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The liver commonly self-regenerates by a proliferation of mature cell types. Nevertheless,
in case of severe or protracted damage, the organ renewal is mediated by the hepatic
progenitor cells (HPCs), adult progenitors capable of differentiating toward the biliary
and the hepatocyte lineages. This regeneration process is determined by the formation
of a stereotypical niche surrounding the emerging progenitors. The organization of
the HPC niche microenvironment is crucial to drive biliary or hepatocyte regeneration.
Furthermore, this is the site of a complex immunological activity mediated by several
immune and non-immune cells. Indeed, several cytokines produced by monocytes,
macrophages and T-lymphocytes may promote the activation of HPCs in the niche.
On the other side, HPCs may produce pro-inflammatory cytokines induced by liver
inflammation. The inflamed liver is characterized by high generation of reactive oxygen
and nitrogen species, which in turn lead to the oxidation of macromolecules and the
alteration of signaling pathways. Reactive species and redox signaling are involved
in both the immunological and the adult stem cell regeneration processes. It is then
conceivable that redox balance may finely regulate the immune response in the HPC
niche, modulating the regeneration process and the immune activity of HPCs. In this
perspective article, we summarize the current knowledge on the role of reactive species
in the regulation of hepatic immunity, suggesting future research directions for the study
of redox signaling on the immunomodulatory properties of HPCs.
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INTRODUCTION

The liver is provided of exclusive regenerative capacity after consistent damage of various origin
(viral, toxic, metabolic, genetic, or immunologic). Hepatocyte loss is replaced by the remaining
functional parenchymal cells in the healthy liver (Michalopoulos, 2013). Nevertheless, a persistent
or severe liver damage overwhelms the replication capacity of adult hepatocytes, and injured
cells are replaced by the activation/replication of hepatic progenitor cells (HPCs) (Espanol-Suner
et al., 2012). HPCs are characterized by an oval-shaped nucleus and a high nucleus-cytoplasm
ratio, and express markers of both hepatocyte and biliary lineages (Thorgeirsson, 1996). However,
the precise characterization of HPCs is a major challenge: even though several markers are now
identified and employed, many are not specific for HPCs. Indeed, single markers are not able to
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accurately identify HPCs, as most of these molecules are
either expressed by other hepatic cell types or upregulated
upon inflammation (Lukacs-Kornek and Lammert, 2017).
Nevertheless, the simultaneous expression of biliary cytokeratins
(e.g., CK7/19) and conventional stem cell markers (e.g., Sox9,
CD44, CD133, Epithelial Cell Adhesion Molecule—EpCAM,
and Neural Cell Adhesion Molecule—NCAM) may allow HPC
unique identification (Overi et al., 2020).

HPCs are found in niches located within the smallest branches
of the biliary tree, named Canals of Hering, at the interface
between the hepatic parenchyma and the portal tract (Itoh and
Miyajima, 2014). Further hepatic sites can transiently provide a
niche for HPCs, such as the space of Disse and the central vein
(Chen et al., 2017). Nevertheless, the HPC niche is defined not
only by the site where it is located, but also by the composition
of the niche. The HPC niche is a special microenvironment
composed by different cell types and a scaffold of extracellular
matrix, in which cytokines and growth factors released by the
niche cells modulate signaling pathways for the regulation of
H self-maintenance, proliferation, activation, transition, and
differentiation (Theise, 2006). HPCs in the niche are found
in association with other progenitors, such as angioblasts,
precursors to hepatic stellate cells and endothelial cells (Carpino
et al., 2016). These progenitors contribute to the stemness of
the niche by releasing paracrine signals, which include matrix
factors (hyaluronans, types III and IV collagens), minimally
sulfated proteoglycans, and laminins and soluble signals such
as leukemia inhibitory factor (LIF), hepatocyte growth factor
(HGF), stromal derived growth factor (SDGF), and epidermal
growth factor (EGF) (Carpino et al., 2016). In a quiescent state,
the niche microenvironment maintains the progenitor phenotype
and inhibits cell differentiation. Several types of both acute injury
and chronic liver diseases give rise to the “ductular reaction”,
in which the perturbation of the niche microenvironment starts
the differentiation of HPCs toward a hepatocyte or cholangiocyte
phenotype (Figure 1). The mechanisms by which HPCs acquire
divergent cell fates in the adult liver rely on how the niche
microenvironment is modulated to achieve a defined progenitor
specification (Boulter et al., 2013).

