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Abstract: The incidence and prevalence of diabetes mellitus (DM) have increased rapidly worldwide
over the last two decades. Because the pathogenic factors of DM are heterogeneous, determining
clinically effective treatments for DM patients is difficult. Applying various nutrient analyses has
yielded new insight and potential treatments for DM patients. In this review, we summarized
the omics analysis methods, including nutrigenomics, nutritional-metabolomics, and foodomics.
The list of the new targets of SNPs, genes, proteins, and gut microbiota associated with DM has been
obtained by the analysis of nutrigenomics and microbiomics within last few years, which provides
a reference for the diagnosis of DM. The use of nutrient metabolomics analysis can obtain new
targets of amino acids, lipids, and metal elements, which provides a reference for the treatment
of DM. Foodomics analysis can provide targeted dietary strategies for DM patients. This review
summarizes the DM-associated molecular biomarkers in current applied omics analyses and may
provide guidance for diagnosing and treating DM.

Keywords: diabetes mellitus (DM), nutrigenomics; nutritional-metabolomics; foodomics; molecular
biomarkers

1. Background

Diabetes mellitus (DM) is a metabolic disorder characterized by prolonged periods of
hyperglycemia [1], which includes frequent urination, thirst, and hunger [2]. The three main types of
DM are as follows [3]: Type 1 diabetes (T1D), also known as “insulin-dependent diabetes mellitus”
(IDDM) or “juvenile diabetes”, is caused by the inability of the pancreas to produce sufficient insulin
due to beta cell loss. Type 2 diabetes (T2D), also known as “non-insulin-dependent diabetes mellitus”
(NIDDM) or “adult-type diabetes”, begins with insulin resistance, and its progression may involve a
lack of insulin. Gestational diabetes mellitus (GDM) refers to hyperglycemia in pregnant women with
no previous history of DM. Failure to treat any of these types in time causes many complications [4].
Acute complications include diabetic ketoacidosis, hyperosmolar hyperglycemia, and even death.
Chronic complications include cardiovascular disease (CVD), stroke, chronic kidney disease, foot ulcers,
and eye damage.

According to the International Diabetes Federation (IDF), 425 million DM patients existed
worldwide in 2017, and this number is estimated to increase to 629 million by 2045 [5]. In 2017, DM
patients in China ranked first worldwide, which is a value of 114,294.8 (https://www.idf.org/). However,
because DM is extremely heterogeneous, individualized treatments are required [6]. Comprehensive
knowledge of the pathogenic factors of DM is becoming urgently necessary. Most studies have
collected clinical cases, summarizing and suggesting factors that may promote DM occurrence. Since
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the application of multi-data nutritional-omics analysis methods in DM research, obtaining potential
molecular markers of pathogenicity is highly straightforward and provides a shortcut for further
research, clinical diagnosis, and treatment.

Human nutriomics is a new discipline formed from the combination of nutritional food science
and omics in the post-genomic era, and mainly involves studies of dietary intervention methods
and nutritional health measures at both the molecular and population levels to achieve personalized
nutrition [7]. Human nutriomics typically include protein-based human nutrigenomics, metabolic
component-based human nutritional-metabolomics, microbial-based human nutritional systems
biology, system-based food-omics, and systems biology. This review analyzed nutriomics over the
years, described the research progress and molecular mechanisms, and provides a reference for
subsequent DM research.

2. Human Nutrigenomics and DM

Human nutrigenomics, a new field in the study of nutrition proposed in 2000 [8], is the study of
the molecular biological processes and effects of nutrients and food chemicals in humans [9]. Studying
the transcription, translation, and expression of human genes and metabolic mechanisms enables
establishing dietary recommendations with high predictive value to prevent disease, reduce the risk of
unpredictable consequences, and control chronic diseases [10]. Protein-based human nutrigenomics
has three research directions [11]: nutritional genomics, transcriptomics, and proteomics.

2.1. Advances in DM Research via Nutritional Genomics

Genomics was first proposed by Roderick et al. in 1986, using DNA mapping, sequencing, and
bioinformatics techniques to analyze the structure and function of all genomes in living organisms [12].
Nutritional genomic research methods are consistent with functional genomics research [13], mainly
including DNA chip technology, biomarkers, and proteomic technologies. Nutritional genomics
generally uses genome-wide association studies (GWAS) to analyze the pathogeneses of diseases,
such as DM. GWAS involves identifying existing sequence variants, which include single nucleotide
polymorphisms (SNPs) in human genome-wide applications, from which disease-associated SNPs are
screened [14]. Studies have shown that using binary logistic regression analysis to analyze diabetes
can effectively determine various DNA sequence variations [15,16].

