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Abstract A new liquid chromatography mass spectrom-

etry (LC–MS) metabolomics strategy coupled to chemo-

metric evaluation, including variable and biomarker

selection, has been assessed as a tool to discriminate

between control and stressed Saccharomyces cerevisiae

yeast samples. Metabolic changes occurring during yeast

culture at different temperatures (30 and 42 �C) were

analysed and the complex data generated in profiling

experiments were evaluated by different chemometric

multivariate approaches. Multivariate curve resolution

alternating least squares (MCR-ALS) was applied to full

spectral scan LC–MS preprocessed data multisets arranged

in augmented column-wise data matrices. The results

showed that sectioning the MS-chromatograms in different

windows and analysing them by MCR-ALS enabled the

proper resolution of very complex coeluted chromato-

graphic peaks. The investigation of possible relationships

between MCR-ALS resolved chromatographic peak areas

and culture temperature was then investigated by partial

least squares discriminant analysis (PLS-DA). Selection of

most relevant resolved chromatographic peaks associated

to yeast culture temperature changes was achieved

according to PLS-DA-Variable Importance in Projection

scores. A metabolite identification workflow was devel-

oped utilizing MCR-ALS resolved pure MS spectra and

high-resolution accurate mass measurements to confirm

assigned structures based on entries in metabolite dat-

abases. A total of 65 metabolites were identified. A pre-

liminary interpretation of these results indicates that the

strategy described in this study can be proposed as a gen-

eral tool to facilitate biomarker identification and model-

ling in similar untargeted metabolomic studies.

Keywords Metabolic profiling � Untargeted

metabolomics � Metabolite identification � Saccharomyces

cerevisiae � Multivariate curve resolution-alternating least

squares � Partial least squares-discriminant analysis �
Liquid chromatography–mass spectrometry

1 Introduction

Cell metabolites describe the physical and chemical char-

acteristics of organisms. Metabolomics aims to measure the

global, dynamic metabolic response of living complex

multicellular systems to biological stimuli or genetic

manipulation (Nicholson and Lindon 2008). It determines

changes in low molecular weight organic metabolites in

complex biological samples. By identifying biochemical

compounds whose concentrations have varied due to a

biological stimulus, metabolomics allows uncovering new

possible targets (biomarkers) for biochemical interpretation

of biological changes.

Currently, a range of analytical platforms are used for

metabolomic analysis, including direct infusion mass

spectrometry (MS) (Højer-Pedersen et al. 2008), gas

chromatography coupled to mass spectrometry (GC–MS)

(Lu et al. 2008), two-dimensional GC coupled to MS

(GC 9 GC–MS), liquid chromatography coupled to MS

(LC–MS) (Bajad et al. 2006), capillary electrophoresis

coupled to MS (CE–MS), and proton nuclear magnetic

resonance (1H NMR) spectroscopy and Fourier transform

infrared (FT-IR) spectroscopy. Complete chromatographic

separation of the components of complex biological
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samples is often difficult to achieve. Despite the funda-

mental advantages of metabolomics, so far no metabolomic

platform allows for the reliable complete separation,

detection and identification of all metabolites. Actually, the

analysis of the full metabolomes is a very difficult task due

to the large chemical diversity of cellular metabolites

(Villas-Bôas et al. 2005; Werf et al. 2007; Garcia et al.

2008; Theodoridis et al. 2012; Xu et al. 2014)

In general, targeted metabolomics approaches are

directed to the detection and quantification of specific

classes of compounds. In contrast, non-targeted meta-

bolomics aims to study the widest possible range of com-

pounds and enables the identification of most

discriminatory metabolites that can be used as biomarkers

(Glinski and Weckwerth 2006). A global non-targeted

metabolomics in combination with multivariate data ana-

lysis aims to the isolation of previously unknown bio-

markers specific to a particular biological stimulus.

LC–MS-based approaches are of particular importance

for non-targeted metabolomics. Metabolites can be

extracted with aqueous alcohol solutions and directly

analysed. In principle, LC–MS does not require any prior

pretreatment of samples to distinguish between different

metabolite groups of interest and it is suitable for the

detection of a wide range of metabolite classes. Depending

on the type of chromatographic column used for the ana-

lysis, various metabolite groups can be reliably analyzed

using LC–MS. High mass spectrometry resolution with

electrospray ionization (ESI) is the preferred method in

terms of universality, high throughput, resolution and

sensitivity (Niessen 1999).

When metabolomic profiles are analysed by LC–MS in

full spectral scan mode, some drawbacks, like baseline

distortion, retention time peak shifting and possible peak

shape distortions from one chromatographic run to another,

and possible strong peak coelution problems can appear.

Different chemometric methods can be used to reduce the

effects of these drawbacks, such as baseline correction

methods (Eilers 2004), peak alignment methods (Savorani

et al. 2010), warping methods (Nielsen et al. 1998),

wavelets methods (Walczak et al. 1996) and multivariate

curve resolution (Parastar and Akvan 2014). In particular,

because of the ubiquitous existence of the large number of

overlapping embedded peaks, multivariate curve resolution

methods can be very useful and necessary to achieve the

goals of metabolomics studies by full spectral scan LC–

MS.

Saccharomyces cerevisiae is a budding yeast species,

which comprises a group of unicellular fungi belonging to

Ascomycetes phylum. S. cerevisiae has been used as a

model for higher eukaryote species in biology because its

similar metabolism (Sherman et al. 2002; Castrillo and

Oliver, 2006). In this study the LC–MS metabolomics

approach is coupled to different chemometric methods,

such as MCR-ALS and PLS-DA, to explore the changes

observed in the metabolite profiles of S. cerevisiae when it

is cultivated at different temperatures. In this work, a new

strategy using Multivariate Curve Resolution-Alternating

Least Squares (MCR-ALS) (Tauler 1995; Peré-Trepat et al.

2005) is proposed as a general approach for proper inves-

tigation and resolution of complex and extensive LC–MS

data sets (in full spectral scan mode), where huge amounts

of information can be uncovered, including strongly hidden

coeluted and embedded unknown chromatographic peaks.

Related approaches have been already proposed in previ-

ous works (Pérez et al. 2009; Szymańska et al. 2009; Siano

et al. 2011) to solve similar coelution problems in meta-

bolomics, but this work goes a step further and apart from

their resolution, metabolites are also identified by their

exact mass. In addition, Partial Least Squares-Discriminant

Analysis (PLS-DA) (Barker and Rayens 2003) is applied to

the MCR-ALS results to investigate what metabolites were

more influenced by the temperatures changes on yeast

cultures, acting therefore as a possible biomarkers of

temperature stimulus on yeast cultures.

