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Abstract

Background: If repeated interventions against multiple outbreaks are not feasible, there is an optimal level of control during
the first outbreak. Any control measures above that optimal level will lead to an outcome that may be as sub-optimal as
that achieved by an intervention that is too weak. We studied this scenario in more detail.

Method: An age-stratified ordinary-differential-equation model was constructed to study infectious disease outbreaks and
control in a population made up of two groups, adults and children. The model was parameterized using influenza as an
example. This model was used to simulate two consecutive outbreaks of the same infectious disease, with an intervention
applied only during the first outbreak, and to study how cumulative attack rates were influenced by population
composition, strength of inter-group transmission, and different ways of triggering and implementing the interventions. We
assumed that recovered individuals are fully immune and the intervention does not confer immunity.

Results/Conclusion: The optimal intervention depended on coupling between the two population sub-groups, the length,
strength and timing of the intervention, and the population composition. Population heterogeneity affected intervention
strategies only for very low cross-transmission between groups. At more realistic values, coupling between the groups led
to synchronization of outbreaks and therefore intervention strategies that were optimal in reducing the attack rates for each
subgroup and the population overall coincided. For a sustained intervention of low efficacy, early intervention was found to
be best, while at high efficacies, a delayed start was better. For short interventions, a delayed start was always
advantageous, independent of the intervention efficacy. For most scenarios, starting the intervention after a certain
cumulative proportion of children were infected seemed more robust in achieving close to optimal outcomes compared to
a strategy that used a specified duration after an outbreak’s beginning as the trigger.
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Introduction

While vaccines have strongly reduced the morbidity and

mortality burden for many infectious diseases that transmit from

person to person, outbreaks of varying size and severity are still

common, both in developed and developing countries. For these

diseases, control measures such as drug therapy and prophylaxis,

and social distancing (e.g. quarantine, school or airport closures)

are useful strategies. It seems intuitive that the more stringent the

control measure, the better the outcome, i.e. fewer infected people.

This is true for a closed system, i.e. a scenario where a community

experiences only a single outbreak. However, if multiple outbreaks

of the same pathogen are possible and control might only be

feasible for a limited duration (due to cost or other constraints),

one can find the – somewhat counterintuitive – situation that too

much control can be as bad as too little control [1].

This finding can be explained as follows: consider two outbreaks

of the same pathogen. During the first outbreak, a public health

intervention is implemented, which stops the outbreak (i.e. brings

the effective reproduction number ,1). However, the intervention

does not provide immunity and people remain susceptible to the

infection. At the end of the intervention, a few infected people are

re-introduced into the population. If further interventions are not

available, it will lead to an unmitigated second outbreak if the

number of susceptible people remaining after the first outbreak is high enough to

have an effective reproduction number .1. In other words, if the first

outbreak has not depleted enough of the susceptible people for the

population to reach a critical threshold level (the level at which enough

herd immunity is achieved [2,3]), a second outbreak will occur. As

Figure 1 illustrates, this can lead to a situation where a control

strategy that is too strong performs as poorly as an intervention

strategy that is rather weak. The optimal strategy is one that brings

the number of susceptible people down to the critical threshold

level at the end of the first outbreak, thereby preventing a second

outbreak. The excess number of infected people beyond those

needed to reach the critical threshold level has been termed

‘overshoot’ [1]; an optimal intervention minimizes this overshoot

and thereby minimizes the attack rate over all outbreaks. We have

previously studied this scenario and it has also been recognized in
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the context of antiviral treatment of a drug sensitive influenza

outbreak, followed by a drug resistant outbreak [1,4–13].

In our previous work [1], we illustrated the multiple outbreak

scenario using a simple mathematical Susceptible-Infected-Re-

covered (SIR) model of a homogeneous population for a generic

infectious disease and unspecified, simple control. Here, we extend

the model and analysis. For the current study, we decided to use

a specific pathogen as an example. We chose influenza, since it is

a pathogen for which such a multiple-wave situation has been

observed [4,5]. For instance, school closure for some period of

time after the beginning of the first outbreak might prevent further

infections, but as long as the pathogen still circulates in the

population, re-opening the school will likely lead to another

outbreak if enough students remain susceptible [14].

Instead of trying to build a realistic model for influenza

transmission [15–24], we aimed for simplicity. We studied various

control interventions in a heterogeneous population consisting of

adults and children. This allowed us to investigate how variations

in aspects such as composition and coupling between the two

subpopulations, and strength, timing and other details of the

control intervention affect the outcome. Our focus was on

minimizing the cumulative attack rate.

