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Abstract: In order to reduce carbon emissions for sustainable development, we analyzed the impact
of China’s digital economy development on carbon emissions. Based on the panel data of 30 Chinese
provinces from 2009 to 2019, we measured the level of development of China’s digital economy
using the entropy method. The relationship between the digital economy and carbon emissions was
analyzed from multiple perspectives with the help of the fixed-effects model, the mediated-effects
model and the spatial econometric model. The results indicate that the digital economy plays a
significant inhibitory role in carbon emissions. In addition, the digital economy inhibits carbon
emissions through the innovation effect and the industrial structure upgrading effect. Moreover,
the digital economy exhibits a significant spatial spillover effect in dampening carbon emissions.
Finally, there is regional heterogeneity in the direct and spatial spillover effect. The findings provide a
basis for the digital economy to contribute to carbon emissions reduction and provide relevant policy
references for achieving carbon neutrality and sustainable development.
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1. Introduction

With the steady progress of reform and the opening-up process in China, the country’s
economic development has been greatly enhanced, creating an “economic growth miracle”
rarely experienced in the world [1]. However, this factor-driven extensive growth has also
led to a large consumption of energy and resources in China, resulting in high carbon
emissions [2]. According to the BP Statistical Review of World Energy, China has been the
world’s fastest-growing energy consumer for 19 consecutive years [3] and accounts for 29%
of the world’s total carbon emissions [4]. Although carbon emissions show a certain positive
association with economic growth [5], the large amount of carbon emissions will not only
impact the climate [6], but also human health. Previous studies have shown that carbon
dioxide can cause harm to human health through inhalation and skin contact [7,8]. Large
amounts of carbon emissions constrain long-term human development by affecting the
climate and thus, indirectly, human health [9,10]. Such effects include, unavoidable injuries
and deaths caused by extreme weather such as floods, storms and hurricanes; respiratory
diseases, asthma, and allergies; sunburn and skin cancer; and decreased crop yields caused
by environmental pollution and rising temperatures [11,12]. The negative impact on health
caused by excessive carbon emissions is not only a serious problem for our society today,
but also a serious constraint of sustainable development in the future [13]. Meanwhile,
information and communication technologies (ICT) such as the Internet, big data, cloud
computing, and artificial intelligence have been developed worldwide in recent years, and
these new technologies have been used as key factors of production and combined with
different economic activities to create a new economic form, i.e., the digital economy. With
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the development and widespread use of various digital technologies, the scale of the digital
economy has also begun to grow rapidly in recent years. The 2019 China Academy of
Information and Communications Technology (CAICT) calculation shows that the value
added to the digital economy in 47 countries reached USD 31.8 trillion, an increase of
USD 1.6 trillion from the previous year. Against the background of the growing trend of
digitalization and the steady advancement of the global digital economy, the effective use
of the digital economy to curb the growth of carbon emissions not only helps to alleviate
environmental problems, but also plays an important role in the improvement of human
health conditions. After summarizing previous studies, we found that existing studies have
made preliminary explorations of the effects of the digital economy on carbon emissions,
but have not yet reached a consensus. Firstly, in terms of ICT development, some studies
argue that ICT development has contributed to the increase in energy consumption and
carbon emissions [14]. Benefiting from the development of ICT technology, residents can
participate in environmental monitoring more easily and make up for the government’s
lack of environmental regulation [15]. Moreover, the development of the Internet can
reduce energy consumption intensity [16] through various channels such as technological
progress, financial development, and industrial structure upgrading and thus reduce carbon
emissions. However, due to the rebound effect [17], the impact of ICT on environmental
quality needs to be implemented simultaneously with corresponding policy measures
to curb CO2 emissions. Some studies hold the opposite view, arguing that the large
infrastructure demand for ICT construction leads to its implied carbon emissions far
exceeding its direct carbon emissions reduction [18], leading to an increase in energy
consumption and carbon emissions through rebound effects [19]. As part of the digital
economy, digital finance has an impact on carbon emissions as well. It can dampen carbon
emissions by facilitating economic growth, improving technological innovation [20], and
other channels. Moreover, the development of the digital economy may also bring about
the phenomenon of the digital divide [21,22], widen the income gap [23] and other effects.

In general, previous studies by scholars in this field have reached many important
conclusions. However, there are limitations to previous studies. First, most of the previous
studies only selected a certain aspect of the digital economy, such as ICT development
and digital finance, as an entry point to discuss its relationship with carbon emissions. In
addition, the theoretical analysis of the influence mechanism of the digital economy on
carbon emissions has not been analyzed sufficiently. Furthermore, are the effects of the
digital economy on carbon emissions exhibiting regional heterogeneity? Does the digital
economy affect carbon emissions in neighboring regions through spatial spillover effects?
The exploration of the above issues helps to clarify the intrinsic relationship of the digital
economy and carbon emissions, which is critical for realizing sustainable development
in China.

The main contributions of this research are as follows. Firstly, we construct a digital
economy evaluation system from four perspectives: digital economy foundation, digital
industrialization, industry digitization and digital economy penetration, which expands
and improves the evaluation perspective of the digital economy. Secondly, the theoretical
channel of the effect of digital economy on carbon emissions is proposed and verified with
the help of the mediated-effects model, which improves the inherent logical relationship
between the two. Third, a spatial econometric model is adopted to clarify the regional
spillover effect of the digital economy on carbon emissions. This paper constitutes a
reliable empirical reference for reducing carbon emissions worldwide, so as to alleviate the
environmental problems and health problems brought by carbon emissions and achieve
sustainable development. Since the carbon emissions of countries such as Brazil and India
also continue to grow [24,25], the findings of this paper can provide a factual reference and
theoretical basis for similar emerging economies to reduce their carbon emissions.

The remainder of the study is organized as follows. Section 2 conducts a literature
review and theoretical analysis and proposes research hypotheses. Section 3 provides
a description of the research methodology and data sources. Section 4 analyzes and
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discusses the empirical results. Section 5 provides conclusions and proposes relevant
policy implications.