2 Experimental

2.1 Chemicals

Pure metabolites threonine, valine, isoleucine, glutamic

acid, adenosine monophosphate (AMP), adenosine tri-

phosphate (ATP), 3-phosphoglyceric acid, glucose-1-

phosphate, fructose-6-phosphate, fructose-1,6-biphosphate,

itaconic acid, succinic acid and citric acid were obtained

from Sigma-Aldrich (St. Louis, USA). Stock individual

standard solutions (500 lg mL-1) were prepared dissolv-

ing accurate amounts of pure standards in acetoni-

trile:water 1:1. Two standard mixture samples of these

compounds were prepared at 10 and 20 lg mL-1 concen-

tration levels in acentonitrile:water 1:1. Ethanol, Acetoni-

trile and HPLC grade water were obtained from Merck

(Darmstadt, Germany).

2.2 Culture conditions

Yeast strains W303a were grown in glass cultured tubes

overnight at 30 �C and 150 rpm in non-selective medium

(yeast extract peptone dextrose, YPD, 5 g L-1 yeast

extract, 10 g L-1 peptone, 20 g L-1 glucose). Eight shake

flask cultures were performed in 100-mL flasks with 50 mL

medium. Samples culture media were inoculated with

50 lL of yeast pre-cultures in YPD medium and incubated

for at 30 �C and 150 rpm. After 7 h four flask cultures
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were incubated at 30 �C and the other four flask cultiva-

tions at 42 �C, in both cases for 1 h.

2.3 Quenching and extraction of metabolites

Four types of samples were investigated (i) one standard

mixture at 20 lg mL-1 (ii) one standard mixture at

40 lg mL-1; (iii) four yeast samples cultivated at 30 �C;

and (iv) four yeast samples cultivated at 42 �C. The same

analytical pretreatment was applied in biological and

standards samples. Metabolites extraction procedure was

performed using three blank (without yeast) samples.

After culture, samples were poured to a 50 mL Falcon

tubes and the metabolism of the cultures samples was

rapidly inactivated cooling down the mixture on ice. Once

cooled down, all tubes were centrifuged at 4,000 rpm for

15 min at 4 �C. The supernatant was removed and yeast

pellets remained into the Falcon tube. Pellet was then

cleaned up with phosphate buffered saline (PBS). At this

point, the two standard mixture samples at 20 and

40 lg mL-1 were added. A volume of 25 mL of PBS was

poured into each sample to adjust their pH to 7.4. Falcon

tubes were centrifuged at 4,000 rpm for 10 min at 4 �C.

Again the supernatant was removed. This step was repeated

twice. All through the clean-up procedure, samples were

kept in cold.

Extraction of yeast metabolites was carried out accord-

ing to the procedure previously described (Gonzalez et al.

1997). Metabolites extraction was performed into 50 mL

Falcon tubes, adding 5 mL of solvent (75 % ethanol) to the

cell pellet and further incubation of the suspension for

3 min at 80 �C. After cooling down the mixture on ice,

sample volume was concentrated and dried by evaporation

using nitrogen gas. The residue was resuspended to a final

volume of 0.5 mL with the LC mobile phase (95 % ace-

tonitrile). Prior to pouring the final volume to a vial, it was

filtered through 0.2 lm GHP membranes (GHP, Acrodisc

Syringe Filters, Pall Life Sciences, USA) to further ensure

removal of any residual protein/debris before LC analysis.

2.4 LC–MS

An Accela liquid chromatograph (Thermo Scientific, He-

mel Hempstead, UK) equipped with a quaternary pump, a

thermostated autosampler and a TSKgel Amide-80 5-lm

(100 9 2.0 mm) column purchased from Tosoh (Tokyo,

Japan) was used. LC solvents were 0.5 mM ammonium

acetate in 90 % acetonitrile at pH 5.5 (solvent A) and

2.5 mM ammonium acetate in 90 % acetonitrile in 60 %

acetonitrile at pH 5.5 (solvent B). The gradient elution was

as follows: t = 0, 5 % B; t = 8, 60 % B; t = 12, 95 % B;

t = 17.5, 95 % B; t = 20, 5 % B; t = 30, 5 % B. Injection

volume was 5 lL and flow rate was 0.3 mL/min.

An LTQ Orbitrap Velos mass spectrometer (Thermo

Scientific, Hemel Hampstead, UK) equipped with an ESI

source in positive mode was used to acquire mass spectra

profiles in full scan mode. Operation parameters were:

source voltatge, 3.5 kV; sheath gas, 40 (arbitrary units);

auxiliary gas, 10 (arbitrary units), sweep gas, 5 (arbitrary

units); and capillary temperature, 275 �C. The acquired

mass range was from 50 to 1000 Da. The mass spectrom-

eter was interfaced to a computer workstation running

Xcalibur 2.1 software for data acquisition and processing.

2.5 Data import

Full scan MS spectra of different chromatographic runs

were saved in raw mode in Xcalibur software 2.0 (Thermo

Xcientific, San Jose, CA) and converted to mzXML by

ReAdW software (Seattle Proteome Center 2014) and

imported to MATLAB (The Mathworks Inc. Natick, MA,

USA) computer environment with the mzxmlread.m

function from the Bioinformatiocs Toolbox 3.0.

3 Chemometric data preprocessing and analyses

Chemometric data analysis included different multivariate

data analysis methods like Principal Component Analysis

(PCA), Partial Least Squares-Discriminant Analysis (PLS-

DA) and Multivariate Curve Resolution-Alternating Least

Squares (MCR-ALS) (Jaumot et al. 2005). Matlab R2007a

(Mathworks Inc. Natick, MA, USA) and PLS Toolbox

5.8.1 (Eigenvector Research Inc., Wenatchee, WA, USA)

were used as computer programming environments for all

chemometric analyses.

3.1 Data preprocessing

Each analysed yeast sample produced a raw full scan MS

chromatogram which was imported to Matlab and initially

binned to their integer mass to facilitate faster processing

and chemometric analysis. Each full scan MS chromato-

gram was stored in a data matrix with dimensions of 3,587

rows (retention times, ranging from 0 to 30 min) and 951

columns (mz intensity values, ranging from 50 to

1,000 Da).

Raw full scan MS chromatograms were size reduced,

giving a total number of 546 mz values within the mass

range between 55 and 600 Da. MS chromatograms were

then interpolated to the same retention times giving a total

number of 2020 retention times, ranging from 0 to 17 min.

Therefore the final size of every data matrix corresponding

to a full scan MS chromatogram of a yeast sample was of

2020 rows by 546 columns. Baseline and background

contributions were corrected by subtraction of the mean
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chromatogram of the blank samples. To have most of data

values at reasonable units (between 0 and 2), the intensity

scale of all chromatograms was divided by 108. The

resulting preprocessed data matrices from all yeast samples

were then analysed by MCR-ALS.

