
Supplementary Material

1 Supplementary Methods

Supplementary Figure 1. Procedure for male sexual priming and recording. To standardize and only choose sexually receptive females (F) (proestrus or estrus) as male stimuli, their estrous state was first determined during the white light phase (10:00-12:00). Then, during the start of the red-light phase (15:00-18:00), males (M) were recorded (Rec.) with the presence of a stimulus F, first while separated by a perforated divider (10 min), then during direct interactions (10 min). The same stimulus F was also used to prime another male for the next recording day (d1-d4) (experimental animals shown in black font). Priming F used for the first group of M (F d0), were previously exposed to additional non-experimental M (M d0) using the same protocol to ensure similar socio-sexual experience (Day 0) (shown in grey font). Arrows show the timeline of the procedures for each animal.

Supplementary Figure 2. Example of sperm trajectories visualized in the Sperm Class Analyzer (SCA®, Version 6.2.0.0., Microptics, Spain) of the CASA system (computer assisted sperm analysis, CASA) and the used settings for sperm analysis.

Supplementary Table 1. Different USV classifications that we used: from 15 to 5 types (adapted from Nicolakis et al. (1)). We used 15 types in the introduction phase to be able to compare our results with previous studies. However, we also used simpler classifications (10 types for the introduction and interaction phase) and we also pooled syllable types for some analyses.

15	USV Types (introduction phase)	10 US	SV types (interaction phase)	Pooled	
USV label	USV shape	USV label	USV shape	syllable types	
us	ultra short (< 5 ms)	us	ultra short (< 5 ms)	short	
S	short (< 10 ms)	S	short (< 10 ms)	short	
f	flat (< 5 kHz frequency modulation)	simple	USV consisting of 1 element	simple	
up	up (> 5 kHz increase)	simple	USV consisting of 1 element	simple	
d	down (> 5 kHz decrease)	simple	USV consisting of 1 element	simple	
u	u-shaped (> 5 kHz modulation)	simple	USV consisting of 1 element	simple	
ui	u-shaped inverted (> 5 kHz modulation)	simple	USV consisting of 1 element	simple	
c	complex (≥ 2 directional changes (> 5 kHz)	simple	USV consisting of 1 element	simple	
c2	USV with 1 frequency jump	c2	USV with 1 frequency jump	complex	
c3	USV with 2 frequency jumps	c3	USV with 2 frequency jumps	complex	
c4	USV with 3 frequency jumps	c4	USV with 3 frequency jumps	complex	
c5	USV with ≥ 4 frequency jumps	c5	USV with ≥ 4 frequency jumps	complex	
h	harmonic (USV with harmonic element)	h	USV with harmonic element	complex	
uh	ultra high (> 91 kHz)	uh	ultra high (> 91 kHz)	ultra high	
uc	unclassifiable (unstructured shape)	uc	unclassifiable (unstructured shape)	unclassifiable	

Target genes for spermatogenesis:

Protamine 2 is a DNA binding protein, that enables sperm chromatin condensation into a small volume, and thus leads to normal sperm head morphology. Deficiency in Protamine-2 leads to sperm DNA damage and can impact sperm function and male fertility (reviewed in (2)). GAPDS encodes a sperm-specific enzyme during spermatogenesis that regulates energy-producing pathways required for sperm motility. It is bound to the fibrous sheath of the principal piece of the sperm flagellum, and thus involved in flagellated sperm motility and male fertility (3). STK22B encodes testis-specific serine/threonine kinases which have been found in the cytoplasm of elongating spermatids and accumulated around the base of the flagellum. Loss of these enzymes is associated with abnormal spermatogenesis and infertility (4). Park-2 enables ubiquitin protein ligase activity which induces selective autophagy of damaged mitochondria. Sperm mitochondria are necessary for energy production and thus normal sperm motility; however, the transmission of paternal mitochondria can have deleterious effects. Ubiquitination of sperm mitochondria during spermatogenesis facilitate the elimination of paternal mitochondria after fertilization, where specific autophagy-related ubiquitin-binding proteins promote autophagy of ubiquitinated mitochondria (reviewed in (5)).

Supplementary Table 2. Sequences for primers and probes used for four target genes (Protamine-2, Park2, STK22B, GAPDS) and one reference gene (RPL38).

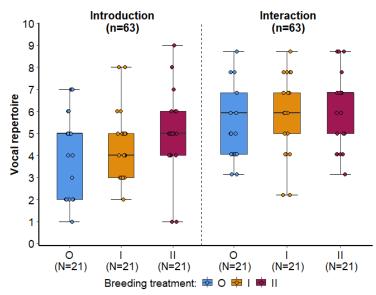
Gene	official symbol and NCBI-Gene ID	Probe sequence (5' → 3'), modifications for all: 5' FAM, 3' BHQ-1			
Protamine-2	Prm2, 14447	TGACTTCCTTGGCTCCAGGCAGAAT			
Park-2	Prkn, 50873	AGGGCTTCACAGTCAAAGCCA TGA			
STK22B	Tssk2, 22115	TCT ACA TTG TCA TGG AGC TGGGCG			
GAPDS	Gapdhs, 14447	CCCAGTGGACGATGGGATGATGTT			
RPL38	Rpl38, 67671	CCATGCCTCGGAAAATTGAGGAGATC			
Gene	Primer sequence	$(5' \rightarrow 3')$			
Protamine-	forward	CCACAAGAGGCGTCGGTCAT			
2	reverse	GGCAGGTGACTATTCCTTGGG			
Park-2	forward	CACAACAGACGTTCCAGGTGC			
Park-2	reverse	CTCAAGGGCGATTGGGAAG			
STK22B	forward	GACCGTCAACCACCGTTCCA			
SIKZZD	reverse	GGGCTCCTCGGCACTTGATG			
CADDC	forward	GGATGGGCCATCAAAGAAGG			
GAPDS	reverse	CGGCAGGTCAGGTCCACAAC			
DDI 20	forward	CGTTCTCTCGGTTCTCATCGC			
RPL38	reverse	CTTCCGCCGGGCTGTCAG			

Supplementary Table 3: Information on gene expression Methods based on dMIQE2020 checklist for authors (see Huggett et al. (6)).