We found that the optimal time to trigger an intervention

depended on coupling between the two population sub-groups, the

length of the intervention, the type of trigger and the population

composition. Even a small degree of inter-group transmission led

to coupling of both population groups (with different reproduction

numbers) that was strong enough to synchronize the epidemic

dynamics in both groups. This meant that the optimal time to

trigger an intervention for both groups would be the same (instead

of two different optimal times), and that with enough mixing

between population sub-groups, homogeneous mixing models

Figure 1. Illustration of the concept of optimal control for multiple outbreaks. We assume that multiple outbreaks can occur, with the
intervention only being feasible during the first outbreak. If the intervention is weak (or absent), the first outbreak will be large enough to deplete the
number of susceptible people below a critical threshold level (the herd immunity level below which effective reproduction number ,1), such that if
the infection is re-introduced, its effective reproductive number would be too low to cause a second outbreak (black and cyan lines). If the
intervention is very strong, it is possible that after the first outbreak, the number of susceptible people remaining is large enough to support a second
(uncontrolled) outbreak upon re-introduction of the pathogen, leading to an overall number of people infected that might be the same as that
reached during just one outbreak (red line). In both the ‘‘too much’’ and ‘‘too little’’ intervention scenarios, the number of susceptible people drops
below the critical threshold level, which defines the level of herd immunity. The excess drop is termed ‘overshoot’. The optimal intervention is one
that minimizes the overshoot by allowing the susceptible population to drop to the critical threshold level during the first outbreak, such that
a second outbreak cannot occur (green line). The solid lines represent the susceptible people and the broken lines represent the infected people.
doi:10.1371/journal.pone.0036573.g001
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could be used to elucidate optimal control conditions. Short

interventions shared similar optimal trigger conditions regardless

of their efficacy. For long interventions to achieve optimal

outcomes, stronger interventions should start late at the epidemic

peak while weak interventions may start early. Using the

cumulative proportion of children infected as the trigger provides

more flexibility for decision-makers to obtain the optimal out-

comes than using the time since the outbreak commences as the

trigger. Overall, despite its simplicity, our model provided us with

insights that will provide better information of epidemics and their

interventions in real life.

Materials and Methods

The Model
We used a Susceptible-Infected-Recovered (SIR) model [2,3],

stratified by age into two categories: adults and children. Before

the first outbreak, the whole population was assumed to be

susceptible, an assumption that applied to a novel, pandemic

influenza strain. Susceptible adults, SA, or children, SC, were

infected by infected hosts of their own group (adults, IA; children,

IC), at rates bAA and bCC, respectively. All infected hosts were

assumed to be infectious. Infected adults infected children at the

rate of bAC and infected children infected adults at the rate of bCA.
An intervention reduced the rate of infection by a fraction (fAA, fAC,

fCA, fCC). Infected adults and children recovered at rates of cA and

cC respectively, and recovered adults RA and children RC were

assumed to become immune to the infection. We normalized the

whole population, SW0= SA0+ SC0, such that SW0=1. Given that

the duration of an influenza epidemic was short compared to

human life expectancy, we did not include births, deaths and the

aging process in our model. There was also no migration into or

out of the population, apart from the re-introduction of infected

people after the termination of the intervention to trigger the

second outbreak. Figure 2 is a flowchart that illustrates the model.

The model variables and parameters are summarized in Tables 1

and 2, the model equations are given by:

dSA=dt~{(1{fAA)bAASAIA{(1{fCA)bCASAIC ð1Þ

dSC=dt~{(1{fCC)bCCSCIC{(1{fAC)bACSCIA ð2Þ

dIA=dt~(1{fAA)bAASAIAz(1{fCA)bCASAIC{cAIA ð3Þ

dIC=dt~(1{fCC)bCCSCICz(1{fAC)bACSCIA{cCIC ð4Þ

dRA=dt~cAIA ð5Þ

dRC=dt~cCIC ð6Þ

Unless otherwise specified, the parameter values and initial

conditions were chosen as given in Tables 1 and 2. We

investigated the impact on the results for changes in the different

parameters and initial conditions and reported those that were

influential. Those changes with little influence (e.g. in the fraction

of initially infected people) were not reported.

Simulations of the mathematical model were implemented in R

2.12.2 (http://cran.r-project.org/). The code is available upon

request.

The basic reproduction number, R0, is a measure of the

transmissibility of an infection, and is defined as the number of

secondary cases caused by one infectious individual being

introduced into a totally susceptible population. Here, with adults

and children as two sub-groups of the population, the basic

reproduction number of the adults (R0A) refers to the number of

secondary cases (adults and children) of infection caused by an

infectious adult introduced into a totally susceptible population in

the absence of any intervention; and the basic reproduction

number of the children (R0C) is similarly defined. Mathematically,

they are given by:

R0A~(bAASA0zbACSC0)=cA ð7Þ

R0C~(bCCSC0zbCASA0)=cC ð8Þ

where SA0 and SC0 refer to the initial proportions of susceptible adults

and children in the population. We assumed that R0A , R0C. The

values used inmost parts of this paper (R0A=1.25 andR0C=2) are in

line with current findings of the influenza A (H1N1) 2009 pandemic

(cf. various published estimates of R0 (or the effective reproduction

number, R) in different populations [25–33]).

We could use the values for R0A and R0C to compute the

transmission terms, b. However, not enough information was

available to determine all 4 transmission terms. Therefore, we

made the simplifying assumption that the ratio of cross-trans-

mission between groups (i.e. from adults to children and from

children to adults) and within-group transmission was the same for

adults and children, and therefore, bAC=k * bAA and bCA=k *

bCC. In other words, we assumed that the proportion of the within-

and between-group mixing of adults and children was equal.

