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There is a lot of recent interest in the field of computational pathology, as

many algorithms are introduced to detect, for example, cancer lesions or

molecular features. However, there is a large gap between artificial intelligence

(AI) technology and practice, since only a small fraction of the applications

is used in routine diagnostics. The main problems are the transferability of

convolutional neural network (CNN) models to data from other sources and

the identification of uncertain predictions. The role of tissue quality itself is also

largely unknown. Here, we demonstrated that samples of the TCGA ovarian

cancer (TCGA-OV) dataset from di�erent tissue sources have di�erent quality

characteristics and that CNN performance is linked to this property. CNNs

performed best on high-quality data. Quality control tools were partially able to

identify low-quality tiles, but their use did not increase the performance of the

trained CNNs. Furthermore, we trained NoisyEnsembles by introducing label

noise during training. TheseNoisyEnsembles could improve CNNperformance

for low-quality, unknown datasets. Moreover, the performance increases as

the ensemble become more consistent, suggesting that incorrect predictions

could be discarded e�ciently to avoid wrong diagnostic decisions.

KEYWORDS

ovarian cancer, tissue quality, quality control, deep learning, machine learning,

computational pathology, ensemble learning, data perturbation

Introduction

Pathology has always been responsible for the characterization of tissue samples,

while nowadays digital pathology transforms this discipline from a semi-quantitative to

a quantitative one (1). In addition to algorithms for quantification, convolutional neural

networks (CNN) can recognize and classify tumorous tissue (2, 3), predict molecular
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properties (4–7), and segment morphological structures (8).

However, most of these algorithms are not yet used in routine

diagnostics because they do not meet regulatory approvals,

leaving a large gap between AI in science and clinics. It was not

until 2021 that the first AI algorithm in computational pathology

was approved by the Food and Drug Administration (FDA)

(9). A major problem in overcoming this “translational valley

of death” is to ensure the reproducibility and generalizability

of the developed products (10) by defining appropriate test

datasets (11). All of these applications and algorithms depend,

of course, on the digitalized histomorphological whole slide

image (WSI) used in training and during application. Therefore,

it is important to understand exactly how algorithms respond

to limitations, such as poor tissue quality, and how to avoid

negative influences before approval.

Recently, a first stress test for a prostate cancer algorithm

investigated the influence of various artificially introduced

artifacts and showed that, depending on the severity, all tested

artifacts can lead to a loss of performance (12). In particular,

focus, strong JPEG compression, dark spots, and brightness or

contrast changes most strongly affected the results in this study.

Consistent with these findings, JPEG compression has also been

studied in breast cancer, showing that 85% or a ratio of 24:1 is

possible without significant performance loss (13, 14). The out-

of-focus effect has also been studied and can be detected using

Deep Learning (15–18). In line with the stress test, it is also

shown for breast cancer images that performance decreases with

generated and real blur effects (16).

However, the most commonly studied artifact in

Computational Pathology is the color appearance of H&E

(hematoxylin and eosin)-stained WSIs and it is well-known

that differences between datasets can drastically affect the

transferability of Deep Learning algorithms. Here, there are

several tools to align color profiles in different datasets and

improve the transferability of CNNs that depend on different

methods: Traditional methods use stain separation and preserve

the structure completely (19, 20), while newer methods use

Deep Learning-based style transfers to normalize colors (21, 22).

As it becomes more apparent that tissue quality and image

artifacts strongly influence the results of automated analyses,

and as moreWSIs become available to develop these algorithms,

it is important to provide automated quality control for all

images used. Therefore, the first global quality control tools

have appeared: HistoQC (23) uses Deep Learning to identify

artifact-free regions in WSIs and provides a combination of

image metrics to detect outliers; agreement with pathologists is

in the range of ∼95% for 450 WSIs from TCGA. PathProfiler

(24) also evaluates WSIs for usability using Deep Learning and

achieves a correlation of 0.89 to pathologists for prostate WSIs

from the ProMPT study.