2. Literature Review and Research Hypotheses
2.1. Digital Economy and Carbon Emissions

The concept of the digital economy was first introduced by Tapscott [26] and has
since been extensively researched and interpreted by scholars. Scholars generally agree
that any economic output generated based on digital goods or services, whether they are
wholly or partially dependent on digital technology, falls under the umbrella of the digital
economy [27–29]. In addition to enabling the traditional economy, the booming digital
economy has also enhanced the ability to integrate resources and innovation and has shown
a significant contribution to reducing energy use intensity and carbon emissions [30–32].
First, from a macro perspective, the digital economy’s ability to integrate information
and resources across regions can rebuild inter-regional economic structures, form positive
feedback innovation mechanisms to coordinate the development of manufacturing and
business, and thereby improve cross-regional synergistic innovation capabilities [33]. The
thriving digital economy has enabled the penetration and integration of digital technologies
into different parts of production to optimize production processes to reduce the wastage
of resources and improve the efficiency of resource utilization [34] and total factor pro-
ductivity [35]. The emergence of the digital economy is, to some extent, a reflection of the
increase in technology and knowledge stock, and the development of digital processes has
also effectively increased the ability to share information and knowledge [36]. The accu-
mulation of knowledge is a key factor influencing innovation [37], so the digital economy
can accelerate the innovation process to improve the efficiency of resource allocation and
utilization and inhibit carbon emissions. The development of the digital economy has not
only promoted technological innovation but also the emergence of new business models
such as the “platform economy” and the “sharing economy”, which enable enterprises to
achieve business development at relatively low costs [38]. Digital finance can solve the
problem of financing constraints on the implementation of new business models by allevi-
ating the mismatch of financial resources. New business models represent an increase in
production and operational efficiency, and thus a reduction in carbon emissions. Secondly,
from a meso perspective, the combination of the Internet with traditional industries has
given industries more opportunities and possibilities, injecting new impetus into their
development while also reducing carbon emissions. For example, the sharing economy
brought about by the combination of the Internet and traditional industries, such as the
sharing of trams and cars, has reduced the frequency of use of private cars by citizens, thus
reducing energy consumption and carbon emissions [39]. With the information production
factors provided by the digital economy, the ability of companies to access knowledge
and information from outside is greatly enhanced, and the diffusion of information and
technology between companies contributes to improving their innovation capabilities and
performance [40,41]. In addition, the increasing complexity of economic activities has made
it more difficult to regulate ecological and environmental issues, and the development of
digital technology has provided the appropriate technical support for government environ-
mental regulation. The use of big data, cloud computing, and remote sensing technology
has provided the government with technical support for real-time dynamic monitoring of
air quality, pollution emissions, and environmental carrying capacity [42,43]. Real-time
monitoring of environmental problems and the formulation of relevant environmental
policies for the government to curb regional carbon emissions provide the basis. Third,
from a micro perspective, online offices and mobile payments have reduced the frequency
of individual travel, paperless offices have reduced paper resource consumption, and
increased digitization has greatly reduced transaction costs and resource consumption [44].
Various internet platforms act as digital media to both increases the public’s access to
environmental perceptions and provide tools for the public to provide timely feedback on
environmental information [15]. Digitalization penetrates all aspects of an individual’s
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life through various means, reducing carbon emission levels. According to the above
theoretical analysis, Hypothesis 1 is proposed in this paper as follows.

Hypothesis 1. The development of the digital economy has effectively curbed the increase in
carbon emissions.

2.2. The Digital Economy, Mediating Mechanisms, and Carbon Emissions

Previous studies have shown that innovation and the upgrading of industrial structure
play a key role in curbing carbon emissions [45–47]. Therefore, the mediating effect analysis
in this paper also starts from the above two perspectives to explore the possible effects of
the innovation effect and industrial structure upgrading effect on carbon emissions. The
specific analysis is as follows.

2.2.1. The Digital Economy, Innovation Mechanisms, and Carbon Emissions

In terms of the digital economy infrastructure, China’s vast territory requires a large
amount of labor input to improve its digital economy infrastructure. In the process of
building and improving infrastructure, the endogenous technological progress of indus-
trial workers through the “learning by doing” effect [48] improves construction efficiency,
which in turn reduces carbon emissions. Secondly, in terms of digital industrialization, the
development of digital industrialization enhances the innovation capability and output of
enterprises by enhancing the sharing of information and knowledge among enterprises to
alleviate information asymmetry [40,41]. Similarly, in the digital age, the R&D departments
of digital enterprises have to accelerate the innovation process to maintain their relative
competitive advantage due to the full competition in the market [49], and the develop-
ment and application of new technologies, such as recycling technologies and other green
development technologies, can effectively reduce carbon emissions [50,51]. In terms of
digitization of industries, the introduction of digital technologies such as AR and VR can
enhance the intensity of interaction between industries and their target customers, thus
increasing their product sales. The application of big data also provides companies with
the necessary information for production decisions to reduce inventory accumulation and
resource waste, thus reducing carbon emissions [52]. In addition, artificial intelligence, the
Internet of Things, and cloud computing speed up the flow of new technologies among
different enterprises, thus allowing them to integrate and develop with each other for the
innovation of traditional industries [53]. Finally, in terms of digital economy penetration,
digital finance, as a proxy variable of digital economy penetration, is innovative in its
operation model compared to traditional financial institutions, avoiding the generation
of carbon emissions from offline activities by transferring some financial activities from
offline to online. With the help of massive information provided by big data technology,
digital finance can reduce carbon emissions by rationally allocating and directing financial
resources to environmentally-friendly sectors [54]. Since small and medium enterprises
(SMEs) are the main drivers and subjects of innovation, and innovation projects are long-
term and high-risk investment activities, financial constraints significantly constrain the
R&D activities carried out by SMEs [4]. Digital finance evaluates SMEs at a low cost and
provides these companies with financial resources that traditional financial institutions are
not willing to provide to effectively alleviate financing constraints, which in turn increases
corporate R&D investment and promotes the implementation and application of R&D re-
sults, thus promoting carbon emissions reduction. Through the above analysis, we propose
the following hypothesis.

Hypothesis 2(a). The digital economy reduces carbon emissions by promoting innovation.