GWAS have undergone several updates and upgrades. The latest T2D GWAS showed that
common variations explain approximately 20% of the overall T2D risk, which is equivalent to at
least half of the overall heritability [17,18]. An analysis of the common SNPs in T2D patients and
matched controls identified three T2D-associated loci in the noncoding regions near CDKN2A and
CDKN2B, introns of IGF2BP2 and CDKAL1, as well as replication associations near HHEX and SLC30A8.
T2D-related loci were also identified and confirmed in noncoding regions by analyzing common SNPs
in T2D patients and matched controls [19]. Jeong et al. (2019) used DNA microarray to analyze cases
of diabetic nephropathy (DN) and control cases and found that rs3765156 in PIK3C2B was significantly
associated with DN [20]. Using epigenome analysis of primary TH1 and TREG cells isolated from
healthy and T1D subjects, Gao et al. (2019) identified four SNPs (rs1077211, rs1077212, rs3176792,
and rs883868) that could alter enhancer (H3K4me1 and H3K27ac) activities [21]. After finding a
DM-related candidate gene through GWAS, experimental verification (i.e., cell and animal experiments)
is essential.

2.2. Advances in DM Research via Transcriptomics

Transcriptomics refers to the sum of all gene transcripts of an organism or cell under certain
conditions, which contain the protein-encoding RNA required by the cell for a specific time and
environment and a collection of RNA molecules derived from the expression-regulating gene [22].
Transcriptomics is based on sequencing technology development, which includes expression sequence
tags technology (EST), serial analysis of gene expression (SAGE), massive parallel signature sequencing
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(MPSS), and RNA-seq. Many updated databases can be used for research, such as GEO, SRA, DDBJ,
NONCODE, MIRBase, ERA, and DRA.

Establishment of a transcriptome database has facilitated DM-related research. Wieczorek et al.
(2019) examined transcriptomic data from the salivary gland tissues of T1D patients and found
inhibited ectopic lymphoid structures and Sjögren’s syndrome by blocking the CD40–CD154 pathway
interaction [23]. Using microarray-based DM and normal glucose tolerance, transcriptional profiles
of subcutaneous adipose tissue have been generated via studies from Asia and India. Differentially
expressed genes can be analyzed using weighted gene coexpression network analysis to clinically
diagnose DM [24]. Researchers used a whole transcriptome and small RNA analysis to optimize clinical
tissue samples from DM patients with cardiovascular disease and successfully completed the whole
transcriptome from human left ventricular tissue [25]. Fang et al. (2019) developed RePACT, a sensitive
single-cell analysis algorithm, to discover the previously unrecognized role of the cohesin-loading
complex and the NuA4/Tip60 histone acetyltransferase complex in regulating insulin transcription and
release [26]. Hong et al. (2019) identified a number of proangiogenic genes in transcriptomic features of
glomerular endothelial cells, including leucine-rich α-2-glycoprotein 1 (LRG1), which was upregulated
in DM mouse models [27]. Caberlotto et al. (2019) analyzed transcriptomic data from the brains of
postmortem Type 3 Diabetes (T3D) and T2D patients to determine the main role of autophagy in the
molecular basis of T3D and T2D [28]. Dusaulcy et al. (2019) analyzed islet cell transcriptome data from
control and DM-induced mice, revealing 11–39 differentially expressed genes in the transcriptome of
pancreatic alpha cells from obese hyperglycemic mice compared with controls, and identified three
new target genes (Upk3a, Adcy1, and Dpp6) after further analysis [29]. In summary, construction and
analysis of a transcriptome database provides a reliable basis for researching DM mechanisms and
determining gene functions.

2.3. Advances in DM Research via Proteomics

Wilkins and Williams first proposed the concept of proteomics at the First International Proteomics
Workshop in Italy in 1994 [30]. Proteomics refers to the science of understanding the laws of life
activities from the whole protein level, with the proteome as the research object. Proteomics represents
a mature technology in the pharmaceutical industry, primarily for discovering biomarkers and drug
targets [31]. Proteomics is divided into expression proteomics, structural proteomics, and functional
proteomics, and, mainly through two-dimensional gel electrophoresis (2-DE), mass spectrometry (MS),
and other methods, is used to study protein function and disease mechanisms.