While no model captures every aspect of the bio-social reality of

influenza transmission, we believe that to have fixed R0C and R0A

in the model reflects the infectiousness (a biological property) of

Figure 2. Flowchart illustrating the model. White boxes represent
adults, while black boxes represent children. Light grey arrows indicate
movements from one stage to another (susceptible to infected to
recovered). White arrows represent infection of adults and children by
contact with infected adults; likewise, black arrows represent a similar
process with infected children.
doi:10.1371/journal.pone.0036573.g002
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the virus in a hypothetical ‘‘ideal’’ situation where its transmission

takes place in a totally susceptible population. As the demographic

composition of a population changes, it affects the virus’ trans-

mission, and therefore changes the four bs. The remaining

transmission terms were then given by,

bAA~R0AcA=(SA0zkSC0) ð9Þ

bCC~R0CcC=(SC0zkSA0) ð10Þ

‘Time trigger’ and ‘Population Trigger’
After an infectious disease outbreak occurs, there is some delay

until interventions are implemented. This delay can either be due

to logistical constraints, i.e. it takes time to ramp up a control

effort, or due to other considerations, i.e. it may only make sense to

close a school once enough students are infected and it is clear that

an outbreak is occurring. We investigated both situations. For the

first scenario, which we called ‘Time trigger’, the intervention was

started on a given day after the beginning of the first outbreak. For

the second scenario, which we called ‘Population trigger’, the

intervention was started once the cumulative fraction of people in

the population who got infected reached a specific level.

Cumulative Attack Rates
In this study, we quantified the effects of different intervention

schemes by determining the cumulative attack rate at the end of

all, i.e. both the first and the second, outbreaks. The cumulative

attack rates were determined by recording the proportions of

susceptible people at the end of the last outbreak and were defined

as follows:

Cumulative attack rate, whole population:

CAW~SW0{SW (tFinal) ð11Þ

Table 1. Model variables.

Variables Meaning Initial value or definition Comments or references

SA Susceptible adults (0.1 or 0.3 or 0.5 or 0.7 or 0.9) – IA Chosen for illustrative purpose

SC Susceptible children 1– SA – IC Total population size is normalized to 1

IA Infected adults 1e26 Assuming 1 infected adult and 1 infected child in a city
of 100,000.

IC Infected children 1e26 Ditto

RA Recovered adults (who are immune to
reinfection)

0 Assuming the population is totally susceptible at the
beginning of the first outbreak

RC Recovered children (who are immune to
reinfection)

0 Ditto

doi:10.1371/journal.pone.0036573.t001

Table 2. Model parameters.

Parameters Meaning
Initial value or
definition Comments or references

R0A Basic reproduction number (adults) 1.25 (default) cf. Various estimates of R0 of 2009 pandemic influenza
A (H1N1). See section ‘‘The model’’.

R0C Basic reproduction number (children) 2 Ditto.

bAA Transmission coefficient from adults to adults R0AcA/(SA0+ kSC0) Based on the definition of R0A. See section ‘‘The
model’’.

bCC Transmission coefficient from children to children R0CcC/(SC0+ kSA0) Based on the definition of R0C. See section ‘‘The
model’’.

bAC Transmission coefficient from adults to children k * bAA See section ‘‘The model’’.

bCA Transmission coefficient from children to adults k * bCC See section ‘‘The model’’.

fAA Intervention efficacy to reduce transmission from adults to adults 0–1 Varied depending on the scenarios.

fAC Intervention efficacy to reduce transmission from adults to children 0–1 Ditto.

fCA Intervention efficacy to reduce transmission from children to adults 0–1 Ditto.

fCC Intervention efficacy to reduce transmission from children to
children

0–1 Ditto.

cA Recovery rate of adults 1/4.8 day21 [47]. It is the reciprocal of viral shedding period of an
infected adult.

cC Recovery rate of children 1/8 day21 [48]. It is the reciprocal of viral shedding period of an
infected child.

doi:10.1371/journal.pone.0036573.t002
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Cumulative attack rate, adults, whole population as the

denominator:

CAAW~(SA0{SA(tFinal))=SW0 ð12Þ

Cumulative attack rate, children, whole population as the

denominator:

CACW~(SC0{SC(tFinal))=SW0 ð13Þ

Cumulative attack rate, adults, initial adults’ proportion as the

denominator:

CAAA~(SA0{SA(tFinal))=SA0 ð14Þ

Cumulative attack rate, children, initial children’s proportion as

the denominator:

CACC~(SC0{SC(tFinal))=SC0 ð15Þ

Note that since we normalized the total population, i.e. we

chose SW0 = 1, we had the following simple relations between the

different attack rates: CAAA=CAAW/SA0, CACC=CACW/SC0,

and CAW=CAAW + CACW.

Results

The Impact of Inter-group Transmission
No inter-group transmission. We started with a popula-

tion comprised of 50% adults and 50% children, with different

reproduction numbers for adults and children that were both

greater than 1 (R0A=1.25 and R0C=2). To obtain a basic

understanding of the system, we first investigated a scenario for

which there was no transmission between adults and children

(bAC= bCA=0). In other words, we had two outbreaks in two

independent populations. As children had a higher reproduction

number than adults, the epidemic spread faster and reached its

peak earlier among children as compared to adults. In the

absence of any intervention, the fraction of the susceptible

population in both populations dropped below the critical

threshold level, such that a second outbreak could not occur

(Figure 3, left panel).

The situation differed once the intervention was introduced

(Figure 3, right panel). For this example, we started a perfect

intervention that interrupted all routes of transmission (fAA= -

fAC= fCA= fCC=1) on day 100 after the beginning of the outbreak

and continued to apply the intervention until the first outbreak was

over. We then re-introduced a small number of infected people.

