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Alzheimer’s disease (AD) and bipolar disorder (BD) are progressive brain disorders. Upregulated mRNA and protein
levels of neuroinflammatory and arachidonic acid (AA) markers with loss of synaptic markers (synaptophysin and drebrin) have
been reported in brain tissue from AD and BD patients. We hypothesized that some of these changes are associated with
epigenetic modifications of relevant genes. To test this, we measured gene-specific CpG methylation, global DNA methylation
and histone modifications in postmortem frontal cortex from BD (n¼ 10) and AD (n¼ 10) patients and respective age-matched
controls (10 per group). AD and BD brains showed several epigenetic similarities, including global DNA hypermethylation,
and histone H3 phosphorylation. These changes were associated with hypo- and hypermethylation of CpG islands in
cyclooxygenase-2 and brain-derived neurotrophic factor promoter regions, respectively. Only the AD brain showed hyper- and
hypomethylated CpG islands in promoter regions for cAMP response element-binding protein and nuclear transcription factor
kappa B genes, respectively. Only the BD brain demonstrated increased global histone H3 acetylation and hypermethylation of
the promotor region for the drebrin-like protein gene. There was no significant epigenetic modification for 12-lipooxygenase or
p450 epoxygenase in either illness. Many observed epigenetic changes were inversely related to respective changes in mRNA
and protein levels. These epigenetic modifications involving neuroinflammatory, AA cascade and synaptic markers may
contribute to progression in AD and BD and identify new targets for drug development.
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Introduction

Alzheimer’s disease (AD) and bipolar disorder (BD) are

progressive neuropsychiatric illnesses with overlapping symp-

toms and neuropathology, including brain atrophy, cognitive

impairment, emotional disturbances, neuroinflammation, ex-

citotoxicity and upregulated brain arachidonic acid (AA)

metabolism.1–3 Common behavioral disturbances in AD, aside

from memory loss, are apathy, depression, agitation and

general withdrawal. Apathy is the most prevalent disturbance,

affecting about 70% of AD patients; depression ranks second,

occurring in about 54% of patients; and agitation ranks third,

appearing in about 50% of patients.4 Progressive neurostruc-

tural changes have been reported in adolescent and adult

patients with BD,5,6 associated with cognitive impairment.7

Although genome-wide studies have identified a number of

potential risk alleles for BD and late-onset AD, the contribution

of each is small and explains only a fraction of the known

heritability.8–11 High throughput genetic analysis confirms that

neuropsychiatric disorders are very complex and involve many

small interdependent genetic abnormalities that are influenced

by polygenic inheritance, epigenetic interactions and pleio-

tropy.12 Several studies have implicated epigenetic mechan-

isms in these illnesses.12,13 In this study, we examined brain

epigenetic changes in AD and BD.

Epigenetic modification in the form of DNA methylation
involves covalent addition of a methyl group from the methyl
donor S-adenosylmethionine to a cytosine base within the
DNA. This reaction is catalyzed by a family of DNA
methyltransferases (DNMTs), with DNMT1 and DNMT3A
being the main enzymes in mammalian brain.14–16 DNA
methylation in the promoter region of a gene has been
associated with decreased transcriptional activity.17 CpG
islands are extended regions of cytosine and guanine repeats
in the promoter region of many mammalian genes. These sites
are heavily targeted by DNMTs and are known to modulate
gene expression.18

Histones are basic proteins that regulate the compaction of
chromatin and can undergo post-translational epigenetic
modification by acetylation, methylation, phosphorylation,
ubiquitination or sumoylation. Histone acetylation and phos-
phorylation have been linked to transcriptional activation,19–23

whereas trimethylation of histone-3K4 is suggested to silence
gene expression, although the effects of this modification are
still under investigation.24 Epigenetic studies in neuropsy-
chiatric disorders may identify why behavioral phenotypes
among patients are highly variable.15,25

Recently, we reported that AD and BD postmortem frontal
cortex (Brodmann area 9) shows upregulation of mRNA and
protein levels of neuroinflammatory and arachidonic acid (AA)
cascade markers such as AA-selective calcium-independent
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cytosolic phospholipase A2 (cPLA2)-IVA, secretory PLA2

(sPLA2-IIA and cyclooxygenase-2 (COX-2).1,26 Loss of the
synaptic proteins synaptophysin and drebrin is reported in
both diseases,26,27 and excitotoxicity is linked to increased
glutamatergic function with loss of excitatory amino-acid
transporters in both disorders.28,29 Brain-derived neurotrophic
factor (BDNF) also is reduced in the AD and BD brain.27,30 The
increased inflammatory and AA markers in BD are associated
with increased mRNA and protein levels of transcriptional
factor nuclear factor kappa B (NF-kB) subunits.2