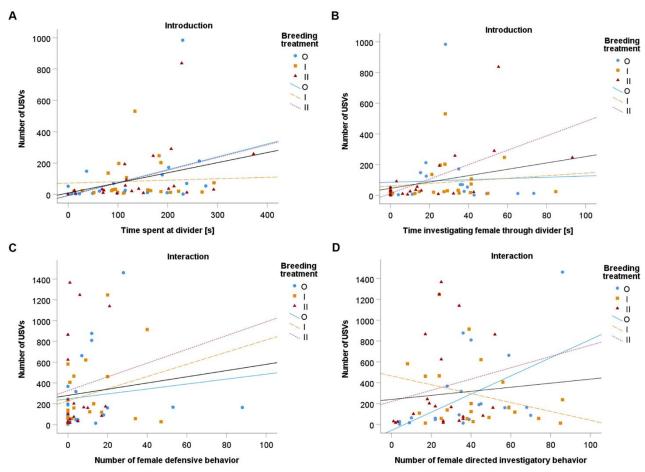
ІТЕМ ТО СНЕСК	PROVIDED	COMMENT
	Y/N	
1. SPECIMEN		
Detailed description of specimen type and numbers	Y	see Methods section "Gene expression": Testes from 62 male mice;
Sampling procedure (including time to storage)	Y	stored in RNAlater (Invitrogen, AM7021) at 4°C for at least 24h and subsequently stored at -80°C until RNA extraction.
Sample aliquotation, storage conditions and duration	Y	
2. NUCLEIC ACID EXTRACTION		
Description of extraction method including amount of sample processed	Y	see Methods section "Gene expression": RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany) according to the
Volume of solvent used to elute/resuspend extract	Y	manufacturer's instructions. (Required details are reported in the manufacturers instructions:
Number of extraction replicates	Y	https://www.qiagen.com/us/resources/resourcedetail?id=f646813a- efbb-4672-9ae3-e665b3045b2b⟨=en)
Extraction blanks included?	Y	e100-40/2-9ae3-e00305045020&tang=en)
3. NUCLEIC ACID ASSESSMENT AND STORAGE		
Method to evaluate quality of nucleic acids	Y	NanoDrop
Method to evaluate quantity of nucleic acids (including molecular weight and calculations when using mass)	Y	NanoDrop
Storage conditions: temperature, concentration, duration, buffer, aliquots	Y	-80°C in TE buffer solution
Clear description of dilution steps used to prepare working DNA solution	Y	After elution DNAseI-treatment (DNAse I Set, Zymo Research, E1010) (detailed information can be found here: https://files.zymoresearch.com/datasheets/_e1010_dnase_i_and_dna_d igestion_buffer_set.pdf)
4. NUCLEIC ACID MODIFICATION	NA	N/A
Template modification (digestion, sonication, preamplification, bisulphite etc.)	N	N/A
Details of repurification following modification if performed	N	N/A
5. REVERSE TRANSCRIPTION	Y	see Methods section "Gene expression": RNA which was then
cDNA priming method and concentration	Y	reverse-transcribed to synthesize complementary DNA (cDNA) using Applied Biosystems High-Capacity cDNA Reverse Transcription Kit,
One or two step protocol (include reaction details for two step)	Y	following the manufacturer's instructions, and stored at -20°C until further processing. (Required details are reported in the
Amount of RNA added per reaction	Y	manufacturer's instructions: https://assets.thermofisher.com/TFS- Assets/LSG/manuals/MAN0017977_highcap_cDNA_RT_UG.pdf)
Detailed reaction components and conditions	Y	- inguesta 200 mananan in in 1001/5/, _inguesta 2001 in incident
Estimated copies measured with and without addition of RT*	Y	
Manufacturer of reagents used with catalogue and lot numbers	Y	
Storage of cDNA: temperature, concentration, duration, buffer and aliquots	Y	
6. dPCR OLIGONUCLEOTIDES DESIGN AND TARGET INFORMATION		
Sequence accession number or official gene symbol	Y	see Supplementary Table 2
Method (software) used for design and in silico verification	Y	
Location of amplicon	Y	
Amplicon length	Y	
Primer and probe sequences (or amplicon context sequence)**	Y	

Location and identity of any modifications	Y	
Manufacturer of oligonucleotides	Y	
7. dPCR PROTOCOL		
Manufacturer of dPCR instrument and instrument model	Y	see Methods section "Gene expression": Gene expression levels were then analyzed from cDNA using Droplet Digital PCR (ddPCR TM).
Buffer/kit manufacturer with catalogue and lot number	Y	Expression levels were estimated using probe-based assays on a
Primer and probe concentration	Y	 QX200TM Droplet Reader (Bio-Rad) and analyzed with the Bio-Rad Droplet DigitalTM PCR QuantaSoft software according to instructions.
Pre-reaction volume and composition (incl. amount of template and if restriction enzyme added)	Y	
Template treatment (initial heating or chemical denaturation)	Y	
Polymerase identity and concentration, Mg++ and dNTP concentrations***	Y	
Complete thermocycling parameters		1
8. ASSAY VALIDATION		
Details of optimisation performed	Y	Analyses were run in replicates and using positive and negative controls
Analytical specificity (vs. related sequences) and limit of blank (LOB)	N	N/A
Analytical sensitivity/LoD and how this was evaluated	N	N/A
Testing for inhibitors (from biological matrix/extraction)	N	N/A
9. DATA ANALYSIS		
Description of dPCR experimental design	Y	Each sample was run in duplicates; positive and negative values were
Comprehensive details negative and positive of controls (whether applied for QC or for estimation of error)	Y	analyzed all together with the samples on the QuantaSoft Software. The reference gene RPL38 (Ribosomal Protein L38) was used to calculate relative concentrations (copies/µl) of the target genes.
Partition classification method (thresholding)	Y	Expression levels are given as the relative ratio of the concentration (copies·μl-1) of the assay target gene over the concentration of the
Examples of positive and negative experimental results (including fluorescence plots in supplemental material)	N	reference gene. Primer pairs were first tested on high quality cDNA extracts to verify amplification of the target gene.
Description of technical replication	Y	Effects of inbreeding were analyzed using ANOVA or Kruskal-Wallis tests for parametric and non-parametric data, respectively. Sperman
Repeatability (intra-experiment variation)	Y	 correlations were conducted to test for correlations with sperm production.
Reproducibility (inter-experiment/user/lab etc. variation)	Y	
Number of partitions measured (average and standard deviation)	N	
Partition volume	N	
Copies per partition (λ or equivalent) (average and standard deviation)	N	
dPCR analysis program (source, version)	Y	1
Description of normalisation method	Y	1
Statistical methods used for analysis	Y	1

^{*} Assessing the absence of DNA using a no RT assay (or where RT has been inactivated) is essential when first extracting RNA. Once the sample has been validated as DNA-free, inclusion of a no-RT control is desirable, but no longer essential.