Since the intervention was strong enough to keep the number of

susceptible people in both populations above the critical threshold

level (in fact, the adult population remained almost uninfected),

a second outbreak – without any intervention measures applied –

occurred. The cumulative attack rate at the end of the second

outbreak was then recorded. The first question we wanted to

address was: Is there an optimal time to start the intervention

during the first outbreak? Intuitively – based on Figure 1– we

would expect that too early/strong and too late/little were both

less than optimal, therefore there should be some intermediate

time at which starting the intervention was optimal. (Note again

that so far we assumed that once an intervention was started, it

would last for the duration of the outbreak. We relaxed this

assumption later). As expected, we found that there was an

intermediate time that was optimal in reducing the number of

infections (Figure 4). Also not surprisingly, we observed that the

best time to start the intervention for adults was different from that

for children. For both populations, to achieve the optimal

outcome, the intervention needed to start at the time of the peak

of the epidemic curve when the proportion of the susceptible

population remaining approached the critical threshold level (i.e.

the effective reproductive number was 1). Because the two

populations had different outbreak dynamics, their peaks, and

therefore optimal time of intervention, differed. Since the

cumulative attack rate for the whole population was the sum of

the cumulative attack rates for the two populations, it had two

minima, corresponding to the optimal intervention start times for

adults and children, respectively. Obviously, the respective fraction

of adults and children in the population influenced the importance

of each minimum: If one group dominated, this became the

dominant minimum (Figure 4 upper panels). Also we noted that, in

the absence of coupling, the change in attack rate for each

population using the respective proportions of adults and children

as the denominators for their cumulative attack rates, i.e. CAAA

and CACC, stayed the same even if the composition of the

population changed (Figure 4 lower panels).

Next, we studied how the cumulative attack rates changed if

instead of using a ‘time trigger’, i.e. starting an intervention

after a certain period of time had lapsed since the outbreak

started (either involuntarily, due to delays in the response, or

planned to optimize overall outcome, as just described), the

intervention was triggered based on the number of infected

people (i.e. ‘population trigger’). It is likely that one might want

to start an intervention only once the proportion of infected

people reaches a certain level. While infections among adults,

children, or both adults and children can serve as a trigger for

interventions, in practice for an infection like influenza, children

are likely the best trigger. It is because they are likely the first

ones to be infected (larger R0) and because measuring the level

of infection among them will be relatively easy, e.g. through

surveillance in schools. We therefore focus here on children as

the trigger for interventions (‘children’s population trigger’) and

briefly discuss results for the total population as a trigger in

Supporting Information, Appendix S1A. Using the fraction of

infected children as an intervention trigger led to different

results (compare Figures 4 and 5). Only one minimum for CAW

was observable, which coincided with the minimum for the

children. While there was a minimum for the adult attack rates,

it was very small and only visible in the bottom left panel.

Therefore the overall attack rate followed that of the children.

The reason why there was no significant reduction in the attack

rate among the adults had to do with the differences in the

basic reproduction number between the populations. For

the values chosen here (R0A = 1.25, R0C=2), the epidemic wave

of the adults lagged far behind that of the children (cf. Figure 3).

By the time the children’s cumulative attack rate reached the

level at which the intervention was triggered, the adults’

epidemic curve was nowhere close to its peak. This meant that

independent of trigger level, the intervention among the adults

had a similar impact, namely preventing most adult infections

during the first outbreak, followed by a large, uncontrolled,

second outbreak, leading to an overall minimal reduction in

adults’ cumulative attack rate. If R0A was increased such that

the dynamics of the two outbreaks was closer, one observed the

‘two-minima’ phenomenon again (Figure 6). Note that in all

Multiple Outbreaks in a Heterogeneous Population
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figures displaying results of scenarios using ‘children’s population

trigger’, the x-axis did not go beyond a threshold level of 0.8

since even an unmitigated outbreak did not reach a higher

attack rate among the children and therefore an intervention

would not be triggered.

Coupling through inter-group transmission. So far, we

have considered two independent outbreaks among adults and

children, with no inter-group transmission. This was done to gain

some basic understanding of the system. However, for any realistic

situation, some level of inter-group transmission generally occurs

[34–36]. Coupling of the populations induced by such inter-group

transmission can lead to synchronization between the dynamics in

the different populations [3]. We were interested to see how

optimal control strategies might change in the presence of

coupling between adults and children. As one might expect, if

coupling was very low, for example, inter-group transmission

being 1% of intra-group transmission (bAC=0.01 * bAA; bCA=0.01

* bCC), the two outbreaks still showed differing dynamics (Figure 7,

left panel). The two-minima phenomenon could still be observed

in the CAW curves if time was used as the intervention trigger (in

the cases of 50% and 70% adults, upper panels in Figure 8),

though not as pronounced as in the ‘no coupling’ scenario (cf.

Figure 4). Interestingly, and in contrast to the results shown above,

two minima were now observed in the CAW curve (for the

scenarios of 50% and 70% adults) if the children’s population

trigger was used (compare Figure 5 with upper panels in Figure 9).