It is not known if the altered mRNA and protein levels
of AA cascade, neurotrophic, and synaptic protein markers in
AD3 and BD1,27 are associated with epigenetic modifications.
To test this possibility, in this study we measured global DNA
methylation and promoter region-specific CpG methylation
for COX-2, 12-lipoxygenase (12-LOX), p450 expoxygenase,
BDNF, CREB (cAMP response element-binding), synapto-
physin, drebrin-like protein and NF-kB in the AD and BD
frontal cortex tissue in which we had reported changes in
mRNA and protein levels of AA cascade, inflammatory and
synaptic markers.1–3,27 We also measured total tissue histone
phosphorylation and acetylation. Additionally, we measured
mRNA levels of BDNF and NF-kB subunits in the AD
brain samples, as this was not previously determined.26

Revealing epigenetic mechanisms that upregulate neuroin-
flammatory and AA cascade markers and reduce synaptic
markers in these disorders could elucidate etiological
mechanisms and identify new targets for pharmacotherapy
and platforms for diagnosis. We studied frontal cortex
because functional and structural abnormalities have been
reported in this region in AD31–36 and BD patients, and we had
studied in previously.37–42 An abstract of part of this work has
been presented.43

Materials and methods

Postmortem brain samples. Frozen postmortem human
frontal cortex samples (Brodmann area 9) from 10 AD
patients and their 10 age-matched controls, and from 10 BD
patients and their 10 age-matched controls, were provided by
the Harvard Brain Tissue Resource Center (McLean
Hospital, Belmont, MA, USA) under PHS grant number
R24MH068855 to JS Rao. The protocol was approved by the
Institutional Review Board of McLean Hospital, and by
the Office of Human Subjects Research of the NIH (# 4380).
Characteristics of the AD, BD and matched control subjects
are described in detail elsewhere.2,26 Briefly, age (years,
control: 70.20±2.4 vs AD: 70.60±2.4; control: 43±3.5 vs
BD: 49±7.2), postmortem interval (hours, control: 19.16±1.0
vs AD: 19.74±1.0; control: 27±1.5 vs BD: 21±3.0) and brain
pH (control: 6.76±0.07 vs AD: 6.84±0.07; control: 6.6±0.16
vs BD: 6.7±0.09) did not differ significantly between the
respective groups.

Genomic DNA isolation. Total genomic DNA was isolated
from postmortem frontal cortex of AD and BD patients and
controls using a GenElute Mammalian Genomic DNA
Miniprep Kit (Sigma Aldrich, St Louis, MO, USA). Briefly,
tissue was homogenized in lysis solution T and proteinase K

solution, and incubated for 4 h at 55 1C in a shaking water
bath. Genomic DNA was isolated according to the
manufacturer’s instructions.

Gene-specific DNA methylation determination. Gene-
specific DNA methylation was determined with a OneStep
qMethyl-Lite kit (Zymo Research, Irvine, CA, USA) and
methyl primer (SABioscience, Frederick, MD, USA), with
minor modifications. Promoter methylation for COX-2, BDNF,
NF-kb, CREB, 12-LOX, p450 epoxygenase, synaptophysin
and drebrin-like genes were studied in AD, BD and control
brains. Briefly, 20 ng of global DNA was incubated in the
presence (test reaction) or absence (reference reaction) of
methyl sensitive restriction enzymes (5 U each) (BStUI,
HpyCH4IV and HpaII, NEB, Ipswich, MA, USA) at 37 1C for
2 h, followed by real-time reverse transcription PCR (RT-
PCR) as described in the manufacturer’s instructions.
Percentage methylation was calculated using the formula
100�2�DCt , where DCt is the average Ct value from the test
reaction minus the average Ct value from the reference
reaction. Percentage methylation is relative to each
experiment.

Total RNA isolation and real-time RT-PCR. Total RNA
isolation and RT-PCR was done as described.2 mRNA levels
of BDNF, NF-kB p50 and NF-kBp65 were measured by
quantitative RT-PCR, using an ABI PRISM 7000 sequence
detection system (Applied Biosystems, Carlsbad, CA, USA).
Specific primers and probes for BDNF, NF-kB p50 and
NF-kB p65 were part of the TaqMan gene expression assays
(Applied Biosystems), and consisted of a 20� mix of
unlabeled PCR primers and Taqman minor groove binder
probe (FAM dye-labeled). The fold-change in gene
expression was determined by the DDCT method.36 Data
are expressed as the relative level of the target gene in the
AD or BD brain normalized to the endogenous control (b-
globulin) and relative to the control (calibrator). Experiments
were carried out in duplicate.