On the other hand, the eight Total Ion Current (TIC)

yeast MS chromatograms were also arranged altogether in

a single TIC data matrix (8 rows 9 2,020 columns). Before

its analysis, chromatographic peaks were appropriately

aligned to compensate possible between run retention time

shifts. The Correlation Optimized Warping (COW) method

(Nielsen et al. 1998; Tomasi et al. 2004) was selected for

this purpose. The application of this method required as

input parameters, the segment m, which is the length of the

sections in which the chromatogram is divided, the slack

size t, which is the maximum chromatographic peak

warping allowed and a reference chromatogram (Nielsen

et al. 1998). These parameters were selected according to

the method proposed in previous works (Skov et al. 2006).

In order to improve the application of the peak alignment

procedure, the TIC matrix (8 9�2,020) was divided in two

submatrices with dimensions of: 8 9�1,300 and 8 9�720,

and COW alignment was then performed in each part

individually. After alignment both windows were then

rejoined. Before PCA, the already aligned TIC chromato-

grams in TIC data matrix were mean-centred.

3.2 Data arrangement

Two types of data sets were analysed in this work: (i) the

eight individual Total Ion Current (TIC) chromatograms

arranged in a single TIC data matrix and (ii) the eight full

scan MS chromatograms sectioned in different windows

and arranged in different column-wise augmented data

matrices (see below).

No further arrangement was required for the single TIC

data matrix. In contrast, every full scan individual pre-

processed MS chromatogram data matrix was divided in

ten separate submatrices corresponding to different time

windows. This MS chromatogram window subdivision was

done manually according to peak shape and peak density,

and more specifically, not to miss those chromatographic

peaks that could change with temperature. The first time

window was discarded for MCR-ALS analysis since it only

contained signal background and noise, i.e. all chromato-

grams from blanks, standards and yeast samples had the

same shape profile at that initial time window. Therefore a

final number of nine windows (j = I, II,…, IX) were

selected from every full scan MS chromatogram data

matrix of the ten analyzed samples (4 control yeast sam-

ples, k = 1,2,3,4; 4 temperature stressed yeast samples,

k = 5,6,7,8 and two standard mixture samples, k = 9,10)

(see Fig. 1). Therefore, for each of the ten analyzed

samples, k = 1,…, 10, nine time windows were obtained,

j = 1, …, 9 giving the individual data submatrices Dj
k. As

can be seen in Fig. 1, individual data submatrices (Dj
k)

corresponding to the same chromatographic window for the

different analyzed samples were arranged in nine column-

wise augmented data matrices. The dimensions of these

nine column-wise augmented data matrices depended on

the dimensions of the selected time windows (selected

retention times). Thus, from window I to window IX the

augmented matrices dimensions were: 1010 9 546,

1110 9 546, 2210 9 546, 2910 9 546, 2080 9 546,

2760 9 546, 3410 9 546, 3210 9 546 and 4010 9 546.

In every case the first dimension refers to the sum of the

retention times of the ten included samples (4 control, 4

stressed samples and 2 standards), and the second dimen-

sion is equal to the number of mz values included in the

analysis, which were in all cases 546 mz values (from 55 to

600 Da).

3.3 Principal component analysis

Principal component analysis (PCA) was used for initial

exploration of the behaviour of yeast samples metabolic

profiles according to temperature changes. PCA com-

presses the information contained in the original variables

into a small number of new orthogonal variables (compo-

nents) built from linear combinations of the original vari-

ables explaining most of the measured data variance (Wold

et al. 1987; Esbensen and Geladi 2009). Plots of firsts

components are usually enough to explore the main sources

of variance in the original data. Here PCA was performed

on the TIC chromatograms of the eight yeast samples at the

two culture temperatures (30 �C and 42 �C).

3.4 Partial least squares-discriminant analysis (PLS-

DA)

PLS-DA (Barker and Rayens 2003) is a PLS regression

method (Geladi and Kowalski 1986b; Wold et al. 2001)

which correlates a set of response variables y to a set of

predictor variables X, where y is a set of binary variables of

describing the categories of X. PLS-DA estimates in an

very efficient way the best linear combinations of the

independent original X-values (called latent variables, LV),

which correlate optimally with the observed changes of the

dependent variable, y. PLS-DA tries to build a model that

maximizes the covariance between X and y with a mini-

mum number of latent variables. For every latent variable,

a vector of weight coefficients shows what X-variables are

best combined to form the X-scores vector.

This method was used in this work to investigate what

metabolites could be more influenced by temperature
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changes on yeast cultures. PLS-DA regression was applied

to optimally model class variable y (samples cultured at

30 �C categorized in class 0 and samples cultured at 42 �C

categorized in class 1, which described temperature chan-

ges in relation to the observed changes in the predictor

variables (X matrix) (Wold 1966; Geladi and Kowalski

1986a, b; Wold et al. 2001). In this work, two PLSA-DA

analysis were performed. In a first analysis, PLS-DA was

applied to the X TIC data matrix (with dimensions of

8 9 2020), as in PCA. In a second analysis, PLS-DA was

applied to the X TIC data matrix (with dimensions of

8 9 91), containing the peak areas of the components

resolved by MCR-ALS in the full scan MS chromato-

graphic analysis of the eight yeast samples at the two

temperatures (see Sect. 3.5).

To investigate the more influent variables (peak reten-

tion times and possible metabolites associated to them) in

the PLS-DA model, Variable Importance in Projection

(VIP) scores (Wold et al. 1993; Wold 1995; Wold et al.

2001) were calculated. VIP scores (Wold et al. 1993) are a

weighted sum of squares of PLS weights for each variable

and measure the contribution of each predictor variable to

the model. It is frequently used as a parameter for variable

selection (Chong and Jun 2005; Rajalahti et al. 2009;

Andersen and Bro 2010). For a given model and problem

there is one VIP-vector, summarizing the contribution of

the selected number of components on the prediction of the

y variable (Wold et al. 2001). On the other hand, since the

average of squared VIP score is equal to 1, the ‘greater than

one’ rule is used as a criterion for variable selection (Chong

and Jun 2005).

3.5 Multivariate curve resolution-alternating least

squares (MCR-ALS)

The goal of this analysis was to resolve the maximum

number of individual elution profiles and pure mass spec-

tral profiles of the possible metabolites extracted from the

investigated yeast samples. MCR-ALS is chemometric

method which allows for the resolution of multiple com-

ponents in unknown unresolved mixtures from chromato-

graphic systems, including strongly coeluted, overlapped

and embedded peaks.