However, it is not entirely clear to what extent the use of

such tools improves the performance of CNNs. It also needs

to be clarified whether poor-quality slides can be used for

algorithm development. In addition, methods are needed to

distinguish certain and uncertain predictions when using the

trained algorithms. Therefore, we introduce NoisyEnsembles,

which can improve the transferability of algorithms trained on

high-quality data to unseen data of lower quality. Taking into

account the consistency of the ensemble, low-quality tiles could

be sorted out and the performance further improved.

Materials and methods

Datasets, annotation, and scoring

WSIs from the TCGA-OV dataset (n = 101 DX slides,

Supplementary Table S1) were downloaded and used for

training, validation, and testing as described in this manuscript.

In addition, WSIs from the UKF (University Clinic Frankfurt,

n = 41) were used as an external test dataset. These tissue

samples were provided by the University Cancer Center

Frankfurt (UCT). Written informed consent was obtained from

all patients and the study was approved by the Institutional

Review Boards of the UCT and the Ethical Committee at the

University Hospital Frankfurt (project-number: UCT-5-2021).

First, all WSIs from the TCGA-OV dataset were evaluated

by a pathologist (S.G.) for (i) their overall quality and (ii)

their difficulty in distinguishing cancerous from non-cancerous

regions. Staining intensity, contrast, and tumor viability were

considered when evaluating tissue quality. Excessively strong

or weak staining that made it difficult to distinguish individual

cells was considered a sign of poor quality. Weak cytoplasmic

nuclear contrast was another sign of poor quality. Cases

in which specimens had large areas of necrosis or only a

small amount of vital tumor were also considered difficult to

evaluate. Pathologist scores for quality and rating are given in

Supplementary Table S1, example tiles of low, median, and good

quality are shown in Supplementary Figure S1.

All WSIs from the TCGA-OV dataset were annotated by

the same pathologist (S.G.) using QuPath’s (25) annotation tools

(polygon, wand, and brush) to delineate cancerous regions.

The remaining tissue was then classified as non-cancerous.

No regions were excluded due to bad quality. WSIs of the

UKF dataset were annotated by a pathologist using the Sysmex

CaseViewer software to place circles (diameter: 500µm) in the

regions of interest (cancer and non-cancer).

Then, 40 image patches per patient (512 x 512 pixels, 0.27

µm/pixel) were extracted from the labeled areas. To ensure that

we did not have mislabeled images in our datasets, which could

occur, for example, due to non-accurate annotations in border

regions, we trained CNNs to predict the appropriate labeling,

and 188/94 incorrectly predicted tiles were rechecked by a

pathologist (S.G.) and relabeled if necessary. In addition, 98/188

tiles of the TCGA-OV and 29/94 tiles of the UKF dataset were

removed completely, because it was not possible to determine
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FIGURE 1

CNN performance depended on tissue quality and tissue source site. The TCGA-OV dataset was split into four subsets and 4 x 15 individual CNNs

were trained with di�erent train-validation splits using one subset as a test. The whole procedure was repeated 10 times. CNN performance was

only recorded for WSIs in the test set. (A) Average accuracy for each WSI. The identifier with their accuracy is given in Supplementary Table S1.

Error bars depict standard deviation. (B) Boxplot over the accuracy values of all slides with pathologist P1 assigned tissue quality. At least one

category is significantly di�erent according to an ANOVA (p = 0.00011), and significant di�erences between groups (post-hoc t-test with

Bonferroni Holm p-value adjustments, p < 0.05) are marked with *. (C) Contingency table for tissue source site vs. tissue quality. (D) Boxplot

over the accuracy values of all slides from di�erent tissue source sides. At least one category is significantly di�erent according to an ANOVA (p

= 0.00005) and significant di�erences between groups (post-hoc t-test with Bonferroni Holm p-value adjustments, p < 0.05) are marked with *.

the appropriate label (e.g., because of extreme blur or only some

single cells were left on the image).

CNN training and NoisyEnsembles

Each CNN group/ensemble consisted of 15 CNNs with

ResNet18 architecture. These ResNets were initialized with

weights pretrained on ImageNet data. As an optimizer, we

used Adamax as loss function the binary cross-entropy. Each

CNN was trained for 10 epochs. During training, only the best

iteration of a CNN based on validation accuracy was saved.