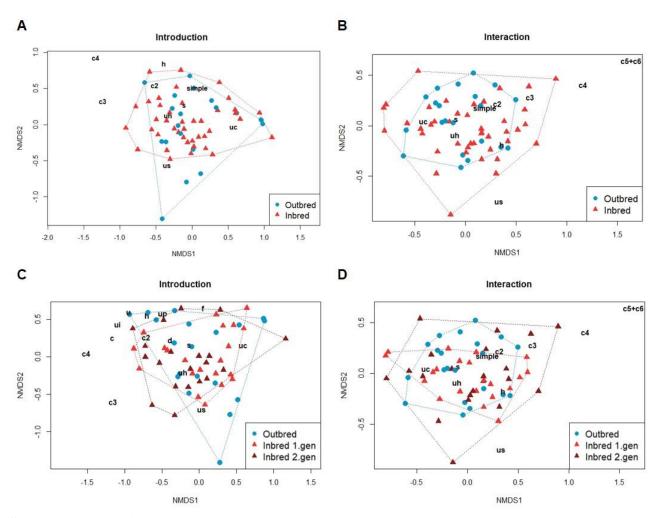

^{**} Disclosure of the primer and probe sequence is highly desirable and strongly encouraged. However, since not all commercial pre-designed assay vendors provide this information when it is not available assay context sequences must be submitted (Bustin et al. Primer sequence disclosure: A clarification of the miqe guidelines. Clin Chem 2011;57:919-21.)

^{***} Details of reaction components is highly desirable, however not always possible for commercial disclosure reasons. Inclusion of catalogue number is essential where component reagent details are not available.

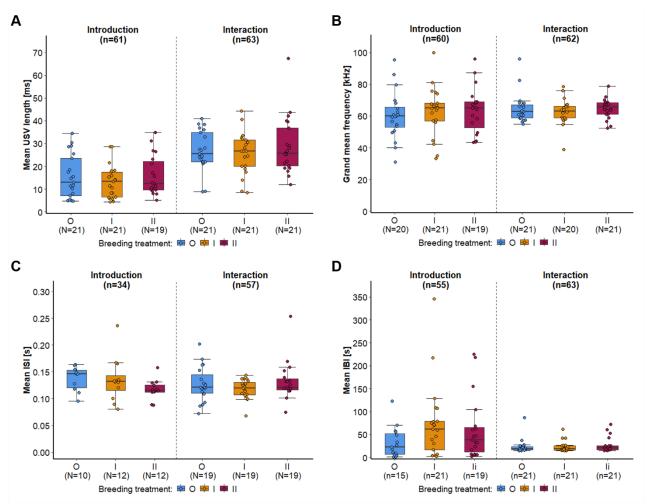

2 Supplementary Results

2.1 Pre-copulatory traits

2.1.1 Ultrasonic vocalizations and courtship behavior

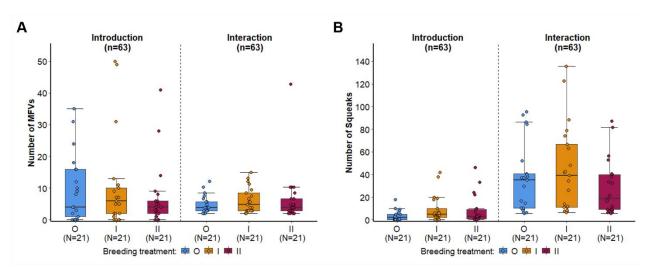


Supplementary Figure 3. Vocal repertoire size during the introduction and interaction phase, comparing 3 breeding treatments. Points represent raw data, boxplots show median (center line), interquartile range (IQR, box), and 1.5x IQR (whiskers) of the USV repertoire size, emitted by outbred (O, blue), 1st generation inbred (I, orange) and 2nd generation inbred (II, red) mice (shown from left to right, respectively).



Supplementary Figure 4. Correlation between behavior and USV emission. Symbols represent outbred (O, blue circles, solid line), 1st generation inbred (I, orange squares, dashed line) and 2nd generation inbred (II, red triangles, dotted line) males. The black line represents the overall correlation. Correlations between number of USVs and (A) time spent at the divider, (B) time spent investigating the female through the divider, (C) number of female defensive behaviors, and (D) number of female-directed investigatory behavior during either (A and B) the introduction phase or (C and D) the interaction phase.

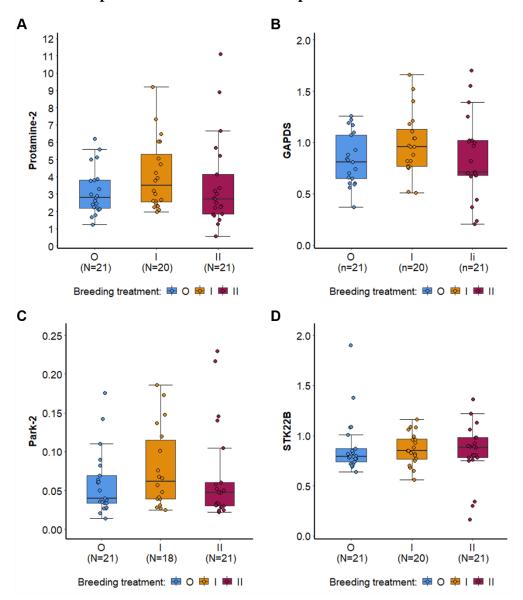
To analyze vocal repertoire composition, we also conducted additional analyses using all 15 syllable types during the introduction phase to be able to compare our data to previous studies. The USV repertoire composition of the introduction phase did not differ among the three breeding treatments (ANOSIM: Introduction: 15 syllable types, R=0.003, p= 0.378, Fig. S5C). Yet, when we pooled the two inbred treatments, the repertoire composition differed significantly from the outbred males (ANOSIM: introduction: 15 syllable types, R=0.089, p=0.045).



Supplementary Figure 5. Syllable type usage presented in non-metric multidimensional scaling (nMDS) plots. NMDS plots of syllable types emitted during the introduction (**A** and **C**) and interaction phase (**B** and **D**). (**A** and **B**) Plots compare outbred (blue dots) versus inbred (red triangles, pooled 1st and 2nd generation inbred mice) mice when using 10 syllable types (i.e., simple types pooled into one category, see Table S1). (**C** and **D**) Plots compare outbred (blue dots), 1st generation inbred (red triangles) and 2nd generation inbred (dark red triangles) mice, when using 15 syllable types during the introduction phase and 10 syllable types during the interaction phase. Letters in black indicate the syllable types and each symbol represents one recorded pair (i.e., outbred or inbred F5 male + outbred F1 female). Distances between the symbols represent similarities of pairs in the syllable type usage. Short distances of symbols to letters indicate syllable types that were most representative for each pair.