This was because coupling led to an accelerated outbreak among

the adults. This was similar to the case of an increase in R0A in the

absence of inter-group transmission (cf. Figure 6), and had similar

effects, i.e. giving two minima. If the population was dominated by

one group or another, only one minimum was observed (as in the

cases of 10%, 30% and 90% adults), as the other group was too

small to have a noticeable impact on CAW.

If inter-group transmission was higher, e.g. 10% of intra-group

transmission (bAC=0.1 * bAA; bCA=0.1 * bCC), we observed that

the epidemic curves for adults and children became almost fully

synchronized (middle panel in Figure 7). The optimal starting

condition for the intervention for children and that for adults

coincided and therefore there was only one minimum in the CAW

curve against either the time trigger (middle panels in Figure 8) or

children’s population trigger (middle panels in Figure 9). As the

proportion of adults increased from 10% to 90% (middle panels in

Figure 8), the overall R0 was lowered and the outbreak reached its

peak later. Therefore, the optimal time to trigger the intervention

shifted to a later time.

If the level of coupling was increased to the point where the rate

of transmission from an infected adult to a susceptible adult was

equal to that from an infected adult to a susceptible child

(bAC=bAA), and likewise, that from an infected child to a suscep-

tible child was equal to that from an infected child to a susceptible

adult (bCA= bCC), it was found that for any given time trigger or

population trigger, the CAAA, CACC and CAW curves perfectly

overlapped with one another for any given time trigger or

population trigger, provided that the intervention interrupted all

routes of transmission equally (lower panels in Figure 8 and

Figure 9). This can be explained by the fact that for this situation,

the force of infection was the same for both children and adult

populations, independent of the proportions of adults and children

within the population. Therefore, the dynamics of the susceptible

people in both populations, and the final cumulative attack rates,

Figure 3. Time series of a simulated epidemic in a population in which there is no transmission between adults (black) and children
(grey), in the absence (left) or presence (right) of an intervention. Broken line: susceptible; solid line: infected. CAAW: Cumulative attack rate
(adults, with whole population as the denominator); CACW: Cumulative attack rate (children, with whole population as the denominator). Infection
was re-introduced into the population on day 300. The intervention (fAA= fAC= fCA= fCC= 1) started on day 100 (when the children’s epidemic is at its
peak) and lasted until the first outbreak was over. bAC =bCA = 0; R0A = 1.25; R0C = 2. 50% adults; 50% children. All other parameters and initial
conditions are listed in Tables 1 and 2.
doi:10.1371/journal.pone.0036573.g003
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were identical. This result can also be shown analytically (See

Supporting Information, Appendix S1B).

In contrast to the no-coupling scenario, we found that in the

presence of coupling, CAAA and CACC varied as the proportions

of adults and children in the population changed. CACC was lower

if a large fraction of the population consisted of adults. This was

due to the fact that for a fixed R0C, an increase in the proportion of

adults in the population led to a higher fraction of adults and

a smaller fraction of children being infected by an infectious child.

The simultaneous increase of children being infected by infectious

adults was lower since R0A was lower. Therefore, it led to an

overall reduction in the outbreak among the children. The flipside

of this argument also explained the increase in CAAA. Similarly,

for the 10% adult scenarios in which most of the population were

Figure 4. Cumulative attack rates (CA) against the start day of intervention, in the absence of inter-group transmission
(bAC= bCA=0). In the upper row, the denominator in the adults’ and children’s CA is the whole population (SW0 = 1); blue dotted line: CAAW; cyan
broken line: CACW; red solid line: CAW=CAAW + CACW. In the lower row, the denominator in the adults’ and children’s CA is their respective proportion
in the whole population (SA0 and SC0 respectively); black dotted line: CAAA; grey broken line: CACC; red solid line: CAW= S0A*CAAA + S0C*CACC.
Proportion of adults in the population, from left to right: 10%, 30%, 50%, 70% and 90%. Intervention efficacy, fAA= fAC= fCA= fCC= 1. R0A = 1.25, R0C = 2;
long intervention; interrupt all routes of transmission. All other parameters and initial conditions are listed in Tables 1 and 2. For the definition of the
different cumulative attack rates, please refer to the Materials and Methods section, ‘‘Cumulative attack rates’’, in the main text.
doi:10.1371/journal.pone.0036573.g004
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children, in the presence of coupling, more children and fewer

adults were infected by an infectious person, leading to a lower

CAAA. In the 90% adult scenario with a moderately low coupling

(Figure 8, middle row, right panel), the relatively modest increase

in CAAA (as compared to the no-coupling scenario) was a result of

CAAW reaching its limit and a larger denominator (SA0) that led to

a CAAA that was smaller than that in the 30%, 50% and 70%

scenarios.

Different Types of Intervention
So far, we considered interventions that were 100% effective

(f=1), applied to each group, and that lasted for the duration of

the first outbreak. These assumptions were used to study the

simplest scenarios first, but were unrealistic. We then investigated

how limiting the strength and duration of the intervention affected

the cumulative attack rate. We also studied a scenario in which the

intervention was applied to one group only (interrupting children-

to-children transmission by school closure).