The final performance of the group/ensemble was determined

by averaging individual accuracies (group: Figures 1–3) or a

majority vote by the CNNs (ensemble: Figure 4). For the noisy

ensembles, we additionally repeated the training for seven

different noise levels (0, 5, 10, 15, 20, 25, and 30%), with the

corresponding randomly selected percentage of tiles having their

labels flipped. All these procedures were repeated 10 times to

obtain robust results. We defined our ensemble confidence by

taking the amount of CNNs that matched the label predicted by

the ensemble. All CNNs were created using Tensorflow version

2.4.1 (26). For each of the 10 training iterations, we created one

train and test split, where the train split was additionally divided

into 15 distinct train and validation splits for the individual

CNNs of the group/ensemble. The splits occurred on a patient

level ensuring that tiles from one patient were never part of

multiple splits at the same time. For individual site training

(Figure 2), test splits were created for the distinct tissue source

site while keeping the test sets equal for Site A and Site B training.

All performance values of the trained CNNs shown in the figures

were obtained from test data only.

Quality control tools

The quality control tools HistoQC (23) and PathProfiler (24)

were used with default settings. Of the whole training dataset,

HistoQC determined 2,843 tiles of the TCGA-OV dataset and

1,282 tiles of the UKF dataset to be used based on the mask_use.
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FIGURE 2

CNN transferability depended on the quality of training data. CNNs were exclusively trained and validated on data from (A) source site A (n =

21+7), (B) source site B (n = 27+7), or (C) both source sites (n = 48+14) and tested on hold-out test data from site A (n = 7) and site B (n = 7)

and external data from UKF. Hold out test data were randomly chosen 10 times and every test 15 individual CNNs with di�erent train-validation

splits were calculated and the performance was measured. Boxplots show all recorded performances. Blue…site A; orange…site B; green…UKF.

For PathProfiler, 2,692 tiles of the TCGA-OV dataset and 730

tiles of the UKF dataset were deemed usable if the corresponding

area in the usblty_map had a value above 0.5.

Statistics

For analysis of significance, we performed one-way ANOVA

(f_oneway) as implemented in scipy.stats (27) for all groups,

followed by a pairwise post-hoc t-test with holm p-value

correction as implemented in scikit-post-hocs. We determined

two group differences to be statistically significant if the pairwise

p-value was below 0.05.

Results

CNN performance, tissue quality, and
tissue source site are interconnected for
the TCGA-OV dataset

To investigate the relationship between tissue quality

and CNN performance, two pathology experts graded the

histological images of the multicenter TCGA-OV dataset

according to their quality into three quality categories: 1 (good),

2 (medium), and 3 (poor) based on criteria such as image

sharpness, staining quality, tissue thickness, and tumor viability

(Supplementary Figure S1). Most WSIs were classified as good

(nP1 = 46; nP2 = 69), but there were also nP1 = 42/nP2 =

23 slides with medium overall quality and nP1 = 13/nP2 = 9

slides with poor overall quality. These numbers indicate that the

quality assessment of the slides is naturally subject to a large

inter-rater variability, however, the tendency is the same. In this

case, expert two used systematically better scores, compared to

expert one (Supplementary Figure S2). It is important to note

here that although some WSIs were flagged as poor quality,

all were still good enough for diagnostic purposes. Exemplary

tiles extracted from the globally ranked WSIs are shown in

Supplementary Figure S1. In addition, we also scored the tissue

slides of an additional UKF dataset, which was newly generated

at the institute for research purposes to ensure high quality. And

indeed most slides were scored to have a high (nP1 = 21/ nP2

= 21) or medium (nP1 = 17/ nP2 = 21) quality and bad quality

slides (nP1 = 3/ nP2 = 0) does hardly occur.