In the particular case under study, the MCR bilinear

model is mathematically described according to:

Dj
k ¼ Cj

kSj;T þ Ej
k for j ¼ I; II; . . .; IX windows and k

¼ 1; 2; . . .; 10 samples
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Fig. 1 Schematic representation of the workflow following untargeted (LC–MS) data generation. The workflow involved experimental analysis,

data pre-processing and data analysis in order to identify possible biomarkers (yeast metabolites)
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Rows of data matrices D j
k are the different elution times

of the samples chromatographic analysis. Columns of data

matrices D j
k are the mass spectra recorded at the different

elution times. Cj
k is the matrix of MCR-ALS resolved

elution profiles in window j and sample k, and Sj;T is the

matrix of their corresponding pure mass spectra. These

resolved pure mass spectra can be then used for the iden-

tification of the different metabolites. Ej
k contains the

unexplained variance related to background and noise

contributions not modelled by C j
k and Sj;T.

This data analysis can be extended to the simultaneous

analysis of the different control and stressed yeast samples and

standard metabolite mixture samples (chromatographic runs),

which facilitated the resolution of the coeluted metabolites

simultaneously present in the yeast samples. Data submatrices

Dj
k corresponding to the same time window are settled one on

the top of the other (column-wise augmented matrices In this

new data arrangement, the new column (mz) vector subspace

is the same for all sample matrices. The new column-wise

augmented data matrix Dj
aug can be decomposed similarly

using the bilinear model equation:

Dj
aug ¼

Dj
1

Dj
2

Dj
3

..

.

Dj
10

2
66666666664

3
77777777775

¼

Cj
1

Cj
2

Cj
3

..

.

Cj
10

2
66666666664

3
77777777775

Sj;T þ

E
j
1

Ej
2

Ej
3

..

.

Ej
10

2
66666666664

3
77777777775

¼ Cj
augSj;T þ Ej

aug for j ¼ I; II; . . .; IX windows

The detailed procedure followed in the MCR-ALS

analysis of every window, Dj
aug is shown in Fig. 1. Nine

chromatographic windows were considered for MCR-ALS

analysis. These nine chromatographic windows (j = I, II,

…, IX) covered the full investigated time range. Ten sub-

matrices corresponding to the ten samples (k = 1, 2, …,

10) were considered in each augmented data matrix Dj
aug

for all studied windows. Every individual data matrix (one

window, one sample) had a number of rows equal to the

total number of recorded elution times in the considered

chromatographic region, although the total number of

considered rows (retention times) did not exactly match

among the different considered sample submatrices, Dj
k.

The number of columns was always equal to the same

number of considered mz. Cj
aug has the resolved augmented

elution profiles of the resolved peaks. Sj;T is the matrix of

pure mass spectra of the resolved coeluted compounds, and

Ej
aug matrix is the noise and background signal absorption

not explained by the model described by Cj
aug and

Sj;T(Tauler 1995).

Before starting the Alternating Least Squares (ALS)

iterative process to solve Eqs. (1) and (2), the number of

components is initially estimated by principal component

analysis (PCA) (Wold et al. 1987) or more simply, by the

singular value decomposition (SVD) (Golub and Loan

1996). In the present study, the applied constraints have

been non-negativity and spectra normalization. Non-nega-

tivity was applied to chromatographic and mass spectra

profiles and normalization constraint was applied to the

pure mass spectra profiles to fix their scale during ALS

optimization. See (Tauler and Barceló 1993; Tauler 1995;

Tauler et al. 1995; de Juan et al. 2009; Tauler et al. 2009)

for further details of MCR-ALS method and constraint

implementation.

Figures of merit of the MCR-ALS optimization proce-

dure are the percent lack of fit, which is the difference

among the input data Dj
aug and the data reproduced from the

product obtained by MCR-ALS (Cj
augSj;T); and the percent

of explained variance (R2).

Due to the high selectivity of pure component mass

spectra, rotation ambiguities were practically reduced to a

minimum. Only in cases where strongly coeluted peaks

have common molecular ions, it is expected to have some

degree of rotation ambiguity. Moreover the simultaneous

analysis of multiple data matrices, including those from

the analysis of the standard mixture samples, reduced

more the possible presence of rotation ambiguities asso-

ciated to MCR-ALS solutions of the augmented window

data matrices.

Full scan LC–MS data matrices of control and temper-

ature stressed samples, together with those of the standard

mixture samples, were simultaneously analysed by MCR-

ALS (see Sect. 3.2 and Eq. 2). First four matrices were the

LC–MS full scan data matrices of the control yeast samples

(cultured at 30 8C). Second four matrices were the LC–MS

full scan data matrices of the stressed yeast samples (cul-

tured at 42 8C) and last two matrices were the full scan

LC–MS data matrices of the two standard mixtures. The

later were included to check that MCR-ALS method was

appropriately applied to separate coeluted chromatographic

peaks of the components of the standard mixtures. As it

was already mentioned in Sect. 3.2, since the simultaneous

resolution of the whole LC–MS full scan chromatogram

would give an augmented data matrix of dimensions

(20200 9 546), the complete chromatogram obtained for

each individual sample was sectioned in nine windows,

subdividing then the MCR-ALS analysis in nine MCR-

ALS differentiated analysis of the corresponding data

submatrices, Dj
k, j = I, II, …, IX (see Sect. 3.2 and Fig. 1).
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4 Metabolite identification

Due to the high number of peaks generated from a meta-

bolomic analysis and in order to identify yeast metabolites,

the application of MCR-ALS was used to facilitate the

resolution of the coeluted and embedded chromatographic

peaks. Otherwise, resulting MS chromatograms were too

complex to process them at once and for the non-target

searching of the individual components. Results from the

ALS optimization are shown as: resolved eluted profiles,

Cj
aug matrices, and pure mass spectra, Sj;T matrices (see

Eq. 2). Peak areas of the resolved elution profiles were

used to investigate possible temperature effects and mass

spectra of the corresponding compounds were used for

yeast metabolites identification and confirmation (Fig. 1).

Since LTQ-Orbitrap instrument allowed for a very accurate

mass measurement of four decimal places, possible

metabolites candidates were investigated according to their

accurate mass (positively ionized) value. Most abundant

measurements of mz of all resolved pure mass spectra, Sj;T,

were used to match a metabolic feature to a single or small

number of molecular formula in combination with chemi-

cal and biological knowledge. Accurate mz data were

searched in Yeast Metabolome Database (YMDB) (Jewi-

son et al. 2012). The candidates were checked in full scan

MS chromatogram from LTQ-Orbitrap direct data acqui-

sition having full MS accuracy. MZmine 2 framework

(Pluskal et al. 2010) was used to search the resolved peaks

in the LTQ-Orbitrap original raw data, taking as a refer-

ence the peak retention time obtained in the MCR-ALS

eluted profiles matrix and the molecular formula matched

in YMDB. Mass tolerances of 0.01 millimass units (mmu)

were allowed for matching a particular molecular formula

when searched in LTQ-Orbitrap full scan MS chromato-

grams. In this way, it was ensured that considered MCR-

ALS resolved elution profiles matched with the ones

originally present in raw MS chromatograms. Further

confirmation of the MCR-ALS resolved candidates

(metabolites) was done by comparison with the metabolite

mass spectrum from the MassBank mass public spectral

database (Horai et al. 2010).