Figure 5. Cumulative attack rates (CA) against children’s population trigger (defined as the cumulative proportion of children
infected), in the absence of inter-group transmission (bAC = bCA=0). Everything else as described in Figure 4 legend. Note that the x-axis does
not go beyond a threshold level of 0.8 since even an unmitigated outbreak does not reach a higher attack rate among the children and therefore an
intervention would not be triggered.
doi:10.1371/journal.pone.0036573.g005
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Strength of intervention. We began the analysis of the

impact of different types of interventions by varying intervention

strength. Figure 10 shows how interventions of varying efficacy

influenced the time or infected population proportion at which the

intervention should be triggered to minimize the cumulative attack

rate (whole population, CAW). Here we only show the scenarios in

which inter-group transmission was present and smaller than

intra-group transmission (bAC= 0.01 * bAA; bCA= 0.01 * bCC; and
bAC= 0.1 * bAA; bCA= 0.1 * bCC), as we considered the other cases

analyzed above (bAC= bCA= 0; or bAC= bAA; bCA= bCC) less

realistic and nothing qualitatively new was found in those

scenarios.

We produced contour plots where we varied the triggers of the

intervention as in the figures above, and now additionally varied

the intervention efficacy. For 100% intervention efficacy (f = 1),

the results from section 3.1 were again observed: there were two

minima when coupling was low (bAC= 0.01 * bAA; bCA= 0.01 *

bCC, Figure 10 upper row) and there was only one minimum when

coupling increased (bAC= 0.1 * bAA; bCA=0.1 * bCC, Figure 10

lower row). As the intervention efficacy decreased, it was found

that in both cases, the minima persisted. Over a large range of

intervention efficacies, there was a combination of strength and

timing that produced close to optimal results with respect to

reduction in the attack rate. The minima followed a J-shape: If an

effective intervention was available, it was best to start it close to

the epidemic peak(s); for a less effective intervention, an earlier

start was the best. This was not surprising, as very low efficacy

meant that the intervention was so weak that the first outbreak led

to a drop in the number of susceptible people below the critical

threshold level, no matter how early or late the intervention

started. In such a case, the earlier was always better.

Another interesting feature was that the two minima for the low

coupling case remained as efficacy was varied. The double J-shape

implied that while for high intervention efficacies, there were two

minima with respect to intervention triggers, for low intervention

efficacies, the reverse also applied: For a given intervention triggers,

there could be two levels of intervention strength that produced

similar results, with less optimal levels between them. For example

when coupling was low (bAC= 0.01 * bAA; bCA= 0.01 * bCC;
Figure 10, top left panel), when the intervention started at day 0, an

intervention of efficacy f< 0.3 could achieve the optimal outcome.

However, if an available intervention only had efficacy f < 0.2, it

would be advisable to implement it less then fully such that one

ended up with f < 0.15 and a better reduction in attack rate.

Figure 6. Cumulative attack rates against children’s population trigger, in the absence of inter-group transmission (bAC= bCA=0).
Values of R0A are varied: R0A = 1.25 (left); 1.5 (middle); 1.75 (right). For all panels, R0C = 2; 50% adults; 50% children. Everything else as described in
Figure 5 caption.
doi:10.1371/journal.pone.0036573.g006
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It was also observed in Figure 10 that the gradient of CAW was

relatively steep in the contour plots against the time trigger (left

column) as compared with that against the population trigger

(right column). This implies that using a specified level of infections

as intervention trigger seems more robust in achieving optimal

control outcomes, especially given that the exact date of an

outbreak’s beginning is usually more difficult to ascertain than the

number of infected people (e.g. by serosurveillance).

Length of intervention. For all the previous results, the

intervention lasted until the first outbreak was over. For

comparison, we simulated short intervention scenarios where

the intervention was restricted to a length of 28 days (arbitrarily

chosen for the purpose of illustration). Several differences between

this short and the previous long interventions were notable

(compare Figures 10 and 11). In the above sections, we found that

a weak intervention, if started early and maintained long enough,

could help mitigate the outbreak enough that the number of

susceptible people would not drop much below the critical

threshold level during the first outbreak. For a short intervention,

this did not happen. If it started early, it would only slow the initial

stages of the outbreak, but once the intervention was removed, the

outbreak would continue in full force. Therefore, the J-shape

observed previously was not seen for short interventions.

Instead, the best time to start a short intervention was at or

somewhat before the peak of the outbreak, where it would have its

strongest impact. As intervention efficacy decreased, the maxi-

mum reduction in attack rate that was achievable also decreased,

the time of optimal intervention changed little.

As for the long intervention, one found again that using

a specified level of infections as intervention trigger seems more

robust towards making small errors in starting the intervention as

compared to a time trigger.

School closure. In all the previous simulations, the in-

tervention interrupted all routes of transmission to an equal extent

(comprehensive intervention). For comparison, ‘school closure’

scenarios were simulated, in which only children-to-children

transmission was interrupted (for 28 days) by the intervention

(fAA= fAC= fCA= 0; fCC .0). For such a situation, intervention

mainly reduced the outbreak among the children and had little

impact on the outbreak among the adults. Reduction in overall

attack rate was dominated by reduction in the children’s

cumulative attack rate. Therefore, only a single minimum, that

of the children, was observed in the total attack rate (compare

Figures 11 and 12 top left). The same absence of two minima was

seen if school closure was assumed to be long, i.e. lasting the

duration of the outbreak (not shown). As expected, if only

transmission between children was reduced, efficacy had to be

higher to achieve a similar optimal outcome compared to

a reduction of all transmission routes. Otherwise, the overall

qualitative features found and discussed above for comprehensive

intervention applied to this case where intervention was applied

only to a certain route of transmission.