Next, we trained individual CNNs to separate cancerous

from non-cancerous regions using 75% of the TCGA-OVdataset

for training and validation and 25% for testing. We repeated

the data splits so that every patient was 10 times part of the

test set. The average performance of the individual CNNs was

only recorded while patients are located in the test dataset. We

observed that for approximately one-third of all patients, the

performance was high (accuracy > 90% for n = 38 patients).

However, there were also patients with low performance, which

was going down to less than ∼60% (Figure 1A) and is close to

random guessing.

In general, the patients with the best performance were

those who had good tissue quality as assessed by expert one,

while those with the poorest performance tended to have low

quality scores. There was a significant difference in performance

between tissue sections of good and poor quality (Figure 1B).

This observation did not depend on the expert who evaluated the

tissue quality as the same tendency was present when the slides

were scored by expert two, or if only slides were used where both
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FIGURE 3

Quality control tools did not increase performance. Percentage of retained tissue per WSI by (A). HistoQC and (B). PathProfiler for the three

di�erent quality levels as assigned by pathologist one. For HistoQC, at least one group di�ers (ANOVA, p-value: 0.00003; post-hoc t-test with

Bonferroni Holm p-value adjustments, p < 0.05 are marked with *), and for PathProfiler, there are no significant di�erences between groups

(ANOVA, p-value: 0.34). (C) CNNs trained for Figure 2 were used to calculate the performance on the test datasets, which were now quality

controlled by either HistoQC (black) or PathProfiler (light gray) and do not contain tiles of low quality. Plotted is the performance di�erence

between the original and quality-controlled test datasets. Error bars depict standard deviation.

experts agree (Supplementary Figure S3). In addition, we found

that tissue quality corresponds with different tissue source sites

(Figure 1C) and therefore performance was also related to this

characteristic (Figure 1D).

Tissue source sites influence CNN
transferability

We now wanted to investigate how these intrinsic quality

differences in the WSIs influence the transferability and

performance of trained CNNs. Therefore, we trained CNNs

exclusively on data obtained from one tissue source site. The

different tissue source sites could be also identified to a certain

degree using CohortFinder (28), which is based onHistoQC (23)

(Supplementary Figure S4). Training and testing on tissue from

site A, with high quality as assessed by the pathologist, results

in high accuracies with a median of 96.2% (Figure 2A, AUC:

0.98). However, using the tissue with low quality from site B

for testing, a strong decrease in the accuracy to 82.2% (AUC:

0.86) was observed. Testing with an external dataset from UKF

obtained again an intermediate accuracy of 89.4% (AUC: 0.93).

When the network was trained with data from source site

B, which tend to have a low quality, surprisingly, this time

the images from source site A performed better compared

to those from site B as well (median accuracy/AUC site

A:95.3%/0.97 vs. site B:92.4%/0.95; Figure 2B). In addition,

the performance for slides of lower quality increased as the

network has already seen comparable ones during training. The

performance on the external UKF data is comparable for the

CNN trained with low-quality data (median accuracy/AUC:

89.7%/0.94) compared to the CNN trained with higher

quality. Using data from both source sites for training (so

also more data are available for training), we could slightly

improve the accuracies (Figure 2C, median accuracy/AUC

site A:96.6%/0.98 vs. site B:93.2%/0.96), indicating a small

beneficial influence of the addition of the high-quality slides of

site A.
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FIGURE 4

NoisyEnsembles could identify tiles with uncertain predictions. CNNs were trained with data from tissue source site A (left column) or tissue

source site B (right column), while a defined amount of tiles was deliberately mislabeled in the training dataset. For each patient, either healthy

or cancerous tiles were used during training. Hold-out test sets were chosen randomly and with the remaining data 15 CNNs with di�erent

train-validation splits were trained and combined with a bagging ensemble. The complete procedure was repeated 10 times. (A,B) Average

ensemble accuracy for di�erent test datasets. (C–F) NoisyEnsemble with a noise level of 15% during training. (C,D) Number of tiles with a valid

ensemble prediction for the respective ensemble agreement. (E,F) Ensemble accuracy for individual levels of ensemble agreement. Predictions

with smaller rates of the agreement were ignored in the respective categories. Error bars depict standard deviation.