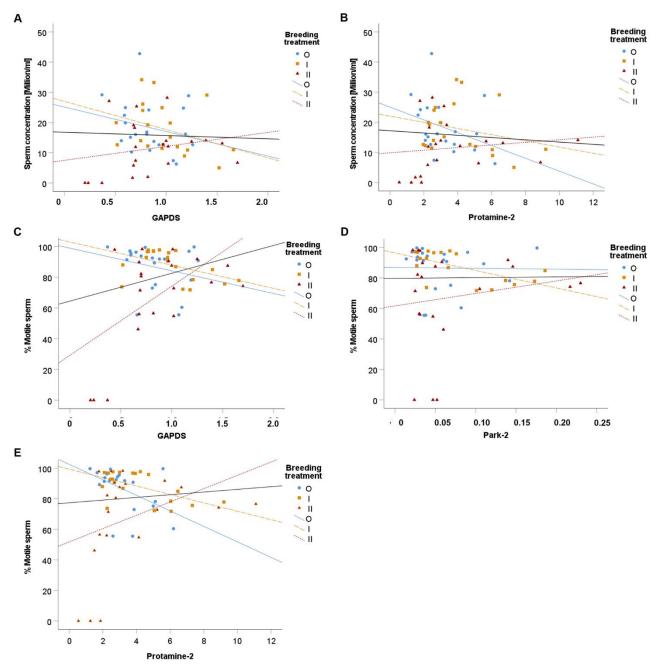
Supplementary Figure 6. Spectro-temporal features of USVs emitted during the introduction versus interaction phase comparing 3 breeding treatments. Points represent raw data, boxplots show median (center line), interquartile range (IQR, box), and 1.5x IQR (whiskers) of (A) mean USV length (ms), (B) grand mean frequency (kHz), (C) mean inter-syllable interval (ISI) and (D) mean inter-bout interval (IBI), of USVs emitted by outbred (O, blue), 1st generation inbred (I, orange) and 2nd generation inbred (II, red) mice (shown from left to right, respectively).

2.1.2 Sonic vocalizations and behavior


Supplementary Figure 7. Sonic vocalizations emitted during the introduction versus interaction phases comparing 3 breeding treatments. Points represent raw data, boxplots show median (center line), interquartile range (IQR, box), and 1.5x IQR (whiskers) of (**A**) number of MFVs and (**B**) number of squeaks, emitted by outbred (O, blue), 1st generation inbred (I, orange) and 2nd generation inbred (II, red) mice (shown from left to right, respectively).

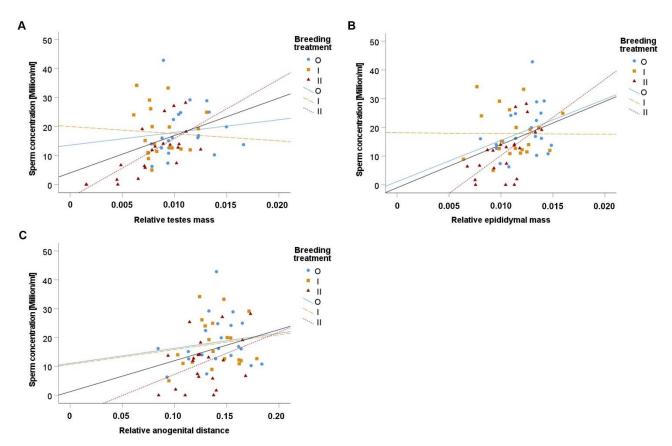
2.1.3 Correlations between sonic and ultrasonic vocalizations

Exploratory statistics showed that the number of USVs was positively correlated with the number of squeaks during the introduction phase (rs=0.358, p=0.004), but not during direct interactions rs=0.150, p=0.242). On the contrary, the number of USVs was positively correlated with the number of MFVs during direct interactions (rs= 0.288, p=0.022), but this correlation was not significant during the introduction phase (rs=0.210, p=0.098). The number of squeaks did not significantly correlate with the number of MFVs in either phase (introduction: rs=0.056, p=0.665, interaction: rs= 0.205, p=0.106).

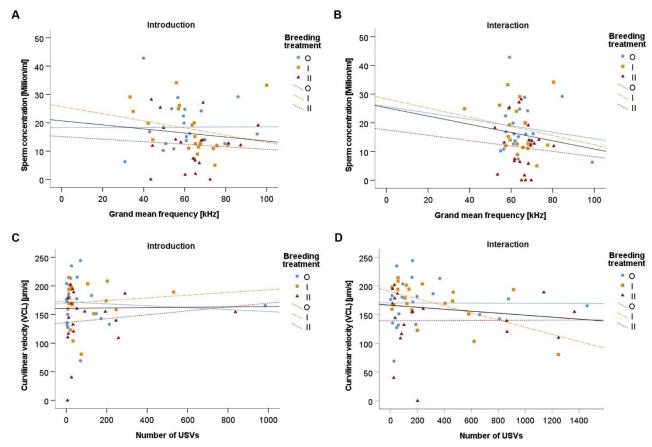

2.2 Post-copulatory traits:

2.2.1 Gene expression & correlation with sperm traits:

Supplementary Figure 8. Gene expression of proteins relevant for spermiogenesis depending on males' breeding treatments. Points represent raw data, boxplots show median (center line), interquartile range (IQR, box), and 1.5x IQR (whiskers) of (A) Protamine-2, (B) GAPDS, (C) Park-2, and (**D**) STK22B for outbred (O, blue), 1st generation inbred (I, orange) and 2nd generation inbred (II, red) males (shown from left to right, respectively).


There was no significant correlation between gene expression and sperm concentration, motility or sperm velocity parameters at T0, respectively, when pooling the three treatment groups. However, when analyzing the groups separately, we found a negative correlation between sperm concentration and GAPDS in I mice (I: rs= -0.492, p=0.027, Table S9, Fig. S9A) and a positive correlation between sperm concentration and Protamine-2 in II mice (II: rs=0.438, p=0.047, Table S9, Fig. S9B), however this correlation was not significant after FDR correction and there was no significant difference in the slopes between the three treatment groups (Fig. S9A and B). Furthermore, the percentage of motile sperm was negatively correlated with GAPDS (I: rs= -0.452, p=0.046, Table S9, Fig. S9C) and Park-2 (I: rs=-0.519, p=0.027, Table S9, Fig. S9D) in I mice and with Protamine-2 (O: rs=-0.455, p=0.038, Table S9, Fig. S9E) in O mice, and tended to be positively correlated with Protamine-2 (II: rs= 0.432, p=0.051, Table S9, Fig. S9E) and GAPDS (II: rs= 0.405, p=0.068, Table S9, Fig. S9C) in II mice, though all were not significant after FDR correction (Table S9). Additionally, for the correlations of gene expression (GAPDS, Park-2 and Protamine-2) versus the percentage of motile sperm, the slope of II males differed significantly from the slope of O and I males. (GLM: GAPDS vs %Motile: F=6.925, p=0.002, II vs O: T=-2.815, p=0.007, II vs. I: T=-3.506, p=0.001 (Fig. S9C); Park-2 vs % Motile: F=3.267, p=0.046, II vs O: T=-0.578, p=0.566, II vs. I: T=-2.462, p=0.017 (Fig. S9D); Protamine-2 vs %Motile: F=6.418, p=0.003, II vs O: T=-2.941, p=0.005, II vs. I: T=-3.231, p=0.002 (Fig. S9E)).