2.2.2. The Digital Economy, Industrial Structure Upgrading, and Carbon Emissions

The industrial structure upgrading makes the production factors transfer to industries
with higher marginal returns and also makes the whole industrial structure greener [36,55],
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so the industrial structure upgrading also plays a crucial role in carbon emissions reduc-
tion [56,57]. From the perspective of the foundation of the digital economy, the massive
construction of digital infrastructure improves the efficiency of corresponding industrial
workers, and the efficiency improvement makes the surplus labor shift from the original
industry to some service industries with a lower technological threshold. The shift of labor
resources from manufacturing to the third industry promotes the upgrading of industrial
structure, while the carbon emission level of the third industry is much lower than that of
the secondary industry, thus suppressing the carbon emissions. From the perspective of
digital industrialization, the relevant digital industries represented by big data, cloud com-
puting, the Internet, the Internet of Things, etc., have higher technology content themselves,
and the emergence of these low-carbon emission industries represents the adjustment
and upgrading of industrial structure [30]. Secondly, digital industrialization provides
a carrier for technology diffusion, which promotes inter-regional technology trade and
spillover, which in turn play a key role in reducing carbon emissions [36,58–60]. From the
perspective of industrial digitalization, the deep cross-fertilization of the digital economy
and traditional industries accelerates the digital transformation process of traditional indus-
tries, and through the cross-regional integration and allocation of resources, the industrial
structure can be adjusted to eliminate high-emission, high-pollution, and low-efficiency
enterprises. Therefore, the promotion of industrial digitalization can also curb the growth
of carbon emissions. Finally, in terms of digital economy penetration, the widespread ap-
plication of digital technology can reduce frictional unemployment caused by information
asymmetry. High-tech enterprises can obtain more factors of production to support their
development by increasing marginal returns as they can obtain higher marginal returns.
This positive feedback mechanism between factors of production and marginal returns
further strengthens the development of high-tech enterprises. Digital finance can also
guide the transformation and upgrading of industrial structure and thus reduce carbon
emissions by directing the flow of financial resources to high-tech enterprises as well as
green enterprises. Through the above analysis, we propose the following hypothesis.

Hypothesis 2(b). The digital economy reduces carbon emissions by promoting industrial struc-
ture upgrading.

2.3. Spatial Spillover Effect of the Digital Economy and Carbon Emissions

Undoubtedly, the emergence of the digital economy has greatly weakened the in-
convenience of economic interactions caused by geographical distance. Through ICT, the
digital economy can enhance the efficiency of resource allocation and utilization in different
regions [61] and effectively promote the flow of various production factors between regions.
Moreover, due to the existence of externality, the conduct of an activity will not only have
an impact on the local area, but also on the surrounding areas. The benefits that cannot
be obtained locally due to the existence of such spatial externality are the spatial spillover
effect [62,63]. Therefore, the existence of spatial spillover effects makes the digital economy
have an impact not only on the carbon emissions in the region, but also on the carbon
emissions in the surrounding areas. Previous studies have also used spatial economet-
ric models to empirically analyze the influencing factors and spillover effects of carbon
emissions [64,65]. Yilmaz [66] conducted an empirical analysis based on panel data from
1990 to 1997 in U.S. states to verify the spatial spillover effect of ICT technology, and later
Liu [67] found that carbon emissions showed obvious spatial clustering characteristics by
analyzing CO2 emissions at the city level in China. Xu [30] also conducted an empirical
analysis by measuring the degree of ICT development, and the results showed not only
that the development of ICT capital can improve the efficiency of carbon emissions in the
region, but also that the spatial spillover effect on the surrounding areas cannot be ignored.
Based on the theoretical analysis and empirical tests by previous scholars, Hypothesis 3 is
proposed as follows.
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Hypothesis 3. The digital economy affects the level of carbon emissions in neighboring regions
through spatial spillover effects.

After the mechanism analysis of the above hypotheses, we constructed a mechanism
diagram of the role between the digital economy and carbon emissions, shown in Figure 1.
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3. Research Methodology, Variable Selection, and Data Sources
3.1. Empirical Model Setting

With reference to previous scholars [65], we set up a fixed-effects regression model as
Equation (1).

Yit = β0 + β1Digit + ∑ βkXk + µi + σt + εit (1)

where Y denotes the explained variable, the explanatory variable is the digital economy
index (Dig); β represents the parameter to be evaluated; X denotes the control variables;
i and t denotes region and year, respectively; and µi and σt denote region and time fixed
effects, respectively. εit denotes the random error term.

Furthermore, in order to verify the mediating mechanism of the impact of the digital
economy on carbon emissions as proposed above, we refer to the article by Wen [68] and
set up a mediating effect model as follows.

Mit = α0 + α1Digit + ∑ αkXk + µi + σt + εit (2)

Yit = γ0 + γ1Digit + γ2Mit + ∑ γkXk + µi + σt + εit (3)

where M is the mediating variable; the rest of the variables are defined as in Equation (1).
α1γ2 is the coefficient of the mediating effect of the digital economy through mediating
variables affecting the level of carbon emissions.

Since spatial data are spatially correlated [69], and CO2 emissions are a spatially
dependent process, emissions from one province are influenced by carbon emissions from
the rest of the neighboring areas while affecting the surrounding areas. Therefore, in order
to verify the possible impact of CO2 emissions on neighboring areas, i.e., the spatial spillover
effect proposed in Hypothesis 3, we also set the spatial econometric model as follows.

Yit = α + ρWijYit + α1Digit + θ1WijDigit + ∑ αkXit + ∑ θkWijXit + µi + ηt + εit (4)
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where ρ is the spatial autocorrelation coefficient, W denotes the weight matrix required for
the spatial Durbin model, and the Queen matrix is used as the regression matrix. Since
Hainan Province and the remaining provinces are not geographically adjacent, considering
the reality of China, Hainan Province and Guangdong Province are set as neighbors to
each other. θ denotes the coefficients of the spatial interaction terms of the explanatory and
control variables. The rest of the variables are defined as above.

3.2. Description of Variables
3.2.1. Explained and Mediating Variables

The explained variable selected for this study is the logarithm of carbon emissions (CE).
According to the above hypotheses, we also selected two mediating variables: industrial
structural upgrading (Struc), which is expressed as the share of the total output value of
the secondary industry in GDP [70], and innovation level (Inv), which is expressed as the
logarithm of the number of patents granted in each province.

3.2.2. Explanatory Variable

The explanatory variable is the digital economy index (Dig), which is measured by
the indicator system established in Table 1. Based on the interpretation and description of
the connotation of the digital economy by previous scholars, we selected indicators from
four aspects: the foundation of the digital economy, digital industrialization, industrial
digitalization, and digital economy penetration. Among them, the digital economy foun-
dation aspect mainly selects reference indicators from the level of digital infrastructure
construction, including four indicators: Internet penetration rate, the number of cell phone
base stations, the length of fiber optic cable lines per capita, and cell phone penetration
rate. In terms of digital industrialization, indicators are mainly selected from the degree of
development of the digital industry and the level of research and development, including
the total amount of telecommunications business, fixed asset investment of information
transmission and computer services, software industry, software business income, total
technology contract turnover, the output value of the information service industry, R&D
funding, and the number of patent applications granted. Industrial digitalization mainly
focuses on the degree of digitalization of traditional industries in the digital era, and the
number of websites per 100 enterprises, the proportion of enterprises with e-commerce
transaction activities, and the e-commerce transaction amount are selected to represent
them. Four indicators are selected for digital economy penetration: breadth of digital
financial coverage, depth of digital financial usage, digital financial digitization, and online
mobile payment level. The specific descriptions of each indicator are shown in Table 1.