Global DNA methylation determination. Global DNA
methylation was determined from the genomic DNA of
AD, BD and matched controls using an Imprint Methylated
DNA Quantification Kit (Sigma Aldrich) following the manu-
facturer’s recommendations. Values are expressed as
percent of control.

Global histone, acetylation and phosphorylation
determination. Nuclear extracts were prepared from frontal
cortices of AD, BD and matched controls as previously
described.44 Global acetylation (H3) and phosphorylation (H3)
were measured in the nuclear extracts using ELISA kits
(Epigentek Group, Farmingdale, NY, USA).

Statistical analysis. Data are expressed as mean±s.e.m.
T-tests were used to compare AD and BD with matched
control group samples.
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Results

Hypomethylated COX-2 promoter region in AD and
BD. Both AD and BD compared with respective control
frontal cortex (Brodmann area 9) show increased AA
cascade markers (protein and mRNA levels of cPLA2-IVA,
sPLA2-IIA and COX-2).1,3 There are no recognized CpG
islands reported for PLA2 isoforms. However, the COX-2
promoter CpG region showed decreased methylation in
both AD and BD brains (Figures 1a and b). There was no
significant change in CpG island methylation for 12-LOX or
p450 epoxygenase in either AD or BD (Figures 1c–f).

Hypermethylated BDNF promoter region in AD and
BD. There was a significant decrease in BDNF mRNA in
the AD brain (Figure 1g). The BDNF mRNA level in BD brain
is published elsewhere and also is decreased significantly.27

Both brains showed a significantly increased methylation
state of the promoter region of the BDNF gene (Figures 2a
and b). The BDNF transcription factor CREB gene was
significantly hypermethylated at its promoter region in the AD
but not BD brain (Figures 2c and d).

CpG methylation of synaptic markers in AD and BD. The
changes observed in the AD and BD brains are associated
with changes in the synaptic proteins, synaptophysin and
drebrin.3,15 There is no recognized CpG island region in
the drebrin promoter. Instead, we examined the promoter
of drebrin-like protein, which is involved in post-synaptic
regulation.45 There was a significant increase in DNA
methylation at the promoter region of synaptophysin in the
AD not BD brain (Figures 2e and f). The promoter region of
drebrin-like protein was significantly hypermethylated in BD
but not AD brain (Figures 2g and h).

CpG methylation of NF-jB in AD and BD. BD and AD
brains exhibit significantly increased mRNA and protein
levels of neuroinflammatory markers such as IL-1b and
TNF-a, and of markers of astrocytic and microglial

activation.2,3 NF-kB binding sites are present on the
promoter region of gene transcripts of AA cascade
markers, cPLA2-IVA, sPLA2-IIA and COX-246–48 and
regulate transcription of proinflammatory genes.49,50 We
tested whether altered expression of these markers was
associated with altered methylation states in the NF-kB
transcription factor promoter region. The AD brain showed
significantly decreased methylation of the NF-kB promoter
CpG region, but this was not observed in the BD brain
(Figures 3a and b). The hypomethylated state of the NF-kB
promoter was accompanied by reciprocal increases in NF-kB
p50 and p65 subunit mRNA expression (Figure 3c).

Increased global DNA methylation and altered global
histone modification in AD and BD. The AD and BD
brains showed significant increases in global DNA
methylation compared with respective control levels
(Figures 3d and e). These changes were associated with
significant increases in H3 phosphorylation in both cases
(Figures 3f and g). Global histone H3 acetylation was
increased in the BD but not AD brain (Figures 3h and i).

Correlations with brain variables. Pearson correlations
between the gene-specific methylation and histone
modification levels in AD and BD brains treated separately
on the one hand, and postmortem interval, age and pH on the
other, were all statistically insignificant (P40.05) (Table 2).
Mean values of the three parameters did not differ significantly
between AD and BD and respective control groups (Table 1).