Although some ion types were expected (protonated

peaks, isotope peaks) others were not expected (adduct ions).

Initial identifications were refined using previous analyses of

the yeast metabolome (Canelas et al. 2009; Beltran et al.

2012). Predicted exact mass for different adducts were cal-

culated using the Mass Spectrometry Adduct Calculator

from Metabolomics Fiehn Lab webpage (Huang et al. 1999).

Identified metabolites were further functionally and meta-

bolically characterized using the KEGG database (Kanehisa

et al. 2012). Section 5.4 gives an example of detailed

application of the procedure described above.

5 Results and discussion

5.1 PCA and PLS-DA of MS-TIC chromatograms

When principal component analysis (PCA) was applied to

the mean-centered MS TIC data matrix (with 8 samples

and 2020 measured chromatographic retention times), three

principal components already explained 88.83 % of data

variance. In Fig. 2a, scores of the first two components are

given. PC1 explains 47.76 % of the data variance and

separates the samples in relation to the yeast culture tem-

peratures. Samples grouped in the negative side of PC1

axis were grown at 42 8C and samples grouped on the

positive side of PC1 axis are the control samples grown at

30 8C. Variances explained by PC2 and PC3 are related to

other unknown variability sources not dependent of

temperature.

Partial least-squares discriminant analysis (PLS-DA)

was applied to investigate the more relevant variables

(peak retention times) related to the discrimination between

control and stressed yeast samples. The performance of

PLS-DA model was also calculated on the mean-centred

MS TIC data matrix. PLS-DA was assessed by using leave-

one-out cross-validation method (adequate for a small

number of samples as in this study). y vector containing the

class labels was also mean-centred. First PLS latent vari-

able (LV1) already accounted for 47.32 % of X data var-

iance and for 86.66 % of the dependent variable y (low

temperature control samples and high temperature stressed

yeast samples). This confirms again that the main source of

variance in TIC chromatograms was related to temperature

changes. In the scores plot of PLS-DA (see Fig. 2b), the

two groups of samples (control and temperature stressed)

were clearly distinguished. To help the visualization of the

more influent variables PLS-DA VIP values were calcu-

lated (see Sect. 3.3 and Fig. 2c).

Due to the strong co-elution among multiple chro-

matographic peaks at the same retention times in all TIC

chromatograms, the evaluation of the relative importance

of the different variables (peak retention times) on tem-

perature changes was rather difficult and further analysis

was performed using MCR-ALS analysis of full scan MS

chromatograms. This allowed the improved mathematical

resolution of the coeluted peak profiles and the estimation

of their corresponding pure mass spectral profiles, and their

further identification (see below).

5.2 MCR-ALS of full scan LC–MS chromatograms

A total number of nine column-wise augmented data matri-

ces, each one corresponding to one of the nine windows,

were analysed separately by MCR-ALS. All MCR-ALS
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explained variance (R2) percentages were higher than 98 %.

A relatively large number of MCR-ALS components

(resolved peaks) were needed to explain properly the

observed data variance and patterns. Not all MCR-ALS

resolved components corresponded to true chromatographic

peaks which could be assigned to separate metabolites, since

other possible signal contributions such as the background

and solvent contributions could also be present.

Figure 3 is an example of MCR-ALS applied to the

column-wise augmented data matrix (Dj
aug) corresponding

to time window III (elution times from 1.82 to 2.69). In this

example, the two standard mixture samples were omitted

from the figure because there was no standard compound

eluting in this time window. As it can be seen in Fig. 3, the

four coeluted components (h, p, r, d) were successfully

separated by MCR-ALS analysis. Elution profiles (CIII
aug)

and pure mass spectra (SIII;T) are shown. The four

contributions (h, p, r, d) were identified by their mass

spectra as explained in Sects. 4 and 5.4 for their further

metabolite identification). There were other components

(not shown) which were sections of chromatographic peaks

corresponding to windows II and IV. There were also some

minor noise interferences without chromatographic peak

shape and very imprecise spectra, which were finally not

shown in the figure for clarity.

As stated before, when resolving the column-wise aug-

mented data matrices of every window j, Dj
aug with MCR-

ALS, mz resolution was restricted to one integer mass value

to facilitate its numerical analysis (see Sect. 3.1). This

resolution was generally enough to resolve the elution

profiles of the coeluted metabolites, and allowed the

simultaneous estimation of their full scan MS spectra at

this limited resolution. In some cases, however, this was

not sufficient, and an optimal resolution could not be
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Fig. 2 a PCA scores plot for the eight yeast samples (MS TIC

chromatograms). Convex hulls are drown around each yeast culture

temperature group with the same color as the corresponding symbols.

b PLS-DA scores plot for the eight yeast samples at the two

temperatures using their MS TIC chromatograms. c Variables

importance in projection (VIP) plot resulting from PLS-DA analysis

of full scan MS TIC yeast chromatograms. Horizontal red line shows

the threshold value used to select the variables with the most

important VIP scores. d PLS-DA scores of autoscaled chromato-

graphic peak areas obtained by MCR-ALS analysis of full scan MS

chromatographic data of the analysed yeast samples. In a, b and

d blue solid circles are control samples cultured at 30 �C and brown

triangles are yeast samples cultured at 42 �C (Color figure online)
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achieved. For instance, when two peaks were overlapped in

the same elution profile but giving the same MS, after

checking their exact mass in the high resolution raw data

these two compounds resulted to have slightly different

masses. Therefore, to allow the separation of these two

chromatographic peaks as different components higher

resolution data should be processed by MCR-ALS.

Once the whole set of column-wise augmented data

matrices corresponding to the nine time windows were

analysed by MCR-ALS, the areas of all MCR-ALS

resolved peaks for each component profile were calculated

and arranged in a data table. In total, 91 components were

resolved and their peak areas calculated for every one of

the eight analysed yeast samples, i.e. a table with a total

number of 8 9 91 peak areas was obtained.