Discussion

Using influenza as an example, we investigated how a single

intervention strategy should be optimally implemented to reduce

the overall attack rate in a heterogeneous population experiencing

two outbreaks of the same infection. The specific scenario under

study was that an intervention that did not provide immunity was

applied to the first, but not the second outbreak. We used the

Figure 7. Time series of a simulated epidemic in a population in which transmission between adults (black) and children (gray) is
1% of intra-group transmission (bAC=0.01 * bAA; bCA=0.01 * bCC; left), or 10% (bAC=0.1 * bAA; bCA=0.1 * bCC; middle), or 100%
(bAC= bAA; bCA= bCC; right), in the absence of intervention. Broken line: susceptible; solid line: infected. In the right panel, the black and gray
broken lines overlap each other exactly. R0A = 1.25; R0C = 2. 50% adults; 50% children. All other parameters and initial conditions are listed in Tables 1
and 2. The reason why in the right panel, the curves of susceptible adults and children overlapped, while the curves of infected adults and children
did not, was that adults and children had different rates of recovery and therefore their average durations in the model compartment of the infected/
infectious were different.
doi:10.1371/journal.pone.0036573.g007
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cumulative attack rate over both outbreaks - i.e. the final size [37]

of the epidemic over two outbreaks - as a measure of the success of

the intervention.

Our simulations show that even low levels of inter-group

transmission in a heterogeneous population can lead to temporal

synchronisation of epidemic peaks and therefore the optimal time

to start the intervention with regard to the two population sub-

groups. It seems that there is a fair amount of inter-group

transmission in different human populations [34–36]. Thus it is

reasonable to conclude that with regard to the conditions of the

commencement of intervention in the settings defined above (time

trigger or population trigger), adults and children can be treated as

a single homogeneous population even if the basic reproduction

numbers among them are different. Our findings assure us that

Figure 8. Cumulative attack rates against the start day of intervention in the presence of inter-group transmission. Transmission
between adults and children was 1% of intra-group transmission (bAC = 0.01 * bAA; bCA = 0.01 * bCC; upper row), or 10% (bAC = 0.1 * bAA; bCA = 0.1 * bCC;
middle row), or 100% (bAC = bAA; bCA = bCC; lower row). The fraction of adults in the population was (from left to right) 10%, 30%, 50%, 70%, and 90%.
Black dotted line: adults (CAAA); grey broken line: children (CACC); red solid line: whole population (CAW). Like the no-coupling scenario, the CAW curve
shifted lower if there were more adults and higher if there were more children. In the lower panels, all three lines overlap with each other. R0A = 1.25,
R0C = 2; 50% adults; 50% children; long intervention; interrupt all routes of transmission; intervention efficacy, fAA= fAC= fCA= fCC= 1. All other
parameters and initial conditions are listed in Tables 1 and 2.
doi:10.1371/journal.pone.0036573.g008
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even simple models that assume a homogeneous population, e.g.

[1], can shed light upon some of the essence of an infectious

disease epidemic.

We found that the proportions of adults and children in the

population affected the timing of an optimal intervention. Given

the basic reproduction number among children was higher than

that among adults (assuming both RC0 and RA0 were fixed), as

the proportion of adults in the population increased, the peak of

the epidemic shifted later and the children’s cumulative attack

rate attained by then was lower. Therefore, the best time to

commence the intervention in our specific scenario would shift

later, and the optimal population trigger (the proportion of

children infected among all children) would be lower. The

overall population infected (CAW) would be lower as well.

Henceforth the composition of a mixed population of sub-groups

with different basic reproduction numbers affects the optimal

condition to start an intervention and the cumulative attack rate

thereby achieved.

Our results shed light on the relationship between the strength

of an intervention, its length, its trigger condition and the coupling

Figure 9. Cumulative attack rates against children’s population trigger in the presence of inter-group transmission. Everything else as
described in Figure 8 caption. Note that again the x-axis does not go beyond a threshold level of 0.8 since even an unmitigated outbreak (even in the
absence of coupling) did not reach a higher attack rate among the children and therefore intervention would not be triggered.
doi:10.1371/journal.pone.0036573.g009
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of the population sub-groups. While population mixing is usually

an intrinsic feature in a particular population, the other three are

attributes of an intervention programme and can often be

manipulated to achieve the optimal outcome. We found that

there was usually more than one combination of these attributes

that would generate the optimal outcome for an intervention. This

suggests that for a given outbreak, if parameters such as R0 and the

efficacy of the intervention can be estimated, one can determine

the right timing for the intervention to minimize attack rate over

multiple outbreaks, in resource-constrained settings. Our study

suggests that using the fraction of infected people in a sentinel

group (e.g. schoolchildren) is a more robust trigger for interven-

tions and is preferable to trying to start an intervention a given

number of days after the beginning of the outbreak, which is often

poorly known. Nonetheless, we acknowledge the difficulty in

surveying serosurveillance in real time, especially as the number of

Figure 10. Cumulative attack rate of the whole population (CAW) under long intervention with different levels of efficacy against
different time trigger (the start day of intervention, left column) and population trigger (cumulative proportion of children
infected, right column). bAC = 0.01 * bAA; bCA = 0.01 * bCC (upper row); bAC = 0.1 * bAA; bCA = 0.1 * bCC (lower row). R0A = 1.25, R0C = 2; 50% adults;
50% children (similar patterns were observed in populations with different proportions of adults and children, not shown); long intervention;
interrupt all routes of transmission. All other parameters and initial conditions are listed in Tables 1 and 2. The data ranged from intervention efficacy
of 0.02 to 1 with intervals of 0.02. This explains why there was no colour in the contour plots from intervention efficacy 0 to 0.02. Note that beyond
a threshold level of 0.8, the intervention was not triggered, as CAAA never reached 0.8 even in the absence of any intervention.
doi:10.1371/journal.pone.0036573.g010
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infected persons increases rapidly around the optimal time at

which the intervention should start.