Related nutrient proteins can be controlled from a dietary perspective to achieve early prevention
and early treatment using proteomics methods to study nutritional diseases. Sramkova et al. (2019)
identified apolipoprotein M (apoM) by transcriptome and proteomic analysis of conditioned media
from human adipose tissue (AT)-isolated adipocytes and stromal cells, in which the expression level is
lower in subjects with metabolic syndrome and T2D and may be associated with insulin sensitivity [32].
Abdulwahab et al. (2019) collected sera from healthy people and T2D patients for proteomic mass
spectrometry and found that 62 proteins were differentially expressed in T2D, which were functionally
grouped into 16 proteins, including heparin cofactor 2, Ig α-1 chain C region, and zinc-α-2-glycoprotein,
the largest of which was an immune-related protein [33]. Muralidharan et al. (2019) used borate
affinity chromatography to isolate glycated erythrocyte proteomes without hemoglobin from controls
and DM samples, and proteomic analysis, using the nanoLC/ESI-MS proteomics platform, to identify
site-specific glycation of the red blood cell proteome with different glycemic indices in DM patients [34].
Ricci et al. (2019) evaluated peptide biomarkers, using capillary electrophoresis and mass spectrometry
(CE-MS), and demonstrated that the urinary proteome of pediatric renal cysts and diabetes syndrome
(RCAD) patients differs from that of autosomal dominant polycystic kidney disease (PKD1, PKD2),
congenital nephrotic syndrome (NPHS1, NPHS2, NPHS4, and NPHS9), and chronic kidney DM
conditions, suggesting differences between the pathophysiologies of these disorders [35]. Malipatil et al.
(2019) used sequential window acquisition of all theoretical fragment ion spectroscopy (SWATH) MS to
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study the biodeterminants associated with the response to diet and weight loss programs in impaired
glucose regulation populations. These authors successfully differentiated individuals who may lose
weight from those who may experience increased insulin sensitivity. For example, as insulin sensitivity
improves, hemoglobin A1c (HbA1C) levels decrease with weight loss [36]. Rao et al. (2007) used
the differential in-gel electrophoresis method to compare protein groups in DM and normal human
urine. Seven upregulated proteins (α1B-glycoprotein, zinc-α2-glycoprotein, α2-HS-glycoprotein, VDBP,
calgranulin B, A1AT, and hemopexin) and 4 downregulated proteins (prealbumin, α1-microglobulin,
bikunin, and apoB/A1) in DM patients can be used as additional tests to diagnose DM [37].

The role of proteomics in studying DM complications is important. Sims et al. (2014) used
proteomics to screen for proteins specifically expressed in the urine of patients with DM retinopathy
and nephropathy to find biomarkers for early diagnosis [38]. Chiang et al. (2012) used 2-DE and
MALDI-TPF-MS to analyze protein expression in diabetic retinopathy (DR) patients and identified 11
differentially expressed proteins associated with nutrient transport, microstructural reorganization,
angiogenesis, antioxidants, and neuroprotection [39]. Zoccali et al. (2019) focused on diabetic
kidney disease (DKD) proteome biomarkers. These authors found that the DKD 273 classifier was a
promising biomarker for early identification of nonproteinuric patients at high risk for progressive
DKD. Empagliflozin and SGLT2 inhibitors may favorably affect DKD progression in nonalbuminuric
diabetic patients [40]. Mirza et al. (2014) summarized the proteomic relationship between T3D and
T2D, identifying a single or set of potential blood-based protein biomarkers with high sensitivity and
specificity for early diagnosis of AD and T2D [41].

3. Human Nutritional Metabolomics and DM

Nutritional metabolomics is a means of studying the relevant issues in the field of nutrition
via metabolomic principles and methods [42]. Metabolomics focuses on the metabolic pathways
of endogenous small molecule metabolites in organisms, organs, and tissues and their changes,
which can reflect the end point of the physiological regulation process in real time. The obtained
information is closest to the organismal phenotype or overall condition and is the final expression of
the biological phenomenon. Nutritional metabolomics can be divided into metabolomics, lipidomics,
and metallomics.