To further strengthen our hypothesis that tissue quality is

indeed one of the main factors influencing the performance

of CNNs and to rule out unexpected interactions between

datasets of different origins, we also checked performance

only within the data of site B in dependence on the quality

(Supplementary Figure S5), as site B is the only tissue source

site containing all three quality levels. Here, we found that

the CNNs always performed better on the WSI’s with a good

and medium tissue quality than those with low quality. In

addition, it is important to note that the highest accuracies

could be achieved by using medium-quality slides during

training, again highlighting their importance for training high-

performing CNNs.

To ensure that the observed effects were not caused by

different color appearances, we repeated the experiments with

stain-normalized (19, 20) tiles. The observed accuracies were

higher, and especially the difference between site B and the UKF

data nearly vanished. However, the overall pattern remained

the same: Models trained with high-quality data were poorly

transferable to low-quality data, and models trained with

medium- to poor-quality data performed better on high-quality

data (Supplementary Figure S6).

Taken together, these results indicate that it is beneficial

to include images of a lower quality during training to

obtain the best performance and transferability in the end.

Nevertheless, once these algorithms are used in a routine

setting, slides with low quality should be avoided if possible

to obtain the best possible performance and to avoid

false predictions.

Tissue quality control tools do not
increase performance

After recognizing how crucial the influence of the used tissue

was, we asked the question of whether we could further improve

our prediction results by the use of the automated quality control

tools, PathProfiler (24) and HistoQC (23). As HistoQC does not

provide a slide-wide score, we had a closer look at the amount

of tissue, which is recommended to use. Here, we saw that the
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percentage of usable tissues was significantly higher for the slides

with a good (1) and medium (2) quality compared to the slides

of poor (3) quality as assessed by expert one (Figure 3A). In

opposite, for PathProfiler, we did not see any differences between

the different quality stages (Figure 3B); however, it is important

to mention that PathProfiler is not yet tested for non-prostate

tissue. Again these observations did not depend on the expert

who scored the slides for quality (Supplementary Figure S7).

Following our idea that poor-quality slides should be

avoided during the application of CNNs, we cleaned up our test

datasets and removed all image patches which were rejected by

HistoQC or PathProfiler. Surprisingly, instead of the expected

increase in the accuracy values, we did not observe any change

for the images of sites A and B, irrespective of the data used

during training (Figure 3C). Only for the external UKF data,

there was a slight increase in accuracy after the usage of

PathProfiler for some training and validation splits (Figure 3C).

Also, after cleaning up the training and validation datasets, no

improvements in the accuracies were observed for one of the

datasets. If there is an effect at all, the accuracy is reduced

(Supplementary Figure S8).

To better understand why there was no change in

performance, we had a closer look at the excluded image patches

(Supplementary Figure S9). The tiles removed by HistoQC were

partially meaningful, as a pathologist would approximately

remove 3/5 tiles as, for example, no vital tissue was present or the

contrast was too low. Nevertheless, we furthermore recognized

that the border regions of a tissue section were excluded because

of blurriness, which could not be validated by a pathologist. But

image artifacts such as, for example, the border of air bubbles

or dust in the background were reliably detected by HistoQC

(Supplementary Figure S10). In contrast, for PathProfiler, most

of the tiles were fine for a pathologist, this fits the nonexisting

difference in the number of removed tiles for different quality

levels (Figure 3B).

Although the HistoQC results were similar to the

pathologists’ assessment of tissue quality, the exclusion of

tiles that should be of poor quality according to HistoQC and/or

PathProfiler did not improve the performance of our CNNs.

Therefore, we decided to use the full datasets.

NoisyEnsembles can improve CNN
transferability to data with lower quality

To now find an alternative way to decide which image

patches are suited as input for a trained deep learning approach

and to recognize if a prediction is uncertain, we trained

bagging ensemble CNNs and had a closer look at the ensemble

confidence (number of CNNs having the same prediction).