Discussion

AD and BD are chronic progressive illnesses associated with
upregulated mRNA and protein levels of neuroinflammatory
markers (GFAP, CD11b, IL-1b) and of brain AA cascade
enzymes (cPLA2-IVA, sPLA2-IIA and COX-2), as well as loss
of neurotrophic factors (BDNF) and presynaptic and post-
synaptic proteins (synaptophysin and drebrin).1,2,26,27 Some
of these alterations could be related to epigenetic modifica-

Figure 1 Mean levels of CpG methylation at promoter region of cyclooxygenase-2 (COX-2), 12-lipoxygenase (12-LOX) and p450 epoxygenase in frontal cortex of
Alzheimer’s disease (AD) (a, c, e) and bipolar disorder (BD) patients (b, d, f). Mean levels of brain-derived neurotrophic factor (BDNF) mRNA in AD and control brain samples
(g). Mean±s.e.m. (n¼ 10 per group). *Po0.05, **Po0.01, ***Po0.001.
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tions. The current study revealed that the increased COX-2
expression previously reported in the same AD and BD frontal
cortex samples may partly be due to the hypomethylated state
of the COX-2 CpG promoter region.26 However, other AA
cascade markers, including 12-LOX and p450 epoxygenase,
did not have DNA promoter methylation changes. Thus, the
changes reported for 12-LOX and p450 epoxygenase mRNA

and protein levels26 are unrelated to methylation at their gene
promoter region. Protein and mRNA levels of cPLA2-IVA and
sPLA2-IIA are upregulated in both disorders.1,26 Human
promoter regions of cPLA2 and sPLA2 isoforms and neuroin-
flammatory markers are reported to lack CpG islands (http://
genome.ucsc.edu/), so we did not test their methylation
states. The upregulation of cPLA2-IVA and sPLA2-IIA

Figure 2 Mean CpG methylation at promoter region of brain-derived neurotrophic factor (BDNF), cAMP response element-binding (CREB) factor, synaptophysin and
drebrin-like protein in frontal cortex of Alzheimer’s disease (AD) (a, c, e, g) and bipolar disorder (BD) (b, d, f, h) patients and respective controls. Mean±s.e.m. (n¼ 10 per
group). *Po0.05, **Po0.01, ***Po0.001.

Figure 3 Mean CpG methylation at promoter region of nuclear transcription factor kappa B (NF-kB) in frontal cortex of Alzheimer’s disease (AD) (a) and bipolar disorder
(BD) (b) patients and respective controls. Relative expression of NF-kB p50 and p65 mRNA levels in AD (c). Mean levels of global DNA methylation, global histone H3
phosphorylation and global histone H3 acetylation in frontal cortex of AD (d, f, h) and BD patients (e, g, i) and controls. Mean±s.e.m. (n¼ 10 per group). *Po0.05,
**Po0.01, ***Po0.001.
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expression in both illnesses may have other causes, likely
related to excitotoxicity and neuroinflammation.2,3 Consistent
with this suggestion, chronic NMDA receptor activation in a rat
model for excitotoxicity induced neuroinflammation and
increased expression of both enzymes.51–53

Studies have reported reductions of BDNF and synaptic
proteins in both AD and BD brain.3,27 Both disorders showed
reduced mRNA levels of BDNF, which may be related to the
observed hypermethylated state of the BDNF promoter region
in the same tissues. Although similar promoter methylation
patterns were found in COX-2 and BDNF in both AD and BD,
other genes exhibited only disease-specific changes.

AD frontal cortex showed disease-specific hypermethyla-
tion in the promoter region of CREB, which may exacerbate
reduced BDNF. Hypomethylation of NF-kB in the AD cortex
may explain reported increased neuroinflammation due to
upregulated NF-kB activity associated with its reduced
methylation state. Furthermore, altered synaptic plasticity in
AD is associated with reduced protein and mRNA levels of
synaptophysin, which may be due to the hypermethylated
state of its promoter region in AD brain samples. The
difference in synaptophysin methylation between AD and
BD may reflect a more rapid progression of AD, with clear
histological evidence of synaptic loss.54,55 The BD brain
samples showed promoter hypermethylation of drebrin-like
protein, which may contribute to the observed reduced drebrin
mRNA and protein levels in BD.27 Although loss of drebrin
has been reported in AD, the methylation state of drebrin-like
protein in the AD brain remained unchanged. Loss of drebrin
in BD may be related to epigenetic modifications, whereas in

AD it may be related to other factors, including mitogen-
activated kinase.56

Statistically significant changes were observed in global
DNA methylation in both BD and AD. The significance of this
change is not clear. Studies suggest that upregulated global
DNA methylation is associated with decreased total gene
expression.17 Interestingly, during aging, global chromosomal
DNA is progressively hypomethylated, a trend also found in
cancer cells.57,58 Our observation of hypermethylated global
DNA in AD and BD brains suggests that these disorders are
epigenetically linked to decreased transcriptional activity.
Both the AD and BD brain showed increased histone H3
phosphorylation, suggesting an onset of apoptosis and cell
death.59 Neuronal damage implied by loss of synaptic
proteins27,28 may be due to the upregulated histone phos-
phorylation in AD and BD. Global histone H3 acetylation was
increased in the BD but not AD brain. Some of the changes
may be related to chronic medication. Further studies are
required to understand chronic medication effects on epige-
netic changes in brain.