3.1. Advances in DM Research via Metabolomics

In 1999, Nicholson et al. (1999) from Imperial College of Science and Technology in the United
Kingdom proposed nuclear magnetic resonance-based metabonomics based on long-term graduated
body fluids [43]. Fiehn et al. (2002) used gas chromatography to study the plant metabolism network
and simultaneously proposed metabolomics [44]. As the research progressed, metabonomics and
metabolism blended together and now represent metabolomics [45]. Metabolomics mainly analyzes the
association of endogenous small molecular metabolites with physiological and pathological changes
under the influence of internal and external factors (such as genetic variation, disease invasion, drug
intervention, and environmental changes) by group indicators and is mainly divided into the levels
of metabolic target analysis, metabolic profiling, metabolic fingerprinting, metabolomics analysis,
and metabolic phenotypic analysis.

Compared with nutritional genomics, transcriptomics, and proteomics, metabolomics has
the advantages of obvious changes, fewer species and quantities, specific components, common
methods, and lower costs. Vangipurapu et al. (2019) studied metabolomic data on 20 amino
acids from 4851 patients with cross-sectional metabolic syndrome and found that the expressions of
five amino acids (tyrosine, alanine, isoleucine, aspartic acid, and glutamic acid) were significantly
associated with an increased risk of developing T2D [46]. Bernardo–Bermejo et al. (2019) developed
a liquid chromatography-mass spectrometry platform for the nontargeted metabolomic analysis
of high glucose-induced changes in human proximal tubular H2 cell cultures to study renal
proximal tubules in the DM mechanisms in kidney disease progression [47]. Using integrated
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transcriptomic-metabolic methods, Osataphan et al. (2019) demonstrated that canagliflozin
(CANA) regulates key nutrient-sensing pathways, activates 5’AMP-activated protein kinase (AMPK),
and inhibits rapamycin (mTOR) independent of insulin or glucagon sensitivity or signaling [48]. Using
metabolomics to analyze food nutrients contributes to preventing and treating metabolic diseases
through dietary intervention.

3.2. Advances in DM Research Using Lipidomics

Lipidomics is the study of lipid extracts to obtain lipid group information that reflects the
overall changes in lipids under specific physiological conditions [49]. At present, the many
branches of lipidomics include cell lipidomics, computational lipidomics, and neurolipidology.
Commonly used techniques related to lipidomics are thin-layer chromatography (TLC), electrospray
ionization mass spectrometry (ESI-MS), gas chromatography mass spectrometry (GC-MC), high
performance liquid chromatography coupled with time-of-flight mass spectrometry detection
(HPLC-TOF/MS), ultra-performance liquid chromatography coupled with quadrupole time-of-flight/
mass spectrometry (UPLC-TOF/MS), matrix-assisted laser desorption ionization time-of-flight mass
spectrometry (MALDI-TOF-MS), and shotgun lipidomics.

Lipidomics research has shown that metabolic diseases, such as obesity and DM, are closely related
to lipid metabolic disorders [50]. Lipidomics has enabled important advances in detecting metabolic
diseases, identifying lipid biomarkers and drug targets, and developing new drugs. He et al. (2019)
established a lipid mass spectrum of 29 women with GDM and 33 pregnant women without GDM and
found that elevated GPR120 levels were associated with GDM [51]. Lamichhane et al. (2019) compared
the cord blood lipids of T1D patients with those of healthy children and found that phospholipids,
especially sphingomyelin, were lower in T1D progression [52]. Wang et al. (2019) screened
spontaneously obese rhesus monkeys and performed plasma lipidomics analysis on both normal weight
and obese monkeys using gas chromatography/mass spectrometry (GC/MS) and ultraperformance
liquid chromatography/mass spectrometry (UPLC/MS). These authors found that FFA C16:0 and
16:0-LPA lipids may be potential candidates for diagnosing and studying obesity-related diseases [53].
Zhang et al. (2019) constructed a Paternò–Büchi reaction coupled with liquid chromatography/mass
spectrometry (LC/MS), using an online C=C derivatization lipid analysis platform, and found that the
C=C isomer can be used to discover lipid biomarkers, which can be used for subsequent predictive
DM screening [54]. Pape et al. (2018) explored the role of high-fat-diet-induced hepatic triglycerides
in high-fat-diet-induced DM by MS-based lipidomics and found correlations between Per-Arnt-Sim
Kinase (PASK) [55]. Lamichhane et al. (2018) reported a longitudinal plasma lipidomics dataset from
40 children who had progressed to T1D and 40 children with single islet autoantibodies without
T1D and 40 matched controls. Their data could help other researchers study the age-dependent
progression of islet autoimmunity and T1D as well as the age-dependent nature of the general
lipidomics spectrum [56]. Razquin et al. (2018) randomly selected 692 participants (639 non-cases and
53 T2D cases) and repeatedly measured 207 plasma lipid metabolites. They used principal component
analysis to establish a comprehensive factor for lipid species and evaluated the association between
these lipid factors and T2D incidence [57]. Zhai et al. (2018) used lipidomics analysis and found that
Cyclocarya paliurus may improve diabetic dyslipidemia by reducing accumulation of hepatic lipid
droplets and regulating circulatory lipids in diabetic mice via PI3K signaling and MAPK signaling
pathways. [58]. Yang et al. (2018) analyzed large datasets generated by metabolomics and lipidomics
and revealed the role of metabolites, such as lipids, amino acids, and bile acids, in regulating insulin
sensitivity [59].