Metabolite profiles in all window profiles were strongly

overlapped and their proper resolution was strongly facil-

itated by the proposed MCR-ALS analysis. It might be

argued that similar results could have been achieved using

LC–MS in single ion monitoring (SIM) mode once their

characteristic molecular MS ions were identified (target

analysis). However this analysis would have required the

exploration of such a large number of possibilities that it

would have made this metabolomic study very tedious and

impractical, if not unaccurate in many cases. Moreover, for

the goals of the present study, the larger the number of

possible unknown metabolites (non-target analysis)

simultaneously analyzed and resolved the more interesting

could be the conclusions derived from the obtained results.

5.3 PLS-DA of chromatographic peak areas

PLS-DA was applied to the peak areas of all 91 MCR-ALS

resolved elution profiles, for control and treated yeast

samples (X matrix with dimensions of 8 9 91). Prior to

PLS-DA model calculation, the peak areas were autoscaled

to give equal relevance to their possible change due to the

temperature differences in control and treated yeast sam-

ples. PLS-DA model was developed to investigate what

metabolite peak areas were more important in the
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Fig. 3 Example of MCR-ALS resolution (Multivariate curve resolu-

tion-alternating least squares) simultaneously applied to the column-

wise augmented data matrix (DIII
aug) corresponding to time window III

including the control and the stressed yeast samples. CIII
aug is the

matrix of MCR-ALS resolved elution profiles. SIII;T is the matrix of

MCR-ALS resolved MS pure spectra. Compound labels identification

in this example are: h hypoxanthine, p palmitic acid, r arbitol/ribitol,

d deoxyguanosine
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discrimination between yeast culture samples at 30 and

42 8C and to identify potential metabolites markers of the

temperature effects on yeast metabolism. No outlier sam-

ples were detected using a leave-one-out cross-validation

(adequate strategy for a small number of samples). One

PLS-DA component was enough to explain most of the

class variance (98.02 % variance) using the 44.99 % of

X variance related to the changes on chromatographic peak

areas of the resolved components, with specificity and

sensitivity values equal to 1 for each class.

In Fig. 2d, the projection of the first latent variable

(LV1) scores is given; two groups of samples are clearly

distinguished. Yeast samples at 30 8C were projected on

the negative scores axis whereas yeast samples at 42 8C
were projected on the positive scores axis.

VIP values (Eriksson et al. 2006) calculated from PLS-

DA model (see Sect. 3.3) revealed what variables (metabo-

lites) were more important to discriminate the effects of

temperature changes on yeast metabolism. Variables whose

VIP values were higher than 1.0 were considered as potential

indicators (Chong and Jun 2005) of these effects (see Fig. 4).

Results are listed in Table 2. PLS-DA VIPs (Fig. 4) and the

corresponding PLS-DA weights provided a summary of

PLS-DA results. In this table chromatographic peaks

increasing (‘Ups’) or decreasing (‘Downs’) at 42 8C relative

to the control samples cultured at 30 8C are given.

5.4 Tentative identification of possible biomarker

compounds

Identification of the metabolites corresponding to all 91

resolved chromatographic peaks was attempted. Taking as

example the pure MS spectrum of one of the components

resolved by MCR-ALS (at window IV, component 12, peak

40 on Table 2), its corresponding metabolite identification

was performed in the following way: Its main integer mass

value was 166 (molecular mass positively ionized). When

this mass value was searched in the YMDB database, pos-

sible candidates were L-methionine (R)-S-oxide, D/L-Phen-

ylalanine, 4-Pyridoxolactone, N-Formylanthranilic acid and

7-Methylguanine. These were the yeast metabolites that

when positively ionized, [M ? H]?, give the value of 166 as

the most abundant mz of its mass spectrum. When these

candidates were searched in the raw full scan MS chro-

matograms, using then high resolution mz values through

MZmine2 framework (Pluskal et al. 2010), D/L-Phenylala-

nine was the selected candidate that better matched with the

resolved chromatographic peak. Its accurate mass was

166.0858, which when searched in MassBank database

(Horai et al. 2010) was confirmed to be the spectrum of D/L-

Phenylalanine (with an accurate mass of 166.0868). Some

MS pure spectra resolved by MCR-ALS gave additional less

intense signal product ions which could be also used for

identification and confirmation of possible metabolite can-

didates. For instance, in the case of the MCR-ALS resolved

pure MS spectrum of D/L-Phenylalanine another ion mass

was detected at 120.0804, which matched very well with a

product ion of metabolite D/L-Phenylalanine at 120.0813 in

the MassBank data base. This should be considered a clear

additional advantage of the proposed MCR-ALS strategy

which is difficult to be achieved using traditional direct

identification approaches. MCR-ALS resolution strategy

allows the simultaneous identification of both molecular and

product ions in the spectrum of every resolved component.
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Following the same procedure, a total number of 65

metabolites were tentatively identified out of the 91

potentially different chromatographic peaks (Table 2). In

most cases (54 out of 65), observed mz values differed

from the calculated ones by less than 50 ppm (Table 2),

and this error was considered acceptable given the

methodology used in this work. All metabolites dis-

played in Table 2 are either bona fide yeast metabolites

classified as such in the YMBD (see YMDB numbers in

Table 2) or they have been identified in similar yeast

metabolome studies (Canelas et al. 2009; Beltran et al.

2012). Identified metabolites include 17 out of the 20

protein amino acids, plus L-Ornithine, although L-Serine

and L-Glutamine. Other major components of the yeast

metabolome were identified, as nucleosides and their

derivatives, vitamins, glycerol and some organic acids

and lipids (Table 2). In summary, the proposed meth-

odology correctly identified many of the major compo-

nents of the yeast metabolome. Further work and

improvement of the proposed methodology is persued to

allow the complete description of the more important

metabolites present in yeast cells.

5.5 Biological interpretation of the changing

metabolites

Results obtained in previous Sects. 5.3 and 5.4 showed that

some of the MCR-ALS resolved compounds displayed a

relative increase or decrease of their abundances (relative

chromatographic areas) depending on the culture temper-

ature (42 vs. 30 8C). Tentative identification of metabolites

whose abundance increased (Ups) or decreased (Downs) at

42 8C relative to the standard 30 8C culture temperature is

displayed in Table 1. In this case, almost 80 % of the peaks

showing a significant change of their area due to temper-

ature were tentatively identified. Functional analyses of the

altered metabolites did not allow an accurate assessment of

the metabolic pathway changes underlying the acclimati-

sation of the yeast cell to growth at high temperatures.