The comprehensive evaluation methods mainly include two types of subjective evalua-
tion methods and objective evaluation methods. The entropy method is one of the objective
evaluation methods, which can make full use of the objective message included in the data
to assign weights to each index. In order to avoid the impact caused by subjective factors,
we measured the development level of the digital economy by the entropy method, and
the specific steps are as follows.

1. Data dimensionless treatment.

Let vij be the original data of the j-th indicator in the i-th evaluation object (i = 1, 2, 3,
. . . , n; j = 1, 2, 3, . . . , m). In order to make the data of different calibers comparable and
eliminate the difference of the dimension between the indicator data, the original data are
standardized; if the indicator is a positive indicator, then the processing formula can be
written as follows:

xij =
vij − min

(
vj
)

max
(
vj
)
− min

(
vj
) (5)
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If the indicator is negative, the treatment formula can be written as follows:

xij =
max

(
vj
)
− vij

max
(
vj
)
− min

(
vj
) (6)

vij(i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m) is the raw data of the j-th index of the i-th evaluation
object, and is the dimensionless value after standardization.

Table 1. Evaluation system of the digital economy.

Target Level Criterion Level Index Level Unit Indicator
Direction

Digital economy

Digital economy
foundation

Internet penetration rate % +
Number of cell phone base stations Million +

Length of fiber optic cable lines per capita Km/million people +
Cell phone penetration rate % +

Digital
industrialization

Total amount of telecommunications business Billion yuan +
Fixed asset investment of information transmission and

computer services, and software industry Billion yuan +

Software business income Million yuan +
Total technology contract turnover Million yuan +

Number of patent applications granted / +
R&D funding Billion yuan +

Output value of information service industry Billion yuan +

Industrial
digitalization

The number of websites per 100 enterprises / +
Proportion of enterprises with e-commerce transaction % +

E-commerce transaction amount Million yuan +

Digital economy
penetration

Breadth of digital financial coverage / +
Depth of digital financial usage / +

Digital financial digitization / +
Online mobile payment level / +

2. Calculate the entropy value and weight.

Let yij be the weight of the j-th indicator in the i-th evaluation object, ej be the en-
tropy value of the j-th indicator, and gj be the coefficient of variation in the j-th indicator,
where the number of evaluation objects, is the weight of the first evaluation indicator
(j = 1, 2, 3, . . . , m). Each coefficient is calculated by the following formulas.

yij =
Xij

∑n
i=1 Xij

(7)

ej = − 1
lnn ∑n

i=1yijln yij (8)

gj = 1 − ej (9)

wj =
gj

∑m
j=1 gj

(10)

3. Calculating the Digital Economy Score.

According to the weights of each indicator calculated by Equation (10) and the data
of each indicator after standardization, the level of digital economy development can be
calculated by Equation (11), where Dig represents the total digital economy score, and wj
and xij represent the weight and standardized value, respectively.

Dig = ∑m
j=1wjxj (11)
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3.2.3. Control Variables

For the control variables, the following indicators were selected with reference to previ-
ous literature [30,71,72]. (1) The level of economic development, expressed as the logarithm
of GDP per capita (PGDP). Previous studies have shown [14] that there is a significant corre-
lation between the level of economic development and carbon emissions. (2) Urbanization
(Urban), expressed as the ratio of urban population to total population. As a major source
of carbon emissions, the large demand for energy consumption triggered by an increase in
the urbanization rate may lead to an increase in carbon emissions [73] or reduce the level of
carbon emissions through economies of scale. (3) Trade openness (Open), expressed as the
ratio of total exports and imports to GDP [71]. In foreign trade, developed countries may
transfer carbon emissions to countries in need of development by way of industrial transfer.
(4) Foreign direct investment (FDI), expressed as the ratio of the total amount of foreign
investment to GDP [74]. Foreign investment can increase carbon emissions by contributing
to economic growth, and may also reduce carbon emission levels through technological
factor inputs. (5) Total population (Pop), expressed as the logarithm of the total population
in each province. An increase in population inevitably affects total carbon emissions [75].
(6) Environmental regulation (ER). According to previous studies, the degree of environ-
mental regulation is directly related to carbon emissions. Moreover, the degree of greenery
and the level of environmental regulation show a positive correlation—higher green areas
are usually associated with higher levels of environmental regulation [76]. We selected
green coverage as a proxy variable for environmental regulation.

3.3. Data Source

Due to the serious lack of data in Tibetan provinces, and the fact that data related to
the digital economy were not published before 2009 and after 2019, only panel data from
30 provinces in mainland China from 2009 to 2019 were selected for regression analysis
in this work. The data selected in this research are all from the statistical yearbooks of
each province; the China Statistical Yearbook; the Institute of Digital Finance, Peking
University; the CEADs database; and the CEE data platform. Some of the missing values
are supplemented by interpolation. (See Table 2 for the descriptive statistics of the variables
used in this study).

Table 2. Statistical description of the variables.

Variables Observations Mean Std. Dev. Minimum Maximum

CE 330 5.6050 0.7730 3.5680 7.4380
Dig 330 0.1450 0.1130 0.0221 0.6870

Struc 330 0.4440 0.0867 0.1620 0.5900
Inv 330 9.8140 1.4900 5.5760 13.1800

PGDP 330 10.3100 0.4200 9.2170 11.2800
Urban 330 0.5640 0.1270 0.2990 0.8960
Open 330 0.2710 0.3110 0.0127 1.5480
FDI 330 0.0207 0.0158 0.0001 0.0819
Pop 330 8.1970 0.7380 6.3240 9.3520
ER 330 39.0200 3.9300 27.1000 55.1000

4. Empirical Results
4.1. Estimation Results of the Benchmark Model

Before conducting the benchmark regression, the Hausman test is performed to select
the regression model, and the results of the Hausman test are shown in Table 3. The p-value
of the Hausman test result is 0.0328, indicating the rejection of random effects. In addition
to this, we also performed homoskedasticity and autocorrelation tests on the variables,
and both p-values were zero, indicating that the model is BLUE. The regression results
with stepwise addition of control variables are shown in Table 4. The regression results
from the first column show that the development level of the digital economy and the
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level of carbon emissions have a significant negative relationship. After adding further
control variables, although the coefficient of the digital economy changes from −0.762 to
−0.484, the overall coefficient is still negative and significant at the 10% significance level,
which reflects the robustness of the estimation results to some extent, thus verifying the
Hypothesis 1 proposed in this research. Our empirical results further augment the findings
of Li [72]. This also suggests that the Chinese government should vigorously play a positive
role in curbing carbon emissions in the digital economy and fully releasing the dividends
of the digital economy, thus making the development of the digital economy an effective
means to cope with the climate and environmental problems caused by the increase in
carbon emissions [72].