3.3. Advances in DM Research Using Metallomics

Metallomics is the comprehensive study of the distribution, presence, content, structural
characteristics, and physiological functions of metal and metalloid elements in biological systems [60].
Metallurgical research includes the distribution and analysis of elements in organs, tissues, body fluids,
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and cells in organisms; the morphological analysis of elements in biological systems; the structural
analysis of metallography; the mechanism of metal group reactions; the action of metalloproteins and
metalloenzyme identification; metabolic analysis of biomolecules and metals; multi-element analysis of
medical diagnostics related to trace elements in health and disease; and the design of inorganic drugs in
chemotherapy, medicine, environmental science, food science, agriculture, toxicology, and biogeology.
Other metals in chemistry assist in functional biological sciences. Commonly used techniques
include atomic absorption spectrophotometry, inductively coupled plasma mass spectrometry, isotope
quantitative analysis, infrared spectroscopy, nuclear magnetic resonance, and X-ray absorption
spectroscopy [61].

In recent years, increasing reports on metallomics and metabolic diseases have guided significance
for healthy diets. Lindeque et al. (2015) evaluated the protective effects of metallothioneins (MTs)
on obesity and high-fat-diet-induced effects, such as insulin resistance in male and female MT-1-,
MT-2-, and MT-3-knockout mice [62]. Steinbrenner et al. (2011) summarized the current evidence
of interference with selenium compounds and insulin-regulated molecular pathways, verifying that
hypernutrient selenium intake and high plasma selenium levels are a potential risk factors for T2D [63].
Roverso et al. (2019) recruited 76 pregnant women from the University Hospital of Padua (Italy),
half of whom had GDM. Placental samples were collected from maternal whole blood and umbilical
cord blood, and the metal groups were determined via ICP-MS analysis. The results showed that Ca,
Cu, Na, and Zn concentrations in the umbilical cord blood of GDM patients were higher than those
of the controls, while Fe, K, Mn, P, Rb, S, and Si showed opposite trends [64]. Roverso et al. (2015)
used a metallurgical database to analyze GDM and the other types of DM, and found that selenium
concentrations were higher in GDM than in the other groups [65]. Liu et al. (2012) developed a joint
metabolomics and metallomics method using a hypercholesterolemia rat model, involving proton
nuclear magnetic resonance spectroscopy, plasma MS, and metallurgical fingerprinting law. The results
revealed that V, Mn, Na, and K could be biomarkers for hypercholesterolemia [66]. The omics-driven
study of Lopes et al. was based on time-resolved H-NMR metabolomics to study the results of
Roux-en-Y gastric bypass (RYGB) surgery [67]. Cox et al. (2013) studied the role of selenoprotein S
(SelS) genetic variation in subclinical CVD risk and mortality in T2D patients [68].

4. Microbiomics and DM

Microbial-based human nutritional metabolomics is gut microbiology [69]. The total number of gut
microbes in a healthy adult is extremely large, and this microbial layer is known as the “human second
genome”. In December 2007, the National Institutes of Health presented the Human Microbiome
Program, a microbial genome study of the human digestive tract, mouth, vagina, skin, and nasal
passages [70]. The human intestinal microflora begins colonizing from the birth of the host and
gradually matures as the host grows to reach a relatively steady state. Gut microbial functions include
nutritional and metabolic functions, mucosal barrier function, and immune function. Commonly used
research techniques in gut microbiology include DGGE, biochips, and RT-PCR.