However, it is noticeable the increase of two pentose

alcohol, tentatively identified as ribitol and arabitol

(Tables 1, 2), coupled to the decrease of glycerol. Yeast is

known to maintain their osmotic balance by modifying

their internal concentration of glycerol and/or sugar alco-

hols (Hohmann 2002). Although S. cerevisiae is believed

Table 1 Temptative identification of yeast metabolites associated to chromatographic peaks changing their areas when culture temperature

changed from 30 to 42 �C

Ups Downs

Peak number C-number Metabolite Weight Peak

number

C-number Metabolite Weight

3 C06104 Adipic acid 0.1401 1 C00033 Acetic acid -0.1285

5 C05853 2-Phenylethanol 0.1568 2 C00097 L-Cysteine -0.141

6 C00077 L-Ornithine 0.1532 4 -0.1098

11 C00864 Pantothenate 0.1388 7 C00116 Glycerol -0.1121

12 C01571 Capric acid 0.1569 8 C00147 Adenine -0.1523

14 C00474 Arabitol/ribitol 0.1491 9 C00262 Hypoxanthine -0.1516

15 C00559 Deoxyadenosine 0.1549 10 C00249 Palmitic acid -0.1169

17 C06423 Caprylic acid 0.1558 23 C00791 Creatinine -0.155

19 C00120 Biotin 0.1255 24 -0.1315

25 C00474 Arabitol/ribitol 0.1518 32 LysoPC(18:1(11Z)) -0.1213

28 C01087 2-Hydroxyglutaric acid 0.1517 37 C00902 2-Oxohexanoic acid -0.1337

40 C00079 L-Phenylalanine 0.1229 39 C00160 Glycolic acid -0.1437

51 0.1356 48 C00250 Pyridoxal -0.1439

54 C00049 L-Aspartic acid 0.1423 52 C02794 L-3-Hydroxykynurenine -0.1293

62 C00041 L-Alanine 0.1247 53 C00082 L-Tyrosine -0.1176

72 0.1173 61 C00152 L-Asparagine -0.1112

75 C00114 Choline 0.1356 68 -0.1392

76 C07113 Acetophenone 0.1432 77 C02059 Phylloquinone -0.1277

80 0.1356 78 C00378 Thiamine -0.1454

81 0.1496 84 C00192 Hydroxylamine -0.1428

83 0.151 88 C01346 dUDP -0.1242

90 0.1135
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Table 2 Tentative adscription of yeast metabolites to observed mass values for the different chromatographic peaks (not only those showing

area changes when culture temperature change)

Peak

number

Retention

time

Highest

mass ion

Proposed metabolite KEGG

C-number

YMDB Adduct Adduct

m/z

error mz

(ppm)

[50 ppm

1 1.38 102.0547 Acetic acid C00033 YMDB00056 M ? ACN ? H 102.0549 1.96

2 1.33/1.69 123.0552 L-Cysteine C00097 YMDB00046 M ? 3ACN ? 2H 123.0569 13.81

3 1.7–2 293.1167 Adipic acid C06104 2M ? H 293.1231 21.83

5 1.8 267.1452 2-Phenylethanol YMDB01072 2M ? Na 267.1355 36.13

6 1.48 155.0811 L-Ornithine C00077 YMDB00353 M ? Na 155.0791 12.90

7 1.9–2 156.0656 Glycerol C00116 YMDB00283 M ? ACN ? Na 156.0631 16.02

8 2.1 136.0619 Adenine C00147 YMDB00887 M ? H 136.0618 0.73

9 2.26 137.0457 Hypoxanthine YMDB00555 M ? H 137.0458 0.63

10 2.28–2.38 148.0965 Palmitic acid C00249 YMDB00069 M ? H ? K 148.1053 59.42 *

11 1.85–2.5 220.1175 Pantothenate C00864 YMDB00203 M ? H 220.1180 2.16

12 2.1 211.1119 Caproic acid C01571 YMDB00677 M ? K 211.1095 11.37

13 2.3 268.1028 Deoxyguanosine C00330 YMDB00505 M ? H 268.1041 4.76

14 2.59 235.1192 Arabitol/ribitol C00474 YMDB00591 M ? 2ACN ? H 235.1288 40.83

15 1.95 252.1088 Deoxyadenosine C00559 YMDB00503 M ? H 252.1091 1.09

17 2.1 167.0922 Caprylic acid C06423 YMDB00676 M ? Na 167.1042 71.81 *

19 1.8 245.0949 Biotin C00120 YMDB00282 M ? H 245.0955 2.35

20 3.6 209.1032 Thymine C00178 YMDB00885 M ? 2ACN ? H 209.1033 0.48

21 4.1 195.0871 Uracil C00106 YMDB00098 M ? 2ACN ? H 195.0877 3.08

23 2.7 114.0659 Creatinine C00791 M ? H 114.0662 2.63

25 2.6 235.1192 Arabitol/ribitol C00532 YMDB00591 M ? 2ACN ? H 235.1288 40.83

26 3.1–3.3 494.3212 LysoPC(16:1(9Z)) YMDB02210 M ? H 494.3241 5.90

28 2.7 166.072 2-Hydroxyglutaric acid C01087 YMDB00059 M ? NH4 166.0710 6.02

30 3.3–3.4 192.1588 L-Arginine C00062 YMDB00592 M ? NH4 192.1455 69.22 *

31 2.7 184.0633 L-2-Aminoadipate YMDB00999 M ? NA 184.0580 28.65

32 2.85 522.3528 LysoPC(18:1(11Z)) YMDB02211 M ? H 522.3554 5.01

34 4.3 162.0576 Cystine C01420 YMDB00861 M ? 2ACN ? 2H 162.0457 73.29 *

35 5.9 150.0583 L-Methionine C00073 YMDB00318 M ? H 150.0583 0.00

37 2.3 148.0965 2-Oxohexanoic acid C00902 YMDB00388 M ? NH4 148.0968 2.03

38 1.8–2 205.0673 2-Oxobutanoate C00109 YMDB00071 2 M ? H 205.0707 16.58

39 4.5–4.6 159.0761 Glycolic acid C00160 YMDB00807 M ? 2ACN ? H 159.0764 1.89

40 4.5–4.6 166.0858 L-Phenylalanine C00079 YMDB00304 M ? H 166.0863 3.01

41 4.7–4.8 205.0972 L-Tryptophan C00078 YMDB00126 M ? H 205.0972 0.12

48 5–5.3 209.0917 Pyridoxal C00250 YMDB00392 M ? ACN ? H 209.0920 1.43

49 132.102 L-Isoleucine C00407 YMDB00038 M ? H 132.1019 0.76

49 132.102 L-Leucine C00123 YMDB00387 M ? H 132.1019 0.76

52 5.9–6 225.0858 L-3-

Hydroxykynurenine

YMDB00105 M ? H 225.0870 5.26

53 6.1–6.2 182.0804 L-Tyrosine C00082 YMDB00364 M ? H 182.0812 4.39

54 7.1 175.0866 L-Aspartic acid C00049 YMDB00896 M ? ACN ? H 175.0713 87.39 *

56 116.0705 L-Proline C00148 YMDB00378 M ? H 116.0706 0.86

57 6.2 118.0863 Histamine C00388 YMDB01556 M ? 3ACN ? 2H 118.0869 5.08

58 6 118.0858 L-Valine C00183 YMDB00152 M ? H 118.0863 4.23

59 6 72.0805 2-Nonanone YMDB01383 M ? 2H 72.0752 74.11 *

60 6.6–6.7 148.0605 L-Glutamate C00025 YMDB00271 M ? H 148.0605 0.00

61 7.6–7.7 150.0778 L-Asparagine C00152 YMDB00226 M ? NH4 150.0873 63.30 *

62 7.6 90.0546 L-Alanine C00041 YMDB00154 M ? H 90.0550 4.44

64 9.1 147.0764 L-Glutamine C00064 YMDB00002 M ? H 147.0764 0.00
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to only use glycerol for this protective function, the