While it was true that for weak interventions of long duration,

the earlier it started, the better was the outcome, it did not seem to

be applicable to the more realistic situation of an intervention of

limited duration, independent of efficacy. This suggests that

interventions that can be maintained (and of which the efficacies

are often low, e.g. encouraging people to wash their hands more

often for the duration of an outbreak) should be advocated early.

Interventions that are costly to maintain (but are often of high

efficacies, e.g. school or airport closure, the use of facemasks in

non-clinical settings) should be implemented later during the

outbreak.

For most of our analysis, we assumed control that acted equally

on all routes of transmission. It is more likely that a given

intervention targets certain groups and routes of transmission, e.g.

school closure. We found that our results for the all-transmission

reduction carried over if only one transmission route was

interrupted. While sustained school closure was found to have

a major impact upon reducing the reproduction number of

pandemic influenza 2009 in Hong Kong [38], many communities

across the world found sustained school closure socially and

Figure 11. Cumulative attack rate of the whole population (CAW) under 28-days intervention with different levels of efficacy
against different time triggers (start days of intervention, left) and population triggers (cumulative proportion of children infected,
right). The legend colour panel displays CAW. bAC = 0.01 * bAA; bCA = 0.01 * bCC (upper row); bAC = 0.1 * bAA; bCA = 0.1 * bCC (lower row). All other
details are the same as Figure 10. Compared to Figure 10, it is notable that the J-shaped contours of Figure 10 are replaced by vertical minima in
Figure 11. In other words, weak interventions that started early would not lead to the optimal outcome if its duration was short.
doi:10.1371/journal.pone.0036573.g011
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economically costly [39–42]. Even in developed countries, the

decision of when to reopen schools is challenging, and concurring

with our results here, it has been argued that schools can be

reopened only if population herd-immunity has been reached [14].

Earlier finding that an increase in the number of detected

symptomatic cases needed to trigger a school closure reduced the

total cumulative attack rates [39,43] can be explained by our

study. Increasing the population trigger for school closure (before

it reaches its optimum) will lead to a smaller susceptible population

that is closer to the critical threshold level when schools close, and

thus will reduce the size of the ‘overshoot’ when the schools re-

open. Therefore, as our results suggest, it may not be wise to close

schools too early given the usual limited length of a school closure

[14,39,43].

Our study comes with the usual caveats. We deliberately used

a simple model to more thoroughly understand the relationship

between the parameters and the outcomes. This somewhat limits

its direct applicability, though as described here, certain features,

such as population heterogeneity, might be less important for

determining optimal interventions than expected. Still, for

application to intervention planning, it might be useful to

implement the ideas described here with a more detailed model,

such as those described in ref. [15–24].

Figure 12. Cumulative attack rate of the whole population (CAW) under school closure with short intervention (28 days) with
different levels of efficacy against time trigger (different start day of intervention, left) and population trigger (cumulative
proportion of children infected, right). The legend colour panel displays CAW levels. All other parameters follow Figure 11.
doi:10.1371/journal.pone.0036573.g012

Multiple Outbreaks in a Heterogeneous Population

PLoS ONE | www.plosone.org 15 June 2012 | Volume 7 | Issue 6 | e36573



We also focused on a single strain and assumed complete

immunity to re-infection. While this is likely applicable to

influenza outbreaks in a single season, the model would need to

be extended to include delayed or waning immunity [44,45] to

allow for reinfection by the same strain [46], or to include multiple

strains to allow for features such as antigenic shift or the potential

rise of drug-resistant strains [4–10,12,13].

We also acknowledge that the assumption of no natural birth

(and therefore no increase in susceptible population) over the time

course of one to three years may not necessarily hold in settings

where birth rate is high.

We focused here on cumulative attack rates as the outcome and

our goal was to minimize them. Other considerations, such as

logistics and economics, may also factor into decisions for

intervention choices. As shown in this study, if different

interventions can lead to the same optimal state (i.e. achieve the

same benefit), such additional considerations should be considered

and modelled.

In summary, our study showed that even for relatively low inter-

group transmission, at levels that were likely to occur for

pathogens such as influenza, the population became synchronized

enough to essentially consider them one homogenous population

for control purposes. We found that it was best to choose an easily

observable sub-population (e.g. schoolchildren) and measure their

infection status in real time. Once the right number of infections

had accrued (which was determined by the efficacy of the

intervention and the length it could be applied), control measures

should be started. The proper timing ensured that the control was

optimal in the sense that it minimized the attack rate and the level

of susceptible people dropped to the level at which herd immunity

was reached, but not below.
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