Using the intestinal microbiome to analyze changes in human microbial community structure and
function under health and disease conditions can improve metabolic disease prevention and treatment.
Díaz-Rizzolo et al. (2019) divided 182 prediabetic patients over age 65 into obese and non-obese groups,
analyzed the FINDRISK score and biochemical parameters of their intestinal microbiota, and found the
importance of intestinal microbes [71]. Larsen et al. (2010) reported that human T2D was associated
with changes in the gut microbiota composition and that the gut microbiota could be altered to control
metabolic diseases. For example, the proportions of Firmicutes and Clostridia were significantly
reduced in the DM group compared with the control group. Similarly, class Betaproteobacteria was
highly enriched in the DM group compared to the control and positively correlated with plasma
glucose [72]. In addition, a review by Aydin et al. (2018) assessed the contributing role of the gut
microbiota in human obesity and T2D [73].



Int. J. Mol. Sci. 2019, 20, 5375 7 of 15

Qiao et al. (2018) reported that the intestinal microbiotas of patients with T2D differed significantly
in bacterial composition and diversity from the intestinal microbiotas of healthy subjects [74].
Pasini et al. (2019) conducted a metabolic and anthropometric assessment of 30 clinically stable
T2D patients and concluded that DM leads to the overgrowth of the intestinal flora, increased intestinal
permeability, and systemic low-grade inflammation. They also found that chronic exercise can reduce
excessive intestinal floral growth, intestinal leakage, and systemic inflammation [75]. Ohtsu et al. (2019)
found that orally administering Porphyromonas gingivalis altered the gut microbiota and aggravated
glycemic control in streptozotocin-induced DM mice [76]. Chen et al. (2019) investigated and compared
the effects of green tea polyphenols (Polyphenon E (PPE)) and black tea polyphenols (theaflavins (TF))
on gut microbiota and DM development in db/db mice [77]. A review by Whang et al. (2019) provided
evidence demonstrating the putative interaction between antidiabetic agents and the gut microbiome
and discussed the potential of microbiome modulators to manipulate drugs, microbial interactions,
and drug metabolism [78].

5. Foodomics and DM

The term “foodomics” was first used in 2007 at networking and academic conferences [79] and
refers to the use of omics analysis methods to study the components of complex food systems, such as
proteins, peptides, amino acids, carbohydrates, lipids, vitamins, and trace elements. Commonly used
methods include genomics, transcriptomics, proteomics, metabolomics, and bioinformatics. Foodomics
analysis contributes to explaining the responses of individual genomes to specific dietary compositions;
explaining the biochemical, molecular, and cellular mechanisms by which certain active ingredients in
food constitute health benefits and adverse effects; determining the role of bioactive food components
in key molecular pathways; identifying genes and possible molecular biomarkers from pre-onset to
onset; determining the overall role and function of the gut microbiome; conducting unintended effects
studies of transgenic crops; studying the application of food microbes as delivery systems; studying
food pathogen stress adaptations to the response; ensuring food hygiene, processing and storage;
comprehensively evaluating food safety, quality, and traceability; and exploring the molecular basis of
biological processes, such as the interaction of crops and pathogens and physical and chemical changes
during fruit ripening. The holistic approach to environmental reactions explains the phenomena and
determines the biological network [80].

Foodomics involves studying food metabolites to provide a basis for healthy diets. Growing
evidence suggests that healthy diets rich in fruits, vegetables, nuts, extra virgin olive oil, and fish are
beneficial for preventing and controlling various human diseases and metabolic disorders. This is
the Mediterranean diet, which is one of the healthiest existing dietary patterns. Proteomic and
metabolomic analyses revealed that Mediterranean diets had clinical implications for metabolic and
microvascular activities, cholesterol and fasting blood glucose, and anti-inflammatory and antioxidative
effects [81]. Therefore, dietary intervention is beneficial in preventing and treating diseases [82].
Olivas-Aguirre et al. (2016) studied cyanidin-3-o-glucoside (Cy3G) metabolites and found that
they protected against Helicobacter pylori infection, age-related diseases, T2D, CVD, and metabolic
syndrome [83]. Janšáková et al. (2019) used rat models to verify advanced glycation end products
(AGEs) in hot-processed foods believed to cause GDM and found that these AGEs did not cause
disease [84]. Takahashi et al. (2015) performed comprehensive proteomic and metabolomic analyses
verifying that coffee consumption leads to increased ATP conversion and demonstrating that coffee
consumption can help prevent DM [85]. Inulin has been reported to possess a significant number of
diverse pharmaceutical and food applications. A review by Tsurumaki et al. (2015) described the
current status of utilizing omics technologies in elucidating the impact of inulin and inulin-containing
prebiotics at the transcriptome, proteome, metabolome, and gut microbiome levels to fully illustrate the
intricate beauty behind the relatively modest influence of food factors, like inulin, on host health. [86].
Alkhatib et al. (2017) reported that functional foods contain biologically active ingredients associated
with physiological health benefits and preventing and controlling chronic diseases, such as T2D.
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Zhao C et al. (2019) made a systematic report on glucose metabolism in T2D as well as to explore
the relationships between natural phytochemicals and glucose handling [87]. Sébédio et al. (2017)
proposed metabolomics studies to discover new biomarkers of early metabolic dysfunction and to
predict biomarkers for developmental pathology (e.g., obesity, metabolic syndrome, and T2D) but
focused on developing methods to identify and validate biomarkers for nutrient exposure [88].