observed changes may reflect a re-equilibrium in osmolite

concentrations as a response to the high growth tempera-

ture. Similarly, decrease of two structural lipids/organic

acids (palmitic acid and the lysophospholipid tentatively

identified as LysoPC(18:1(11Z)) may reflect an alteration

on the yeast lipid composition to adapt membrane fluidity

to the high temperatures. Finally, it is known that contin-

uous growth at high temperatures induces a switch in yeast

metabolism towards respiration from fermentation

(Mensonides et al. 2013)). Therefore, it is conceivable that

some of the observed changes, like the increase of short/

medium-length organic acids adipic, caprylic, and capric

acids, or the decrease of fermentation sub-products, like

acetate and glycerol, may reflect this metabolic adaptation

to temperature changes. Further interpretation of the

observed changes will require a more accurate investiga-

tion and knowledge of biochemical pathways of yeast

growing under different temperatures.

6 Concluding remarks

Direct analysis of preprocessed TIC chromatograms by

PLS-DA resulted to be a rather limited strategy to uncover

yeast growth metabolite concentration changes under

different temperatures. This limited strategy did not allow

for the identification of the most important metabolites

related to yeast culture growth under different tempera-

tures, due to the strong overlapping of the chromatographic

peaks associated for the large number of different coeluted

metabolites. The novel MCR-ALS strategy presented here

allowed the resolution of coeluted chromatographic peaks,

the calculation of their corresponding peak areas and the

resolution of their corresponding pure MS spectra.

In this work, a new workflow for metabolite identifica-

tion in untargeted metabolomics is demonstrated. The

resolved pure MS spectra together with the high mass

accuracy offered by the LTQ-Orbitrap enabled the identi-

fication of the resolved chromatographic peaks. A total

number of 65 metabolites out of the 91 total detected were

successfully identified. Changes in MCR-ALS chromato-

graphic peak areas of some of the metabolites in control

and stressed yeast samples were used to detect possible

variations of metabolite concentrations at the two different

culture temperatures by means of PLS-DA-VIP scores

analysis. Results revealed that the concentrations of 43

metabolites were significantly changed according to the

yeast culture temperature (stressing factor). Further

research is proposed to complete the biochemical inter-

pretation of the effects of temperature on yeast metabolome

and confirm possible biomarkers of these effects.

Table 2 continued

Peak

number

Retention

time

Highest

mass ion

Proposed metabolite KEGG

C-number

YMDB Adduct Adduct

m/z

error mz

(ppm)

[50 ppm

64 9.1 147.0764 L-Serine C00065 YMDB00112 M ? ACN ? H 147.0764 0.00

65 7 218.1384 Ergosterol C01694 YMDB00543 M ? H ? K 218.1548 75.25 *

67 8.8 120.065 L-Threonine C00188 YMDB00214 M ? H 120.0655 4.16

69 11–11.2 337.1677 Pyridoxamine C00534 YMDB00889 2M ? H 337.1871 57.53 *

70 9.5 162.1122 Octadecanoic acid C01530 YMDB00682 M ? H ? K 162.1210 54.08 *

71 10.2 258.1088 Glycerophosphocholine YMDB00309 M ? H 258.1101 5.04

73 9.7–9.8 246.0982 Deoxyuridine C00526 YMDB00508 M ? NH4 246.1084 41.54

74 11.3–11.4 401.1649 Cortisol C00735 M ? K 401.1725 18.84

75 11.7–11.8 146.1175 Choline C00114 YMDB00227 M ? ACN ? H 146.1413 162.86 *

76 9.5 121.0648 Acetophenone C07113 YMDB01629 M ? H 121.0648 0.00

77 10–11.3 151.123 Phylloquinone C02059 YMDB01526 M ? 3H 151.1239 5.80

78 12.7–12.9 154.0972 Thiamine C00378 YMDB00220 M ? ACN ? 2H 154.0767 133.05 *

82 12–12.1 130.0974 Methyl-3-ethyl-

butanoate

YMDB01749 M ? H 130.0988 11.00

84 13.8–14.2 116.0819 Hydroxylamine C00192 M ? 2ACN ? H 116.0818 0.86

86 14.9–15 309.1377 Adenosine C00212 YMDB00058 M ? ACN ? H 309.1306 22.89

87 15.5–15.6 131.118 lignoceric acid C08320 YMDB00684 M ? 2H ? Na 131.1231 38.89

88 14.5–15 145.1079 dUDP C01346 YMDB00746 M ? H ? 2Na 145.1020 40.96

89 14.2–14.3 181.0968 Limonene C06078 YMDB01727 M ? 2Na–H 181.0964 2.21

91 13.3 137.1069 2-Methyl-5-

propylpyrazine

YMDB01504 M ? H 137.1073 3.10
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Preliminary analysis, indicate that some metabolites linked

to cell growth were affected by temperature with a con-

sistent pattern of temperature-driven metabolic adaptation,

although changes observed are still giving an incomplete

description of the temperature effects on yeast growing

process. The proposed strategy can simplify considerably

the biochemical LC–MS data interpretation and allow the

uncovering of new targets for discovery (biomarkers).
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phen, T. Romà, & W. Beata (Eds.), Comprehensive chemomet-

rics (pp. 473–505). Oxford: Elsevier.

Tauler, R., Smilde, A., & Kowalski, B. (1995). Selectivity, local rank,

three-way data analysis and ambiguity in multivariate curve

resolution. Journal of Chemometrics, 9, 31–58.

Theodoridis, G. A., Gika, H. G., Want, E. J., & Wilson, I. D. (2012).

Liquid chromatography–mass spectrometry based global metab-

olite profiling: A review. Analytica Chimica Acta, 711, 7–16.

Tomasi, G., Berg, Fvd, & Andersson, C. (2004). Correlation

optimized warping and dynamic time warping as preprocessing

methods for chromatographic data. Journal of Chemometrics, 18,

231–241.
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