Table 3. Hausman test results.

Variables RE FE Difference S.E.

Dig −0.616 −0.738 0.122 0.028
FDI −0.376 −1.004 0.628 0.183

PGDP 0.177 0.164 0.012 0.000
Urban 1.848 1.996 −0.148 0.139
Open 0.072 −0.090 0.162 −0.048
POP 1.121 0.794 0.327 0.351
ER 0.011 0.012 −0.001 0.000

chi2(7) = 15.26 Probability > chi2 = 0.0328

Table 4. Benchmark regression results.

Variables FE1 FE2 FE3 FE4

Dig −0.762 *** −0.813 *** −0.568 ** −0.484 *
(−3.244) (−3.371) (−2.049) (−1.747)

FDI 0.571 0.161 0.440
(0.662) (0.187) (0.504)

PGDP 0.067 −0.084 −0.091
(0.911) (−0.967) (−1.046)

Urban 2.000 *** 1.925 ***
(3.004) (2.888)

Open −0.056 −0.008
(−0.408) (−0.057)

Pop 0.801 **
(2.126)

ER 0.007
(1.249)

Constant 5.417 *** 4.735 *** 5.257 *** −1.449
(189.316) (6.490) (7.103) (−0.464)

Year FE YES YES YES YES
Province FE YES YES YES YES

Observations 30 30 30 30
R-squared 0.407 0.410 0.435 0.447

Note: t-statistics in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

In terms of control variables, according to the results of the double fixed-effects model
shown in column 6 of Table 4, the coefficient of the urbanization rate is 1.925 and significant
at the 1% significance level. This means that a unit increase in urbanization level will result
in a 1.925 unit increase in carbon emissions level, a result similar to previous scholars’
findings [77]. The reason is that the increase in urbanization rate needs to be supported
by certain industrialization processes, and the increase in such industrialization processes
will significantly increase the energy consumption and thus the carbon emission level. In
addition, the increase in urbanization rate also means an increase in population density,
and the basic demands of electricity, heating, and consumption caused by the population
concentration will increase the carbon emissions level. The coefficient of the total population
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is 0.801 and significant at the 5% significance level, which implies that the increase in
population size leads to significant growth in total carbon emissions. This result is also
consistent with the findings of previous scholars [78], which indicate that the production
and living activities resulting from population increase inevitably lead to increased energy
demand and deterioration of environmental levels. Education and technology should
be developed to fully utilize the population agglomeration effect to improve energy and
environmental efficiency [36]. The coefficients of the remaining control variables are not
significant after fixing the year and province, indicating that the remaining control variables
are not significantly related to the explanatory variables from a statistical view.

4.2. Mediating Effect Model Regression Results

To further explore the mechanism of the mediating effect of the digital economy on
carbon emissions, the mediating effect model set by Equations (2) and (3) is used to verify
whether the digital economy affects carbon emissions through industrial structure upgrad-
ing and innovation. Most previous scholars who examine mediating effects adopt the
stepwise test method proposed by Baron [79], but this method is not fully reliable for the
test results of mediating effects, and it is easy to conclude insignificant results when the
coefficients are actually significant. Later, scholars proposed the Bootstrap method [80]
instead of the traditional Sobel method for mediating effects testing, which was widely
used. Therefore, the Bootstrap method is also used in this work to verify the existence of
mediating effects, and the results corresponding to the Bootstrap sampling 1000 times are
reported. Columns 2 and 4 of Table 5 show the effect of industrial structure upgrading
on carbon emission levels. The regression results show that the regression coefficient of
the digital economy on industrial structure is −0.004, while the regression coefficient of
industrial structure on carbon emissions is 1.019 and significant at 1% significance level.
The main reason for this is that the proxy variable of industrial structure selected in this
study is the share of secondary industry in GDP, which, combined with the Bootstrap
test results in Table 6, proves that the development of digital economy curbs carbon emis-
sions by promoting the upgrading of industrial structure. The development of the digital
economy has effectively led to the emergence of new technologies and their integration
with traditional industries, resulting in further optimization of the industrial structure.
This result is consistent with our theoretical analysis above and the findings of previous
studies [56]. Meanwhile, the Hypothesis 2(a) proposed above is confirmed. Columns 3 and
5 of Table 5 show the regression results of innovation effect on carbon emissions. As shown
in Table 5, the regression coefficient of the digital economy effect on innovation is 2.460
and significant at the 1% level, which indicates that each unit of increase in the level of the
digital economy will lead to a 2.460 unit increase in the level of innovation. The regression
coefficient between the innovation effect and carbon emissions is −0.091 and passes the 5%
significance test, which indicates that the increase in the innovation level can effectively
reduce the total carbon emissions. Our empirical results further augment the findings of
Baloch [54]. This, combined with the results of the Bootstrap test in Table 6, thus verifies
our Hypothesis 2(b).
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Table 5. Mediating effect regression results.

Variables Y = Struc Y = Inv Y = CE Y = CE

Dig −0.004 2.460 *** −0.480 * −0.262
(−0.098) (5.757) (−1.751) (−0.900)

Struc 1.019 ***
(2.743)

Inv −0.091 **
(−2.368)

FDI 0.070 −0.927 0.369 0.356
(0.503) (−0.689) (0.427) (0.411)

PGDP 0.137 *** 0.127 −0.230 ** −0.079
(9.964) (0.951) (−2.308) (−0.919)

Urban 0.062 0.133 1.862 *** 1.937 ***
(0.588) (0.129) (2.823) (2.929)

Open −0.042 * 0.209 0.035 0.011
(−1.927) (0.982) (0.254) (0.080)

Pop 0.053 3.797 *** 0.746 ** 1.145 ***
(0.893) (6.542) (2.002) (2.856)

ER 0.000 0.013 0.007 0.008
(0.062) (1.544) (1.253) (1.470)

Constant −1.357 *** −31.640 *** −0.066 −4.315
(−2.750) (−6.582) (−0.021) (−1.299)

Year FE Yes Yes Yes Yes
Province FE Yes Yes Yes Yes

Observations 330 330 330 330
R-squared 0.863 0.547 0.462 0.458

Note: t-statistics in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 6. Bootstrap test results.