6. Conclusions

Nutrition is the study of beneficial food ingredients and the science of human intake and use of
these ingredients for health. The main purpose of studying nutrition is to prevent diseases (especially
metabolic diseases) and protect human health through a reasonable daily diet. With the development
of omics technology, nutritional development has flourished, and the term “precision medicine” has
been proposed. Precision medicine is an emerging approach to disease prevention and treatment
that considers differences in personal genetics, environment, and lifestyle. The concept of precision
medicine is becoming increasingly popular. Using large amounts of data, genomics, and other “omics”,
such as metabolomics, proteomics, and transcriptomics, can make personalized medicine a reality in
the near future [89]. In addition, the Metabolomics Association believes that integrating metabolomic
data into precision medicine programs is timely and will provide extremely valuable new data to
complement the current data [90]. Figure 1 shows the branching method of human nutrition on DM
research. Figure 2 shows the application of human nutrition on DM research. Table 1 lists the results of
recent studies on preventing and treating DM according to the branches of nutriomics, specifically
the factors that are highly relevant to DM, such as metal elements, SNPs, and pathways. This review
summarized the results obtained by various researchers using analytical omics methods and provides
a reference for subsequent research.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 16 

 

Nutrition is the study of beneficial food ingredients and the science of human intake and use of 
these ingredients for health. The main purpose of studying nutrition is to prevent diseases (especially 
metabolic diseases) and protect human health through a reasonable daily diet. With the development 
of omics technology, nutritional development has flourished, and the term “precision medicine” has 
been proposed. Precision medicine is an emerging approach to disease prevention and treatment that 
considers differences in personal genetics, environment, and lifestyle. The concept of precision 
medicine is becoming increasingly popular. Using large amounts of data, genomics, and other 
“omics”, such as metabolomics, proteomics, and transcriptomics, can make personalized medicine a 
reality in the near future [89]. In addition, the Metabolomics Association believes that integrating 
metabolomic data into precision medicine programs is timely and will provide extremely valuable 
new data to complement the current data [90]. Figure 1 shows the branching method of human 
nutrition on DM research. Figure 2 shows the application of human nutrition on DM research. Table 
1 lists the results of recent studies on preventing and treating DM according to the branches of 
nutriomics, specifically the factors that are highly relevant to DM, such as metal elements, SNPs, and 
pathways. This review summarized the results obtained by various researchers using analytical 
omics methods and provides a reference for subsequent research. 

 

Figure 1. Advances in research on human nutrition in diabetes mellitus (DM). Figure 1. Advances in research on human nutrition in diabetes mellitus (DM).



Int. J. Mol. Sci. 2019, 20, 5375 9 of 15

1 
 

 
Figure 2. The application of human nutrition on diabetes mellitus (DM) research.

Table 1. Advances in research on human nutrition in diabetes mellitus (DM).

Title Branch Application Example References

Human
nutrigenomics

Nutrition genomics

Three loci associated with T2D were identified in the non-coding
regions near CDKN2A and CDKN2B, introns of IGF2BP2 and
CDKAL1 introns, and replication associations near HHEX and

SLC30A8;

Defesche et al.,
2017 [18]

Rs3765156 in PIK3C2B was significantly associated diabetic
nephropathy (DN);

Jeong et al.,
2019 [20]

Four SNPs (rs1077211,rs1077212,rs3176792, rs883868) could alter
enhancer, H3K4me1 and H3K27ac, activity in T1D;

Gao et al.,
2019 [21]

Transcriptomics

Block CD40-CD154 pathway interaction can inhibit ectopic
lymphoid structures and Sjögren syndrome;

Wieczorek et al.,
2019 [23]

The cohesion loading complex and the NuA4/Tip60 histone
acetyltransferase complex play a key role in regulating insulin

transcription and release;