Recently, we have shown that using only securely predicted

image tiles can end up in low error rates (6). To avoid the

problem of overconfident ensemble predictions, we inserted

some label noise into the training dataset. Therefore, we only

used cancerous or healthy tiles of each patient and then swapped

the label of a certain amount of tiles. As expected, the accuracy of

the individual CNN was decreasing with an increasing amount

of noise in the training data (Supplementary Figure S11). But

the insertion of noise had the desired effect: With an increasing

amount of noise, the number of CNNs with the same predictions

was decreasing. And importantly, the concordance was always

higher for correctly predicted tiles compared to false predictions

(Supplementary Figure S12).

The overall accuracy of the ensemble predictions stayed

nearly constant (change under 2%) for small noise levels (≤15%)

when trained with high-quality data coming from tissue source

site A and tested on data of the same site or the UKF. Even

more importantly, the accuracy for WSI’s with lower quality

coming from tissue source site B increased by ∼7% for these

noise levels, and thus the ensemble was getting more robust

toward the images with the lower quality (Figure 4A). Also for

ensembles trained with data from site B, there was no strong

decrease (under 2%) in performance for small levels of label

noise in the training datasets (Figure 4B).

As mentioned before, for each patient, we either used

healthy or cancerous image tiles. This is an essential

characteristic of our NoisyEnsemble: If both classes of one

patient are used simultaneously, the desired effect of increased

performance for unseen low-quality data did not occur

(Supplementary Figure S13).

Also, the amount of data used during the training of

course influences CNN performance. Ensembles trained on

site A data without noise and tested on site A and UKF

data get, as expected, better with higher amounts of data.

Interestingly, the performance of the non-noisy ensembles also

increased with higher amount of training data for the low-

quality site B test data, but they perform worse if trained on

the entire dataset, suggesting that the non-noisy models were

overfitted for the high-quality data (Supplementary Figure S14).

In contrast, such a decrease in performance was not observed

for our NoisyEnsemble and the ensembles with noise always

outperformed the non-noisy variant for low quality data

(Supplementary Figure S14). In addition, the performance gap

between the NoisyEnsemble and the non-noisy version, which

was observed for the high-quality datasets was getting smaller

with higher amounts of data (Supplementary Figure S14).

Images with unsecured predictions
during testing could be identified by
NoisyEnsembles

Next, we wanted to exclude images from the NoisyEnsemble

(noise level: 15%), which were likely to have a wrong prediction.

For this reason, we determined the ensemble agreement and

considered tiles unclassifiable if the agreement was below a

certain threshold. When we applied a threshold of 100%

Frontiers inMedicine 07 frontiersin.org

https://doi.org/10.3389/fmed.2022.959068
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mayer et al. 10.3389/fmed.2022.959068

agreement (15/15 CNNs with identical prediction), over 50%

of all tiles could not be classified any longer. However, it is

important to mention that the number of removed tiles was

always the smallest for the site which was used during training.

This indicates that the ensemble was used to this kind of tiles,

while from the external UKF dataset, always the highest number

of tiles was removed (Figures 4C,D). With increasing ensemble

agreement, the accuracy for the remaining tiles increased for all

test datasets, no matter which dataset was used during training

(Figures 4E,F). In addition, the accuracy for the external UKF

dataset even increased to the same level as the source site used

during training. Also, the performance gap, that occurred when

CNNs were trained with high-quality data (Figures 2A, 4A),

between the high-quality test images from site A and low-quality

test images from site B was narrowed (Figure 4C). With the

100% agreement, we nearly achieved an accuracy of ∼100% for

most of the test datasets, irrespectively of the used training data.

The number of false predictions (FP and FN) decreased with

increasing ensemble agreement and if only a small ensemble

agreement was required, more false than correct predictions

were discarded (Supplementary Figure S15).

A visual inspection by a pathologist of tiles from site B

removed by the NoisyEnsemble trained on site A data again

revealed a connection to the tissue quality: Removed tiles, for

example, mainly have low contrast, which is especially true for

confidence levels of 9/15 to 13/10 (Supplementary Figure S16).