Supplementary Figure 9. Correlation between gene expression of proteins associated with spermiogenesis and sperm parameters measured at T0 (initial measurement). Symbols and trendlines represent outbred (O, blue circles, solid line), 1st generation inbred (I, orange squares, dashed line) and 2nd generation inbred (II, red triangles, dotted line) males. The black line represents the overall correlation. Graphs present correlations between sperm concentration and (A) GAPDS or (B) Protamine-2 and correlations between percentage of motile sperm and (C) GAPDS, (D) Park-2, and (E) Protamine-2.


2.2.2 Correlations between sperm traits and reproductive organs

We tested whether the sperm concentration was correlated with the reproductive organs. When analyzing all males, both the relative testes mass and relative epididymal mass were positively correlated with the sperm concentration measured at T0 (relative testes mass: rs= 0.405, p=0.001, FDR adjusted p=0.002; relative epididymal mass: rs= 0.410, p=0.001, FDR adjusted p=0.002, Table S9, Fig. S10A and B). However, when analyzing the 3 groups separately, this correlation was only present in II mice for both parameters. Thus, the slope of the correlation between sperm concentration and relative testes mass of II mice was significantly different from O and I mice (GLM: II vs O: T=-2.0, p=0.05, II vs I: T=-2.575, p=0.013). Additionally, the sperm concentration was correlated with the relative anogenital distance when pooling all mice (rs= 0.265, p=0.037, Table S9, Fig. S10C), though not after FDR correction and with no differences in the slopes. In outbred mice, we also found a negative correlation between sperm concentration and body mass (rs= -0.524, p=0.015, FDR adjusted p=0.06, Table S9).

Supplementary Figure 10. Relationships between reproductive organ mass and sperm concentration. Symbols and trendlines represent outbred (O, blue circles, solid line), 1st generation inbred (I, orange squares, dashed line) and 2nd generation inbred (II, red triangles, dotted line) males. The black line represents the overall correlation. Graphs show correlations between sperm concentration (M/ml) and (A) relative testes mass, (B) relative epididymal mass, and (C) relative anogenital distance. Relative organ mass was calculated as total organ mass / body mass, and relative anogenital distance was calculated as anogenital distance / body length (snout to tail base).

2.3 Correlations between pre- versus post-copulatory traits

Supplementary Figure 11. Correlation between USV emission and sperm parameters. Symbols and trendlines represent outbred (O, blue circles, solid line), 1st generation inbred (I, orange squares, dashed line) and 2nd generation inbred (II, red triangles, dotted line) males. The black line represents the overall correlation. Graphs show correlations between (**A** and **B**) sperm concentration and grand mean frequency of USVs during the (**A**) introduction phase and (**B**) interaction phase and (**C** and **D**) correlation between average sperm curve speed and number of USVs emitted during the (**C**) introduction phase and (**D**) interaction phase.

3 Supplementary Tables

Supplementary Table 4. Generalized linear mixed models (GZLMM) to test the effects of recording phase (ph1: introduction phase, ph2: interaction phase) or breeding treatment (O: outbred, I: 1st generation inbred and II: 2nd generation inbred) on sonic vocalizations and USV parameters. Post-hoc pairwise comparisons were conducted using sequential Sidak method to correct for multiple testing. Significant p-values (p<0.05) are in bold, and trends (p<0.1) are in italic.

		GZL	MM	Post-hoc pairwise comparison		95%
Parameter	Fixed effect	F	P	Contrasts	P adjusted (sequential Sidak)	Confidence interval lower - upper
				O - I	0.235	-15.974 – 2.640
	breeding treatment	2.038	0.135	O - II	0.844	-6.163 - 5.046
				I - II	0.235	-2.789 – 15.007
	phase	76.161	<0.001			13.062 - 26.335
Squeak				Ph1: O - I	0.164	-9.827 – 1.147
n=63				Ph1: O - II	0.364	-6.305 - 1.748
	tuaatmant*nhaaa	2.368	0.098	Ph1: I - II	0.425	-3.035 – 7.158
	treatment*phase	2.308	0.098	Ph2: O - I	0.506	-27.432 – 13.599
				Ph2: O - II	0.424	-8.377 - 26.564
				Ph2: I - II	0.229	-6.167 – 38.187
	breeding treatment	0.351	0.705	O - I	0.815	-4.181 – 2.421
				O - II	0.855	-2.307 – 2.779
				I - II	0.815	-2.297 – 4.529
	phase	16.606	<0.001			-5.785 – -1.506
MFVs				Ph1: O - I	0.91	-6.253 – 5.575
n=63		0.600	0.504	Ph1: O - II	0.748	-3.997 – 8.100
				Ph1: I - II	0.748	-4.022 - 8.803
	treatment*phase	0.689		Ph2: O - I	0.748	-3.697 – 1.688
				Ph2: O - II	0.782	-3.046 – 1.727
				Ph2: I - II	0.782	-2.048 - 2.739
				O - I	0.818	-95.160 – 57.206
	breeding treatment	0.427	0.654	O - II	0.754	-121.025 - 55.811
				I - II	0.818	-96.432 – 69.172
LICM count	phase	49.895	< 0.001			73.960 – 177.071
USV count n=63				Ph1: O - I	0.821	-61.084 – 36.893
11-03				Ph1: O - II	0.748	-80.315 – 36.669
	treatment*phase	0.072	0.931	Ph1: I - II	0.821	-65.660 – 46.204
				Ph2: O - I	0.897	-184.702 - 127.540
				Ph2: O - II	0.895	-222.507 – 130.399