Variables Coefficient z-Value p-Value

Struc
Direct effect −1.378 −3.56 0.000

Indirect effect −0.691 −3.01 0.003

Inv
Direct effect −1.598 −4.26 0.000

Indirect effect −0.472 −2.95 0.003

4.3. Analysis of Spatial Spillover Effects

Before conducting spatial econometric analysis, the existence of spatial correlation of
the main variables should be tested. To have a clear understanding of the spatial distribution
of the digital economy and carbon emissions, we plotted the digital economy and carbon
emission levels of each province on a map, as shown in Figure 2. From Figure 2, it can be
found that the carbon emissions show an obvious phenomenon of “high–high aggregation”
and “low–low aggregation”, and most of the provinces have a significant increase in carbon
emission levels in 2019 compared with the carbon emission levels in 2009. The development
level of the digital economy was low in the early stage of the study period, except in Beijing.
Later on, with the passage of time, the level of the digital economy in some central regions
and the eastern coastal regions increased to different degrees and also shows regional
correlation. In order to statistically verify whether there is a spatial correlation between
these two variables, Moran’s I index is used in this paper to verify the spatial autocorrelation
of the two variables for each year under the geographic adjacency matrix. The calculation
formula is as in Equation (12), where S2 = 1

n ∑n
i=1 (Yi − Y)2, Y = ∑n

i=1 Yi/n, Yi is the carbon
emissions in region i, and W is the spatial weight matrix, i.e., the spatial adjacency weight
matrix. The Moran’s I index measures the spatial global autocorrelation, and its value
range is [−1, 1]. When the value range is (0, 1], it means that there is a positive correlation,
and the correlation degree increases with the value. There is no spatial correlation when
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the value is zero, there is a negative spatial correlation if the value range is [−1, 0), and the
correlation degree increases with the decreasing number.

I =
∑n

i=1 ∑n
j=1 Wij(Yi − Y)(Yj − Y)

S2 ∑n
i=1 ∑n

j=1 Wij
(12)

Int. J. Environ. Res. Public Health 2022, 18, x FOR PEER REVIEW 13 of 22 
 

 
Int. J. Environ. Res. Public Health 2022, 18, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/ijerph 

Indirect effect −0.472 −2.95 0.003 

4.3. Analysis of Spatial Spillover Effects 
Before conducting spatial econometric analysis, the existence of spatial correlation of 

the main variables should be tested. To have a clear understanding of the spatial distri-
bution of the digital economy and carbon emissions, we plotted the digital economy and 
carbon emission levels of each province on a map, as shown in Figure 2. From Figure 2, it 
can be found that the carbon emissions show an obvious phenomenon of “high–high 
aggregation” and “low–low aggregation”, and most of the provinces have a significant 
increase in carbon emission levels in 2019 compared with the carbon emission levels in 
2009. The development level of the digital economy was low in the early stage of the 
study period, except in Beijing. Later on, with the passage of time, the level of the digital 
economy in some central regions and the eastern coastal regions increased to different 
degrees and also shows regional correlation. In order to statistically verify whether there 
is a spatial correlation between these two variables, Moran’s I index is used in this paper 
to verify the spatial autocorrelation of the two variables for each year under the geo-
graphic adjacency matrix. The calculation formula is as in Equation (12), where 𝑆ଶ  = ଵ ∑ୀଵ  (𝑌𝑖 − 𝑌‾)ଶ，𝑌‾  =  ∑ୀଵ  𝑌/𝑛, 𝑌 is the carbon emissions in region i, and W is the 
spatial weight matrix, i.e., the spatial adjacency weight matrix. The Moran’s I index 
measures the spatial global autocorrelation, and its value range is ሾ−1,1ሿ. When the value 
range is (0,1ሿ, it means that there is a positive correlation, and the correlation degree in-
creases with the value. There is no spatial correlation when the value is zero, there is a 
negative spatial correlation if the value range is ሾ−1,0), and the correlation degree in-
creases with the decreasing number. 𝐼 = ∑ୀଵ  ∑ୀଵ  𝑊(𝑌 − 𝑌‾)൫𝑌 − 𝑌‾൯𝑆ଶ∑ୀଵ  ∑ୀଵ  𝑊  (12) 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Carbon emissions and the development of the digital economy. (a,b) denote the level of
carbon emissions in each province in 2009 and 2019, respectively; (c,d) denote the digital economy
score in each province in 2009 and 2019, respectively.

From the Moran’s I index of carbon emission levels in Table 7, the p-value of carbon
emissions is less than 0.05 and positive in all years, indicating that the carbon emissions of
Chinese provinces show a significant positive spatial correlation. In contrast, the Moran’s I
index of the digital economy index in Table 8 is positive, but not significant at the beginning
and the end phase of the study. This is probably due to the fact that at the beginning of the
study period, the prospect of digital economy development was still uncertain, and only
some coastal provinces with high economic development levels had a good foundation for
the digital economy development, while the rest of the regions had a low level of the digital
economy, so the spatial correlation was not significant. At the end of the study phase, the
benefits brought by the booming digital economy were valued by local governments, both
infrastructure construction and market environment were improved compared to the early
stage of the study phase, and the overall level of digital economy development was higher
everywhere, which in turn led to an insignificant spatial correlation of the digital economy.
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Table 7. Moran’s I of carbon emissions.

Year Moran’s I E sd z p

2009 0.183 −0.034 0.012 1.964 0.025

2010 0.192 −0.034 0.012 2.048 0.020

2011 0.208 −0.034 0.012 2.187 0.014

2012 0.201 −0.034 0.012 2.125 0.017

2013 0.227 −0.034 0.012 2.362 0.009

2014 0.213 −0.034 0.012 2.236 0.013

2015 0.215 −0.034 0.012 2.254 0.012

2016 0.199 −0.034 0.012 2.108 0.018

2017 0.191 −0.034 0.012 2.034 0.021

2018 0.186 −0.034 0.012 1.992 0.023

2019 0.176 −0.034 0.012 1.903 0.029

Table 8. Moran’s I of the digital economy.

