously described58,59.
The mean fluorescence intensities were measured by
drawing regions of interest (ROIs) around the entire cell
and corrected for background. The number and size of
fluorescent puncta were carried out by using ImageJ
software59. For GFP–EGFR internalisation experiments,
the mean fluorescence intensity of surface and intracel-
lular GFP signals was measured by drawing ROIs around
plasma membrane labelled by a specific marker (CD55)
and around areas, which excluded surface signals,
respectively.

Internalisation assays
Tf internalisation assay
To monitor Tf internalisation and recycling, we used

two approaches. In the first approach, Alexa Fluor-488 or
-546-conjugated Tf (10 μg/ml) was added to the cells in
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culture medium containing 1% BSA at 37 °C for different
time periods (5, 10, 15, or 30min). Then cells were fixed
with 4% PFA.
In an alternative approach, cells were incubated with Tf

for 7 min at 37 °C (pulse), washed to remove the excess of
Tf and chased for different times (10, 20, and 30min).

EGFR internalisation assay
The cells were transiently transfected with cDNA cod-

ing for the chimeric protein EGFR–GFP (kind gift of C.
Puri) and after 48 h, were serum starved for 3 h as pre-
viously described23. Then, cells were stimulated with EGF
(100 ng/ml) at 37 °C and fixed with 4% PFA for different
times as indicated. In order to analyse only the trafficking
of protein coming from surface avoiding newly protein
synthesis, cells were incubated with cycloheximide (150
μg/ml) during the last hour of starvation and chase times.
The same experimental procedure was followed for bio-
chemical studies. In this case, after each time point cells
were lysed and subjected to western blot analysis.

Biotinylation assay
To detect the amount of Tf receptor at the surface upon

Tf stimulation, biotinylation assay was carried out. First,
cells were incubated with Tf for 30min at 4 °C to prevent its
internalisation (time 0). After washing to remove the excess
of Tf, cells were incubated in culture medium for different
chase times. Then, cells were biotinylated using LC-biotin
(Pierce), lysed and precipitated with agarose–streptavidin
beads (Pierce). Precipitated samples were revealed by wes-
tern blotting using specific anti-TfR antibody.

Statistical analysis
Two-tailed Student’s t-test or one-way analysis of var-

iance (ANOVA) followed by Bonferroni multiple com-
parison test were used for statistical analysis when
appropriate.
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