				Ph2: I - II	0.897	-181.164 – 146.219
				O - I	0.549	-1.112 – 0.594
	breeding treatment	1.373	0.257		0.284	-1.797 – 0.350
				I - II	0.516	-1.485 - 0.556
	phase	23.114	<0.001			-2.012 - 0.855
Vocal	1			Ph1: O - I	0.660	-1.296 – 0.824
repertoire				Ph1: O - II	0.332	-2.213 – 0.491
n=63	and the state of	0.000	0.707	Ph1: I - II	0.470	-1.908 – 0.658
	treatment*phase	0.332	0.725	Ph2: O - I	0.855	-1.568 – 1.002
				Ph2: O - II	0.735	-1.924 - 0.862
				Ph2: I - II	0.855	-1.536 – 1.041
				O - I	0.747	-0.092 - 0.168
	breeding treatment	0.885	0.415	O - II	0.747	-0.172 - 0.093
	_			I - II	0.46	-0.220 - 0.064
Log (mean	phase	55.423	< 0.001			0.202 - 0.349
USV				Ph1: O - I	0.79	-0.134 - 0.224
length)			0.928	Ph1: O - II	0.79	-0.237 - 0.136
n=62	4 4 4 1	0.075		Ph1: I - II	0.575	-0.295 - 0.104
	treatment*phase	0.075		Ph2: O - I	0.869	-0.117 - 0.178
				Ph2: O - II	0.869	-0.176 - 0.117
				Ph2: I - II	0.735	-0.218 - 0.098
			0.827	O - I	0.932	-5.792 – 5.311
	breeding treatment	0.19		O - II	0.919	-8.522 - 5.263
				I - II	0.919	-8.076 - 5.299
Grand	phase	1.399	0.239			-1.716 – 6.806
mean				Ph1: O - I	0.876	-13.423 – 8.395
frequency				Ph1: O - II	0.876	-14.896 – 8.414
n=61	traatmant*nhaga	0.399	0.672	Ph1: I - II	0.879	-10.144 – 8.691
	treatment*phase	0.399	0.072	Ph2: O - I	0.834	-4.512 – 8.577
				Ph2: O - II	0.995	-5.312 – 5.277
				Ph2: I - II	0.834	-8.607 – 4.506
				O - I	0.88	-0.050 - 0.083
	breeding treatment	0.265	0.768	O - II	0.88	-0.049 - 0.086
				I - II	0.946	-0.052 - 0.056
	phase	0.853	0.358			-0.056 - 0.021
Log (ISI)				Ph1: O - I	0.839	-0.072 – 0.089
n=61				Ph1: O - II	0.446	-0.044 - 0.154
	treatment*phase	2.087	0.13	Ph1: I - II	0.446	-0.043 – 0.137
	treatment phase		0.13	Ph2: O - I	0.69	-0.049 – 0.099
				Ph2: O - II	0.69	-0.087 - 0.051
				Ph2: I - II	0.467	-0.122 - 0.036

Nicolakis et al. - Supplementary Material – Additional file 1

				O - I	0.491	-0.533 - 0.164
	breeding treatment	0.927	0.399	O - II	0.495	-0.484 - 0.174
				I - II	0.83	-0.247 - 0.307
	phase	56.489	<0.001			-0.8050.469
Log (IBI)		1.606	0.205	Ph1: O - I	0.191	-0.864 – 0.118
n=61				Ph1: O - II	0.363	-0.733 - 0.203
	tuaatmant*nhaaa			Ph1: I - II	0.573	-0.271 - 0.486
	treatment*phase			Ph2: O - I	0.985	-0.295 - 0.302
				Ph2: O - II	0.985	0.404 - 0.315
				Ph2: I - II	0.985	-0.410 - 0.315

Supplementary Table 5. Kruskal-Wallis test on USV types comparing the 3 breeding treatments separately for both recording phases (interaction and introduction phase).

	Intro	duct	ion	Interaction			
Parameter	Kruskal- Wallis-H	n	P	Kruskal- Wallis-H	n	P	
Number of short USVs	1.513	63	0.469	1.581	63	0.454	
Number of simple USVs	0.029	63	0.986	0.094	63	0.954	
Number of complex USVs	4.734	63	0.094	0.328	63	0.849	

Supplementary Table 6. Generalized Linear Mixed Models (GLMM) testing effects of breeding treatment (O: outbred, I: 1^{st} generation inbred and II: 2^{nd} generation inbred) on spectro-temporal features using single USV datapoints of the interaction phase. Significant p-values (p<0.05) are in bold, and trends (p<0.1) are in italic.

	ency of USVs (single datar	points)	Relative Likelihood
	model breeding				
Random effe		-			
Groups	Name	Variance	Std.Dev.		
Replicate	(Intercept)	0.07277	0.2698		
Residual		0.02208	0.1486		
Number of o	bservations: 17	163, groups: R	teplicate, 62		
Fixed effects	<u>:</u>				
	Estimate	Std. Error	t value	P value	
(Intercept)	2.34228	0.18888	12.401	<0.001	
genetic-I	0.62936	0.30652	2.053	0.040	
genetic-II	-0.02116	0.25261	-0,084	0.933	
	Null m	odel AICc =	40252.2		0.25
USV length	(GLMM using	single datapoi	nts)		Relative Likelihood
	model breedin	g treatment A	ICc = 1492	21.9	0.61
Random effe		1		1	
Groups	Name	Variance	Std.Dev.		
Replicate	(Intercept)	2.2e-07	0.0005		
Residual		9.3e-03	0.0966		
	bservations: 17	636, groups: R	teplicate, 63		
Fixed effects					
	Estimate	Std. Error	t value	P value	
(Intercept)	0.0022837	0.0003503	6.519	<0.001	
genetic-I	0.0008174	0.0004958	1.648	0.0993	
genetic-II	0.0003124	0.0004568	0.684	0.4939	
		odel AICc = 1			1
Inter-syllab	le interval (ISI				Relative Likelihood
	model breeding	g treatment AI	Cc = -34059	0.72	1
Random effe		** .	0.15		
Groups	Name	Variance	Std.Dev.		
Replicate	(Intercept)	0.000	0.00		
Residual	1 11	3.131	1.77		
	bservations: 11	382, groups: R	teplicate, 56		
Fixed effects		Ctd Emon	t walna	Dyolyo	
(Intersect)	Estimate 20.154	Std. Error	t value	P value	
(Intercept)	80.154	1.692	47.381	<0.001	
genetic-I	-7.977	2.294	-3.478	0.0005	
genetic-II	-1.929	2.193	-0.879	0.379	

	Null m	0.006			
Inter-bout in	nterval (IBI) (Relative Likelihood			
]	model breedin	g treatment A	AICc = 20158	8.45	0.23
Random effe	cts:				
Groups	Name	Variance	Std.Dev.		
Replicate	(Intercept)	0.1172	0.3424		
Residual		1.7885	1.3374		
Number of o	bservations: 61	89, groups: Re	eplicate, 62		
Fixed effects	:				
	Estimate	Std. Error	t value	P value	
(Intercept)	0.10856	0.05614	1.934	0.0531	
genetic-I	-0.01440	0.08035	-0.179	0.8578	
genetic-II	0.06343				
	Null m	odel $AICc = 2$	0155.51		1

Supplementary Table 7. Generalized Linear Mixed Models (GZLMM) to test the effects of sperm collection timepoint (T0: directly after sperm collection, T2: 2h after sperm collection) or breeding treatment (O: outbred, I: 1st generation inbred and II: 2nd generation inbred) on sperm parameters. Posthoc pairwise comparisons were conducted using sequential Sidak method to correct for multiple testing. Significant p-values (p<0.05) are in bold, and trends (p<0.1) are in italic.