To now understand the paradox that both HistoQC and

the NoisyEnsemble removed tiles related to tissue quality

but only one of them resulted in a performance increase,

we had a closer look at the overlap of the removed

tiles (Supplementary Figure S17). Here, we realized that the

ensemble removed fewer tiles at high agreement levels (12/15),

and also observed that the overlap was always smaller

than the number of tiles removed by one method. Even

for the highest agreement level (15/15), HistoQC removed

tiles that were retained by the ensemble and missed to

exclude the relevant tiles to end up with the highest possible

performance (Supplementary Figure S17).

To sum up, the use of NoisyEsembles (trained with the

introduction of label noise) can improve the transferability of

CNNs to lower quality data, however, it could not increase

the performance for data with the better or same quality. The

additional usage of ensemble confidence is suited to increase

performance further andmainly removes wrongly predicted tiles

of low quality.

Discussion

Datasets for training and application of
CNNs

Tissue slide quality and the presence of artifacts are

important in computational pathology and it is necessary

to understand the interrelationship of the chosen material

and the performance of trained deep learning algorithms.

Here, we provided some insights and showed that there are

unexpected large performance differences between individual

WSI’s (all suited for diagnostics) coming from the same TCGA-

OV dataset, but from different tissue source sites (Figure 1).

These WSI’s differ in terms of their tissue quality (Figure 1,

Supplementary Table S1). In general, differences based on first-

and second-order image characteristics between WSI’s of

different source sites within TCGA datasets were described

earlier (29), and therefore it was shown that it is important

not to mix sites for training and model evaluation to not

overestimate CNN performance. In addition, we now showed

that tissue quality is an important factor that determines the

performance of CNNs: High-quality WSIs always perform

well, irrespectively of the used training data (Figure 2). In

general, it is recommended to use different tissue source sites

to increase image variability during training to improve the

generalization of CNN models (30), which is also in line with

our findings as the model with both source sites performed

best in our hands (Figure 2). In addition, we showed that

the tissue quality is an important driver of that observation.

Furthermore, our study pointed out that it is beneficial to

include medium- and low-quality slides in training to achieve

the desired transferability—including only multiple sites with

the highest tissue quality will most likely not achieve the desired

effect. Next to the ideal composition of the training data, we

also introduced NoisyEnsembles (Figure 4), which improved the

transferability to datasets with other properties by selectively

inserting label noise during training. Like other ensemble

methods (6, 31), our NoisyEnsembles also have the potential to

increase the overall performance of the deep learning application

(Figures 4A,B vs. Supplementary Figure S11). For testing, it is

recommended to sample the possible image space as well

as possible (11). However, during the application of CNNs

in a routine setting, we recommend paying attention to the

best possible quality, as the performance was directly linked

to the tissue quality (Figure 2, Supplementary Figure S1). Our

NoisyEnsemble is also able to discard or mark images that

have bad quality and are likely to contain erroneous predictions

(Figure 4, Supplementary Figure S16), a feature that could help

to improve clinicians’ trust in the technology. In addition to

this already implemented feature, explainable AI (XAI) methods

such as Grad-CAM (32) or LRP (33) could further help to

overcome the resilience in clinics in future. First methods also

combine ensemble predictions with XAI and, for example,

provide a weighted combination of the single CAMs (34) to

visualize which image regions are important for the actual

decision. Such techniques could of course also be applied to

our NoisyEnsembles: By calculating the average Grad-CAM of

an ensemble, the algorithm’s decisions can be visualized and

validated. A physician can assess whether the prediction fits the

areas considered by the algorithm; this is especially helpful for

images with uncertain predictions (Supplementary Figure S18).
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Label noise and CNN training

In general, label noise is an undesired phenomenon,

as it usually decreases the performance of deep learning

algorithms (35), which we also observed during the training

of the individual CNNs (Supplementary Figure S11). So, most

methods try to find ways to overcome the problem of label

noise (35). However, we did it the other way around and

inserted the label noise intentionally, as it is also known

that label noise can introduce penalty terms, similar to the

regularization approaches, which have the potential to improve

generalization (36). By the use of the ensemble, we could

nearly completely overcome the negative effect of noise on the

same data quality and, indeed, we were able to improve the

transferability to unseen, lower quality data (Figure 4). Taking

all test sets together, the overall performance could be even

improved by the insertion of noise (Supplementary Figure S19),

and the slight decrease in performance for high qualities

of data vanished if only secure predictions are taken into

(Supplementary Figure S20), however, in this case, a prediction

is not possible for all tiles.