Year Moran’s I E sd z p

2009 0.099 −0.034 0.012 1.209 0.113

2010 0.114 −0.034 0.012 1.340 0.090

2011 0.086 −0.034 0.012 1.090 0.138

2012 0.146 −0.034 0.012 1.629 0.052

2013 0.130 −0.034 0.012 1.482 0.069

2014 0.132 −0.034 0.012 1.503 0.066

2015 0.134 −0.034 0.012 1.525 0.064

2016 0.119 −0.034 0.012 1.388 0.083

2017 0.104 −0.034 0.012 1.247 0.106

2018 0.100 −0.034 0.012 1.218 0.112

2019 0.094 −0.034 0.012 1.161 0.123

LM, LR, Robust LM, and Robust LR tests were performed on the set regression
equations before the spatial Durbin model (SDM) regression; the results showed that the
regression model could not be degraded to the spatial autoregressive model (SAR) or the
spatial error model (SEM), and the Hausman test indicated that a fixed–effects model
should be used, so the spatial Durbin model based on fixed effects was finally chosen for
the regression analysis in this research. Table 9 shows the regression results of the SDM
model, demonstrating that the digital economy shows a significant dampening effect on the
total carbon emissions in local regions, which further verifies the Hypothesis 1. In addition,
the coefficient of the spatial lag term of the digital economy, i.e., WDig, is 1.357 and is
significant at the 1% level, indicating that the development of the digital economy not only
affects carbon emissions in the local province but also in the neighboring provinces, and
there is a spatial spillover effect. Furthermore, we draw on previous scholarly research and
adopt a partial differential approach [81] to provide a detailed decomposition of the spatial
spillover effect. As can be seen from column 3 of Table 9, the indirect effect of the digital
economy on carbon emissions is positively significant at the 1% significance level, which
means that there is a positive spillover effect of the development of the digital economy
on neighboring regions. That is, the development of the digital economy will increase
the carbon emissions of neighboring provinces. The empirical result is consistent with a
previous study [67]. This is mainly due to the fact that the increase in the level of the digital
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economy in the province has forced the high-emission and high-polluting enterprises to
move to neighboring provinces, and this cross-regional transfer of industries has increased
the level of carbon emissions in these neighboring provinces. Through the above analysis,
Hypothesis 3 is proved.

Table 9. Spatial Durbin model regression results.

Variables Main Wx LR_Direct LR_Indirect LR_Total

Dig −0.854 *** 1.357 *** −0.865 *** 1.335 *** 0.470
(−3.382) (3.043) (−3.377) (3.111) (0.995)

FDI 0.556 6.260 *** 0.438 6.091 *** 6.530 ***
(0.701) (3.153) (0.581) (3.322) (3.181)

PGDP −0.032 −0.198 −0.022 −0.182 −0.204
(−0.422) (−1.448) (−0.292) (−1.423) (−1.429)

Urban 1.679 *** 2.724 ** 1.606 *** 2.444 ** 4.050 ***
(2.808) (2.313) (2.856) (2.239) (3.419)

Open −0.094 −0.056 −0.087 −0.030 −0.117
(−0.778) (−0.215) (−0.705) (−0.115) (−0.421)

Pop 0.854 ** 1.198 0.854 *** 1.084 1.938 **
(2.529) (1.619) (2.599) (1.502) (2.239)

ER 0.008 * 0.001 0.008 0.000 0.008
(1.695) (0.052) (1.634) (0.012) (0.701)

Year FE Yes Yes Yes Yes Yes
Province FE Yes Yes Yes Yes Yes

Observations 330 330 330 330 330
R-squared 0.413 0.413 0.413 0.413 0.413

Note: z-statistics in parentheses; *** p < 0.01, ** p < 0.05, * p < 0.1.

4.4. Analysis of Regional Heterogeneity

Due to the large number of provinces in China and the large regional differences in
both the level of carbon emissions and the degree of the digital economy development,
we further divided the 30 provinces in mainland China into three parts, East, Middle, and
West, according to the regional division criteria of China (see Appendix A for provinces
in each region), and regressed them separately in order to analyze their regional hetero-
geneity. The regression results in Table 10 show that the direct regression coefficients of the
digital economy on carbon emissions in the three major regions are all negative, indicating
that the increase in the level of the digital economy within each region has significantly
reduced carbon emissions. In terms of the direct effect coefficient, the digital economy has
the greatest inhibiting effect on carbon emissions in the central region with a regression
coefficient of −13.148, followed by the western and eastern regions with coefficients of
−4.542 and −1.120, respectively and all the coefficients passed the significance test. This
is mainly due to the effective implementation of a series of strategies for the rise in the
central region due to the policy support of the Chinese central government in recent years,
which has led to a significant improvement in both the level of economic development and
the state of infrastructure development in the central region. The development of digital
technology and its deep integration with the traditional economy has unleashed the full
potential of the digital economy, resulting in a significant increase in the level of digital
economic development from an average value of 0.164 in 2009 to an average value of 0.224
in 2019, which has better curbed the increase in carbon emissions. Second, in terms of
the coefficient of indirect effects, the western region has the largest spatial spillover effect,
followed by the eastern region, while the central region has a negative but insignificant
coefficient. This indicates that the market in the western region has more room for im-
provement due to the low level of development of the digital economy as a whole. The
development of the digital economy in one province can not only effectively dovetail with
the traditional industries in the region, but also lead to the improvement of the industrial
level in neighboring provinces. Moreover, the development of the digital economy in a
single province has created a significant demonstration effect, which has led to a reduction
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in carbon emissions in neighboring regions and therefore exhibits a significant spillover
effect. In contrast, the spatial spillover effect in the eastern region is weaker than in the
western region as the development of the digital economy in each province within the
region is at a higher level, and the radiation capacity and driving effect of the development
of the digital economy in each province on the surrounding provinces are more limited.

Table 10. Spatial Durbin model regression results by region.

Variables East Middle West

Dig −1.199 *** −13.057 *** −5.197 **
(-5.092) (−4.549) (−2.484)

Wx
−1.035 ** 1.219 −17.991 ***
(-2.484) (0.354) (−2.975)

LR_Direct
−1.120 *** −13.148 *** −4.542 **

(-4.716) (−4.189) (−2.239)

LR_Indirect
−0.746 ** −1.411 −15.748 ***
(-2.034) (−0.323) (−2.948)

LR_Total
−1.866 *** −14.559 ** −20.289 ***

(-4.193) (−2.217) (−3.225)

ρ
−0.204 ** 0.190 ** −0.132
(−2.201) (2.222) (−0.853)

Control Variables Yes Yes Yes
Year FE Yes Yes Yes

Observations 121 88 121
R-squared 0.965 0.055 0.011

Note: z-statistics in parentheses; *** p < 0.01, ** p < 0.05.