		GZL	GZLMM		pairwise arison	95%
Parameter	Fixed effect	F	P	Contrasts	P adjusted (sequential Sidak)	Confidence interval lower - upper
	han a dia a			O - I	0.72	-3.941 – 5.689
	breeding treatment	5.291	0.006	O - II	0.01	1.361 – 12.995
	treatment		•	I - II	0.021	0.796 - 11.812
Sperm	timepoint	7.864	0.006			-2.5260.435
concentration	treatment*time	0.161	0.852	T0: O - I	0.848	-4.785 – 5.812
(Million/ml)				T0: O - II	0.029	0.536 - 13.338
n=62				T0: I - II	0.036	0.363 - 12.484
	point	0.101		T2: O - I	0.6	-3.414 – 5.882
				T2: O - II	0.005	1.803 - 13.034
				T2: I - II	0.019	0.087 - 11.501
0/ Motile	huaadina	7.431		O - I	0.836	-14.198 – 11.507
% Motile n=62	breeding treatment		<0.001	O - II	0.003	6.280 - 35.323
11-02	ucalillelli			I - II	0.003	6.428 - 37.867

1	timepoint	72.672	<0.001			-24.47115.245
				T0: O - I	0.819	-14.563 - 11.542
				T0: O - II	0.007	4.566 – 34.061
	treatment*time	0.165	0.040	T0: I - II	0.006	4.859 – 36.788
	point	0.165	0.848	T2: O - I	0.876	-16.159 – 13.798
				T2: O - II	0.007	5.257 - 39.324
				T2: I - II	0.007	5.150 - 41.792
	1 1'			O - I	0.934	-19.878 – 21.624
	breeding treatment	3.662	0.029	O - II	0.051	-0.106 - 51.536
	ueaument			I - II	0.051	-0.110 – 49.794
VCL	timepoint	223.481	<0.001			-96.180 – -73.670
(Curvilinear				T0: O - I	0.921	-27.754 – 25.118
velocity, µm/s)				T0: O - II	0.064	1.137 - 62.327
n=60	treatment*time	0.503	0.606	T0: I - II	0.064	-1.367 – 64.953
	point	0.303	0.000	T2: O -I	0.792	-19.923 – 26.050
				T2: O - II	0.224	-7.886 – 49.796
				T2: I - II	0.26	-9.392 – 45.174
	1 1.	4.379	0.015	O - I	0.852	-9.055 – 10.938
	breeding treatment			O - II	0.025	1.324 - 26.215
	treatment			I - II	0.03	1.053 - 24.602
VAP	timepoint	237.953	<0.001			-50.80239.238
(Average path				T0: O - I	0.905	-12.047 – 13.590
velocity, μm/s)				T0: O - II	0.038	0.706 - 32.489
n=60	treatment*time	0.428	0.653	T0: I - II	0.038	0.744 - 30.908
	point	0.420	0.033	T2: O - I	0.848	-10.384 – 12.608
				T2: O - II	0.193	-3.492 – 25.375
				T2: I - II	0.2	-3.824 – 23.482
	huaadina			O - I	0.881	-5.388 – 6.274
	breeding treatment	3.967	0.022	O - II	0.037	0.349 - 14.861
	treatment			I - II	0.039	0.297 - 14.027
VSL	timepoint	275.382	<0.001			-38.60530.370
(Straight-line				T0: O - I	0.929	-8.585 – 9.398
velocity, µm/s)				T0: O - II	0.082	-0.917 – 21.377
n=60	treatment*time	0.697	0.5	T0: I - II	0.082	-0.956 - 20.604
	point	0.077	0.5	T2: O - I	0.875	-5.550 – 6.511
				T2: O - II	0.305	-2.601 – 12.562
				T2: I - II	0.305	-2.743 – 11.743

Supplementary Table 8. Effects of breeding treatment (O: outbred, I: 1st generation inbred and II: 2nd generation inbred) on male reproductive organs and gene expression. Relative organ mass was calculated as total organ mass / body mass. Comparisons were conducted using ANOVA (presenting F-values) or Kruskal-Wallis Test (presenting H-values), for parametric and nonparametric variables, respectively. Significant p-values (p<0.05) are in bold, and trends (p<0.1) are in italic.

			H or F		Post-hoc pairwise comparison			
Parameter n		Test	Test value		Contrasts	P adjusted (sequential Sidak)		
Body mass [g]	62	Kruskal-Wallis	0.563	0.754				
Total testes mass [g]	62	ANOVA	8.869	< 0.001	O - I	0.022		
					O - II	< 0.001		
					I - II	0.488		
Relative testes mass	62	ANOVA	8.225	0.001	O - I	0.027		
					O - II	0.001		
					I - II	0.539		
Total epididymal mass	62	ANOVA	3.759	0.029	O - I	0.550		
[g]					O - II	0.024		
					I - II	0.362		
Relative epididymal								
mass	62	ANOVA	2.947	0.060				
Total seminal vesicles								
mass [g]	61	Kruskal-Wallis	0.528	0.768				
Relative seminal								
vesicles mass	61	ANOVA	0.436	0.649				
Protamine-2	62	Kruskal-Wallis	3.026	0.220				
GAPDS	62	ANOVA	1.278	0.286				
Park-2	60	Kruskal-Wallis	1.706	0.426				
STK22B	62	Kruskal-Wallis	0.720	0.698				

Supplementary Table 9. Spearman rank correlation between sperm parameters, gene expression and reproductive organs for all mice and separately for each breeding treatment (O: outbred, I: 1st generation inbred and II: 2nd generation inbred). Relative organ mass was calculated as total organ mass / body mass. Relative anogenital distance was calculated as Anogenital distance / body length (snout to tail base). Significant p-values (p<0.05) are in bold, and trends (p<0.1) are in italic, before and after correction for multiple testing (FDR).