Fang et al.,
2019 [26]

Transcriptome analysis of glomerular endothelial cells in DM mice
revealed up-regulated leucine-rich α-2-glycoprotein 1 (LRG1);

Hong et al.,
2019 [27]

The transcriptomic data of post-mortem Alzheimer’s disease (AD)
and T2D brains revealed the main role of autophagy in the

molecular basis of AD and T2D;

Caberlotto et al.,
2019 [28]

Islet cell transcriptome data from control and DM mice revealed
three new target genes (Upk3a, Adcy1, and Dpp6) differentially
expressed genes in the transcriptome of pancreatic alpha cells;

Dusaulcy et al.,
2019 [29]

Proteomics

Apolipoprotein M (apoM) may be associated with insulin
sensitivity;

Sramkova et al.,
2019 [32]

Many immunologically related proteins, including heparin
cofactor 2, Ig α-1 chain C region, zinc-α-2-glycoprotein, are

differentially expressed in T2D;

Abdulwahab et al.,
2019 [33]

The site-specific glycation of red blood cell proteome was
identified with different glycemic index in diabetic patients by

using the nanoLC/ESI-MS proteomics platform;

Muralidharan et al.,
2019 [34]

Used sequential window acquisition of all theoretical fragment
ion spectroscopy (SWATH) mass spectrometry (MS) to find that
hemoglobin A1c (HbA1C) levels decrease with weight loss and

insulin sensitivity improve;

Malipatil et al.,
2019 [36]
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Table 1. Cont.

Title Branch Application Example References

Human
nutritional-

metabolomics

Metabolomics

Five amino acids (tyrosine, alanine, isoleucine, aspartic acid, and
glutamic acid) were found to be significantly associated with an

increased risk of developing T2D;

Vangipurapu et al.,
2019 [46]

CANA regulates key nutrient sensing pathways, activates
5’AMP-activated protein kinase (AMPK), and inhibits rapamycin

(mTOR) independent on insulin or glucagon sensitivity or
signaling;

Osataphan et al.,
2019 [48]

GPR120 levels were associated with GDM; He et al., 2019 [51]

Lipidomics

Sphingomyelin was lower in T1D progression; Lamichhane et al.,
2018 [52]

FFA C16:0 and 16:0-LPA lipids may be potential candidates for the
diagnosis and study of obesity-related diseases;

Wang et al.,
2019 [53]

It has been discovered that the ratios of C=C isomers were much
less affected by interpersonal variations than their individual

abundances, suggesting that isomer ratios may be used for the
discovery of lipid biomarkers, which can also be used for

subsequent predictive screening for DM;

Zhang et al.,
2019 [54]

Lipidomics analysis found that Cyclocarya paliurus (CP) may be
the cause of diabetic dyslipidemia;

Zhai et al.,
2018 [58]

Supranutritional selenium intake and high plasma selenium
levels are potential risk factors for T2D;

Steinbrenner et al.,
2011 [63]

Metallomics

The concentrations of Ca, Cu, Na, and Zn in the umbilical cord
blood of GDM were higher than those of the control samples,

while Fe, K, Mn, P, Rb, S, and Si showed opposite trends;

Roverso et al.,
2019 [64]

Selenium concentrations in GDM were higher than others; Roverso et al.,
2015 [65]

V, Mn, Na, and K may be biomarkers for hypercholesterolemia
diseases;

Liu et al.,
2012 [66]

Microbiomics

Human T2D is associated with changes in the composition of the
gut microbiota, for example, the proportions of phylum

Firmicutes and class Clostridia were significantly reduced in the
DM group compared to the control group;

Qiao et al.,
2018 [74]

T2D intestinal microbiota was significantly different from the
intestinal microbiota of healthy subjects. It has been confirmed

that using the fermentation products of Paenibacillus bovis sp. nov.
BD3526 to treat the Goto-Kakisaki (GK) rats can improved its

related symptoms;

Ohtsu et al.,
2019 [76]

Oral administration of Porphyromonas gingivalis altered the gut
microbiota and aggravated glycemic control in

streptozotocin-induced DM mice;

Olivas-Aguirre et
al., 2016 [83]

Foodomics
Metabolites of cyanidin-3-O-glucoside (Cy3G) and found it to

protect against Helicobacter pylori infection, age-related diseases,
T2D, cardiovascular disease, and metabolic syndrome.

Alkhatib et al.,
2017 [81]
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