5. Robustness Test

To ensure the reliability of the empirical findings, we first replaced the explanatory
variables with the Digital Financial Inclusion Index (DFI) measured by the Institute of
Digital Finance of Peking University, which to some extent reflects the degree of digitiza-
tion in China. As the starting year of the index is 2011, the regression data are reduced to
2011–2019 data for robustness testing. The first column of Table 11 shows the results of
the regression with DFI as the explanatory variable, which shows that the coefficient of
the explanatory variable to be −0.003, remaining negative and significant at the 5% level.
Considering the possibility of a lag in the effect of digitization on carbon emissions, the
regression in the Digital Finance Index with a first-order lag as the explanatory variable
shows that the coefficient of the explanatory variable is still −0.003 and passes the signifi-
cance test. In addition, the explained variable is replaced with the level of carbon emissions
per capita (PCE) and then regressed, with the results shown in column 4 of Table 11, where
the regression coefficient is −12.284 and significant at the 5% level, similar to the baseline
regression results. This series of regression results also support the robustness of the above
regression results.
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Table 11. Robustness checks.

Variables
Y = CE Y = CE Y = PCE

X = DFI X = L.DFI X = Dig

X −0.003 ** −0.003 ** −12.284 **
(0.001) (0.001) (5.334)

FDI 0.986 0.534 22.180
(0.883) (0.867) (16.804)

PGDP −0.017 −0.001 −5.605 ***
(0.097) (0.087) (1.670)

Urban 0.769 0.124 38.790 ***
(0.802) (0.776) (12.822)

Open 0.185 0.230 * −3.716
(0.134) (0.136) (2.660)

Pop 1.905 *** 2.411 *** 6.444
(0.525) (0.582) (7.243)

ER −0.009 −0.009 0.126
(0.006) (0.006) (0.104)

Constant −9.847 ** −13.750 *** −11.887
(4.167) (4.563) (59.991)

Year FE Yes Yes Yes
Province FE Yes Yes Yes

Observations 270 240 330
R-squared 0.175 0.187 0.250

Note: “L.” in the table denotes the first-order lag of the variables; t-statistics in parentheses; *** p < 0.01, ** p < 0.05,
* p < 0.1.

6. Conclusions

With the deterioration of environmental conditions in recent years, the frequent occur-
rence of climate problems, and the growth of health problems accompanying the deteriora-
tion in environmental and climate problems, the transformation of development patterns
and the reduction in pollution emissions play crucial roles in current and future sustainable
development. The flourishing digital economy provides new impetus to transform devel-
opment models, reduce carbon emissions, and develop sustainably. However, most studies
have only considered a single dimension of the digital economy as an entry point to ana-
lyze the relationship between it and carbon emissions, such as ICT and carbon emissions,
digital finance and carbon emissions, etc. This analysis cannot fully reflect the theoretical
mechanism between the two. In view of this, we constructed an evaluation system for the
degree of digital economy development from four perspectives. The mechanism of the
effect between the two was analyzed in depth from several perspectives. Based on the
panel data of 30 provinces in China from 2009 to 2019, the relationship between the digital
economy and carbon emissions and the underlying mechanism was empirically tested in
multiple dimensions using the fixed–effects model, the mediating effect model, and the
SDM model. The findings show, firstly, that the digital economy significantly inhibits the
growth of carbon emission levels and remains significant after gradually increasing the
control variables, except for a change in the magnitude of the coefficient. The findings
are still valid after a robustness test with replacement variables. Secondly, the effect of
the digital economy in dampening carbon emissions shows regional heterogeneity, with
the development of the digital economy in the central region having the greatest curbing
effect on carbon emissions, followed by the western and eastern regions. Thirdly, the
development of the digital economy effectively reduces carbon emissions through two
mediating mechanisms: the innovation effect and the industrial structure upgrading effect.
Fourthly, the inhibiting effect of the digital economy on carbon emissions shows a signif-
icant spatial spillover effect. The development of the digital economy has a dampening
effect on carbon emissions both locally and in neighboring provinces. The spillover effect
is greatest in the western region, followed by the eastern and central regions, showing
regional heterogeneity.
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7. Policy Implications

Based on the above findings, we propose the following policy implications.
First, strengthen the infrastructure of the digital economy to lay a solid foundation for

the improvement of the digital economy. Increase the intensity of research and development
to give continuous impetus to the development and transformation of digital technology.
Promote the integration of traditional industries with digital technology vigorously to fully
unleash the potential of digital technology. Enhance the application of digital technology
to benefit more people and increase the penetration of the digital economy. Promote the
level of the digital economy from multiple perspectives so that it can effectively curb the
growth of carbon emissions.

Second, give full play to the innovation effect and industrial structure upgrading
effect of the digital economy. Let innovation become the inexhaustible power to develop
new industries and achieve industrial capacity expansion. Accelerate the process of the
digital economy to promote the upgrading of industrial structure. Get rid of the traditional
industrial development path dependence and thus achieve green low-carbon development.

Third, expand the channels of inter-regional dialogue and cooperation. The provinces
should also strengthen cross-regional cooperation and assistance in the process of continu-
ously promoting the deep integration of the digital economy and the traditional economy.
Make full use of the advantages of the digital economy in the transmission of information
and resource allocation, and promote the cross-regional flow of production factors in the
digital economy so that spatial spillover effects can be effectively brought into play to
achieve inter-regional synergy in carbon emissions reduction.

Finally, in addition to giving full play to the role of the digital economy in reducing
carbon emissions, the Chinese government should explore more possible mechanisms
to effectively address the growth of carbon emissions—for example, by accelerating the
research and development and application of renewable energy and clean energy to break
away from the energy path dependence of the traditional development approach, and
by accelerating the promotion of carbon emissions trading to effectively achieve carbon
emissions reduction through market mechanisms.

The limitations of the study are as follows. First, due to the limitations of data and
space, we can only analyze the relationship between the digital economy and carbon
emissions in the Chinese policy environment. Future research could explore whether the
digital economy in developed countries has a different impact on carbon emissions than in
China. Second, more impact mechanisms on carbon emissions should be ascertained to
better achieve carbon reduction and sustainable development.
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Appendix A

The eastern region includes Beijing, Tianjin, Hebei, Shanghai, Liaoning, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, Hainan; the central region includes Shanxi, Jilin,
Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan; the western region includes Inner
Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia, Xinjiang.
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