Spearman o	Sperm	con	centratio	n [M/ml]	% Motile sperm				
		-			P			•	P
	Breeding				adjusted				adjusted
	treatment	$\mathbf{r}_{\mathbf{s}}$	n	P	(FDR)	$\mathbf{r}_{\mathbf{s}}$	n	P	(FDR)
Protamine-	All mice	-0.031	62	0.810	0.810	0.005	60	0.973	0.973
2	O	-0.347	21	0.124	0.248	-0.455	21	0.038	0.076
	I	-0.230	20	0.329	0.439	-0.432	20	0.057	0.076
	II	0.438	21	0.047	0.188	0.432	21	0.051	0.076
GAPDS	All mice	-0.085	62	0.511	0.511	0.020	60	0.877	0.877
	O	-0.278	21	0.222	0.296	-0.322	21	0.155	0.207
	I	-0.492	20	0.027	0.108	-0.452	20	0.046	0.136
	II	0.355	21	0.114	0.228	0.405	21	0.068	0.136
Park-2	All mice	-0.111	60	0.399	0.684	-0.052	58	0.701	0.797
	O	-0.019	21	0.935	0.935	-0.280	21	0.219	0.438
	Ι	-0.227	18	0.365	0.684	-0.519	18	0.027	0.108
	II	-0.151	21	0.513	0.684	-0.060	21	0.797	0.797
STK22B	All mice	0.004	62	0.974	0.974	-0.239	60	0.065	0.260
	O	0.025	21	0.915	0.974	-0.129	21	0.578	0.771
	Ι	-0.096	20	0.686	0.974	-0.034	20	0.887	0.887
	II	0.196	21	0.395	0.974	0.149	21	0.519	0.771
Relative	All mice	0.405	62	0.001	0.002				
testes mass	0	0.360	21	0.109	0.145				
	Ι	-0.039	20	0.870	0.870				
	II	0.727	21	< 0.001	< 0.001				
Relative	All mice	0.41	62	0.001	0.002				
epididymal	O	0.301	21	0.184	0.245				
mass	Ι	0.045	20	0.850	0.850				
	II	0.652	21	0.001	0.002				
Relative anogenital	All mice	0.265	62	0.037	0.148				
	0	0.153	21	0.507	0.676				
distance	I	0.099	20	0.677	0.677				
	II	0.323	21	0.153	0.306				
	All mice	0.072	62	0.576	0.576				

Body mass [g]	O	-0.524	21	0.015	0.060
	Ι	0.299	20	0.201	0.402
	II	0.165	21	0.474	0.576

Supplementary Table 10. Spearman rank correlation between USV emission, sperm parameters, and reproductive organs for all mice and separately for each breeding treatment (O: outbred, I: 1st generation inbred and II: 2nd generation inbred). Relative organ mass was calculated as total organ mass / body mass. Significant p-values (p<0.05) are in bold, and trends (p<0.1) are in italic, before and after correction for multiple testing (FDR).

	USV count								
Spearman]	Introdu	ctio	n phase	Interaction phase				
rank					P				P
correlation	Breeding treatment	$r_{\rm s}$	n	P	adjusted (FDR)	r_{s}	n	P	adjusted (FDR)
	all mice	-0.001	62	0.993	0.993	-0.105	62	0.461	0.866
Sperm	O	0.105	21	0.651	0.868	0.07	21	0.763	0.872
concentration	Ι	-0.211	20	0.371	0.866	-0.145	20	0.541	0.866
	II	0.26	21	0.255	0.866	-0.311	21	0.17	0.866
	all mice	-0.01	60	0.942	0.984	-0.154	60	0.24	0.712
VCL	O	0.005	21	0.984	0.984	0.13	21	0.575	0.767
VCL	I	-0.147	20	0.537	0.767	-0.424	20	0.063	0.504
	II	0.18	19	0.461	0.767	-0.268	19	0.267	0.712
	all mice	-0.154	62	0.234	0.416	-0.43	62	<0.001	0.0072
Relative epididymal	O	-0.187	21	0.418	0.557	-0.466	21	0.033	0.088
mass	I	-0.14	20	0.556	0.635	-0.617	20	0.004	0.016
mass	II	0.086	21	0.721	0.721	-0.257	21	0.26	0.416
Relative testes mass	all mice	-0.082	62	0.524	0.683	-0.303	62	0.017	0.068
	O	-0.206	21	0.371	0.594	0.0297	21	0.191	0.406
	I	-0.011	20	0.962	0.962	-0.536	20	0.015	0.068
	II	0.29	21	0.203	0.406	-0.122	21	0.598	0.683

	grand mean frequency									
		n phase	Interaction phase							
					P				P	
	breeding			-	adjusted			_	adjusted	
	treatment	r_s	n	P	(FDR)	r_s	n	P	(FDR)	
	all mice	-0.208	59	0.114	0.456	-0.178	61	0.171	0.456	
Sperm	0	0.068	20	0.777	0.973	0.008	21	0.973	0.973	
concentration	I	-0.525	20	0.018	0.144	-0.282	19	0.241	0.482	
	II	-0.037	19	0.881	0.973	-0.092	21	0.693	0.973	
	all mice	-0.167	59	0.206	0.33	-0.354	61	0.005	0.04	
Relative	О	-0.376	20	0.102	0.238	-0.352	21	0.118	0.238	
epididymal	Ι	0.092	20	0.701	0.748	-0.37	19	0.119	0.238	
mass						-				
	II	-0.079	19	0.748	0.748	0.0243	21	0.289	0.385	
				mea	n USV lei	ngth				
		Introdu	ctio	n phase		Interaction phase				
					P				P	
	breeding				adjusted				adjusted	
	treatment	r_{s}	n	P	(FDR)	r_s	n	P	(FDR)	
Relative	all mice	-0.212	60	0.104	0.208	-0.37	62	0.003	0.024	
	O	-0.042	21	0.858	0.858	-0.406	21	0.067	0.179	
epididymal mass	Ι	-0.226	20	0.339	0.387	-0.472	20	0.036	0.144	
111435	II	-0.309	19	0.198	0.264	-0.296	21	0.192	0.264	

4 References

- 1. Nicolakis D, Marconi MA, Zala SM, Penn DJ. Ultrasonic vocalizations in house mice depend upon genetic relatedness of mating partners and correlate with subsequent reproductive success. Front Zool. 2020;17:10.
- 2. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biology. 2007;8(9):227.
- 3. Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, et al. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A. 2004;101(47):16501-6.
- 4. Shang P, Baarends WM, Hoogerbrugge J, Ooms MP, van Cappellen WA, de Jong AA, et al. Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases. J Cell Sci. 2010;123(Pt 3):331-9.
- 5. Song WH, Ballard JW, Yi YJ, Sutovsky P. Regulation of mitochondrial genome inheritance by autophagy and ubiquitin-proteasome system: implications for health, fitness, and fertility. Biomed Res Int. 2014;2014:981867.
- 6. Huggett JF. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin Chem. 2020;66(8):1012-29.