So, a frequently used approach to tackle label noise is to

relabel, remove, or re-weight falsely labeled data points from

the training dataset (35), which could be also done with the

help of ensembles (37). But these classical methods cannot be

applied to NoisyEnsembles, because then the positive effect of

label noise on transferability would be lost. However, there are

also alternative approaches that can overcome label noise by, for

example, using evidence-based accumulation clustering which

processes several samples in a batch and correct the individual

predictions based on the observed nearest neighbors in the

different classifiers (38). In future, it is interesting to test if

such methods, not dealing directly with the label noise, could

keep the positive effect on the transferability to unseen data

while improving the performance of data, which is similar to

training data.

Further intrinsic di�erences between the
datasets of sites A and B

In general, there are different possible options why

datasets collected at different tissue source sites behave

differently in training and testing. First, it is important to

mention that next to the different overall quality (Figure 1),

there are also some additional intrinsic differences between

the patients of the different tissue source sites in the

TCGA-OV dataset: Patients from site A live significantly longer

(overall survival, disease-specific survival, and regression-

free survival) compared to patients from site B. And in

addition, patients from site A are significantly younger at the

timepoint of diagnosis (Supplementary Figure S21). Principally

that connection between age and survival is well-known in

ovarian cancer (39). But it is also possible that the age of the

patient also influences the quality of the tissue itself and so

the performance of the deep learning algorithm decreases: For

older patients, it is known that the composition of the ovarian

extracellular matrix (e.g., increase of collagen and decrease of

elastin) changes with age (40), and so the cutting properties

of the tissue is altered. Which in turn could lead to unevenly

distributed tissue thicknesses or different amounts of cracks.

Moreover, different fixation and staining protocols or laboratory

equipments could be responsible for our observation of varying

tissue quality.

A second intrinsic difference between the images of tissue

source sites A and B is different JPEG compression levels (site A:

quality 30; site B: quality 70). It is well-known that very strong

JPEG compression influences CNNperformance negatively (12–

14). However, the results obtained here were the other way

round: The more strongly compressed images from site A

perform better compared to the images of site B indicating that

other factors aremore important. It is also important to note that

severe effects of JPEG compression only begin at a compression

level of 85% (14), which was not used for any of the WSI’s of the

TCGA-OV dataset.

In addition, it is of course also possible that one

center (e.g., based on its physical location or its role as

a reference center) simply has more clinically advanced

cases. And indeed, a pathologist scored more cases as

challenging for site B compared to site A and CNNs

of course performed slightly better on slides that were

evaluated by a pathologist to be clear in distinguishing cancer

and non-cancerous regions (Supplementary Figure S22A). But

importantly, within one quality level or one source site, there

are no significant differences between the differently ranked

slides (Supplementary Figures S22B,C), and so we conclude that

an uneven distribution of difficult cases is not responsible

for the effects observed in here and it is indeed the tissue

quality which makes the difference regarding CNN performance

and transferability.

Conclusion

The transferability of CNNs is affected by the data quality

during training, and it is beneficial to include mainly medium-

and low-quality data in the training set. CNNs achieve the best

test results with high data quality, regardless of the quality of

the data with which they were trained. Therefore, care should

be taken to ensure the highest possible data quality when using

them later. Since it is often difficult to estimate how different

the data used later will be, it is still important to come up with

methods that can deal with this problem: Our NoisyEnsembles

increase the transferability to lower quality data and additionally

discard inappropriate data points to avoid incorrect predictions

in routine clinical use. To enable this, the NoisyEnsemble was

trainedwith∼15% of wrong labels to enforce a greater variability
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within the ensemble predictions and thus become more robust

against image diversity.
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