Preclinical studies show that chronic administered anti-BD
mood stabilizers reduce the activity or mRNA level of COX-2
in rat brain.60–62 Attenuation of COX-2 expression at the
transcriptional or post-transcriptional level by drugs may not
be sufficient to override epigenetic mechanisms at the COX-2
promoter region. In AD patients, COX-2 inhibitors failed to
improve cognition,63,64 which may be due to compensatory
epigenetic modifications at the COX-2 promoter. Chronic
mood-stabilizers and antipsychotic drugs increase neuro-
trophic factors in rat brain.65–67 Despite evidence of neuro-
protection from these studies, postmortem brains from BD
and AD patients showed loss of BDNF.27 Despite the
advantages of mood stabilizers and antipsychotic drug
treatments for AD and BD patients, chronic treatment with
drugs not targeting epigenetic regulation may not provide full
recovery. Drugs acting at the cellular level may provide
transient protection by correcting neuroinflammatory and
synaptic remodeling, but disease progression may reintro-
duce pathological changes due to epigenetic regulation.
Understanding epigenetic mechanisms of genes targeted by
current psychiatric drugs may help to establish new or more
warranted therapeutic interventions. The basis for the
epigenetic changes in these illnesses are not clear, possibly
owing to inflammation, excitotoxicity, drug exposure or
unknown factors. Revealing the epigenetic modifications
may identify underlying mechanisms that influence synaptic
loss and disease progression.

The Pearson’s correlation did not show any significant
influence of age, postmortem interval or pH of the samples in
either illness. However, the current findings should be
interpreted with caution, as only one brain region was studied,
and because effects of chronic drug exposure on epigenetic
modifications are not clear. Future studies should explore
epigenetic modifications by mood stabilizers (lithium, valpro-
ate) and atypical antipsychotic drugs (olanzapine) in mouse
models to clarify this issue, as genes that do not undergo
epigenetic modifications in rats do so in mice (http://
genome.ucsc.edu/).

In conclusion, both the BD and AD frontal cortex exhibits
altered epigenetic regulation related to neuroinflammation,

Table 1 Probabilities and Pearson correlations between epigenetic changes in
AD and BD brains and subject age, postmortem interval and pH

Age PMI pH

P-value R2 P-value R2 P-value R2

Alzheimer’s disease
DNA methylation 0.63 0.01 0.58 0.01 0.31 0.05
Histone acetylation 0.32 0.05 0.510 0.02 0.08 0.16
Histone phosphorylation 0.25 0.07 0.61 0.01 0.37 0.04
COX-2 0.71 0.00 0.38 0.04 0.94 0.00
12-LOX 0.91 0.00 0.52 0.02 0.19 0.09
P450 Epox. 0.37 0.04 0.13 0.11 0.88 0.00
SYP 0.75 0.00 0.54 0.02 0.63 0.01
NF-kB 0.10 0.14 0.81 0.00 0.14 0.11
CREB 0.69 0.00 0.48 0.02 0.73 0.00
BDNF 0.25 0.07 0.21 0.08 0.52 0.02
Drebrin-like protein 0.37 0.04 0.08 0.15 0.88 0.00

Bipolar disorder
DNA methylation 0.83 0.002 0.83 0.00 0.10 0.13
Histone acetylation 0.55 0.02 0.55 0.02 0.54 0.02
Histone phosphorylation 0.91 0.00 0.91 0.00 0.39 0.04
COX-2 0.79 0.00 0.05 0.18 0.44 0.03
12-LOX 0.73 0.00 0.73 0.00 0.21 0.08
P450 Epox. 0.17 0.09 0.17 0.09 0.62 0.01
SYP 0.84 0.00 0.84 0.00 0.97 0.00
NF-kB 0.85 0.00 0.85 0.00 0.66 0.01
CREB 0.14 0.11 0.14 0.11 0.99 0.00
BDNF 0.32 0.05 0.32 0.05 0.63 0.01
Drebrin-like protein 0.81 0.00 0.19 0.09 0.47 0.02

Abbreviations: AD, Alzheimer’s disease; BD, bipolar disorder; BDNF, brain-
derived neurotrophic factor; COX-2, cyclooxygenase-2; CREB, cAMP response
element-binding; 12-LOX, 12-lipoxygenase; NF-kB, nuclear transcription factor
kappa B; SYP, synaptophysin; PMI, post-mortem interval.
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synaptic integrity, neuroprotection and AA metabolism
(Table 2). These changes may modify disease progression
and could help in identifying new therapeutic routes for
treatment and diagnosis.
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