Since HPC activation is the first step in progenitor-dependent
regeneration, a complete knowledge of the mechanisms by
which these cells are activated to proliferate and differentiate
is important for the development of new therapies for liver
disease. The niche is the site of a complex immunological
activity mediated by several immune and non-immune cells.
Indeed, several cytokines produced by monocytes, macrophages
and T-lymphocytes may promote the activation of HPCs in the
niche. On the other side, HPCs may be a source of cytokines
and chemokines induced by liver inflammation. Several factors
released by immune cells which mediate the HPC response
to liver damage were described (Akhurst et al., 2005; Knight
et al., 2005, 2007; Nguyen et al., 2007). Within the niche, a key
signaling to control HPCs activation and proliferation is triggered
by macrophages via the tumor-necrosis-factor-like weak inducer
of apoptosis (TWEAK) (Bird et al., 2013). A further immune-
mediated signaling upregulated in human chronic liver diseases
consists in the chemokine stromal cell-derived factor 1 (SDF-1)

FIGURE 1 | The niche of hepatic progenitor cells (HPCs) in health and
disease. HPCs are in the most peripheral and smallest branches of the biliary
tree, (canals of Hering). HPCs can be identified by immunohistochemistry
through their cytokeratin19-positivity (brown). The top left panel shows a
normal portal tract in a healthy human liver. The top right panel is
representative of ductular reactions in a sample of a patient affected by
non-alcoholic steatohepatitis, in which HPC expansion occurs (Magnification
200x). The bottom panel displays simplified drawings of the niche in both
conditions.

and its receptor (CXCR4): SDF-1 is produced by HPCs and
attracts CXCR4-positive inflammatory cells (Hatch et al., 2002;
Hao et al., 2015).

Chronic liver diseases are characterized by a disruption of
redox balance caused by an excess of reactive species (Jadeja
et al., 2017). Reactive species modulate and are modulated by
several transcription factors, which may be directly or indirectly
involved in the regulation of stem/progenitor cell fate (di et al.,
2018). Even though a direct regulation of HPCs by redox
signaling has not been yet demonstrated, the main redox-
dependent transcription factors are emerging as determinant
and physiological modulators of stem and progenitor cells. The
Hypoxia Inducible Factor 1α (HIF-1α) is one of the well-defined
redox-dependent modulators of stem cell fate. Since regenerative
niches are characterized by a hypoxic environment, cells stabilize
HIF-1α which can modulate specific effectors, such as Notch,
Wnt and Oct4 that control proliferation, differentiation and
pluripotency (Mazumdar et al., 2009). Another stress-responsive
transcription factor, the Nuclear factor erythroid 2-related factor
2 (NRF2), is a pivotal regulator of both pluripotent and adult stem
cell biology in response to various environmental signals (Dai
et al., 2020). The forkhead box protein (FoxO) family, involved
in the resistance to oxidative stress by upregulating antioxidant
enzymes, is implicated in the regulation of stem cell maintenance
and integrity (Murtaza et al., 2017). Furthermore, cellular
actions of reactive species include promotion or suppression of
inflammation and immunity (Nathan and Cunningham-Bussel,
2013; Franchina et al., 2018). Consequently, the overwhelming
production of reactive species could impact the secretory
pattern of the immune and non-immune cells within the niche.
Nevertheless, this aspect needs to be deepened and broadened by
future investigations.

After a basic introduction on redox biology, the present
perspective article will focus on redox-dependent pathways
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involved in immune regulation in liver diseases, providing
support for redox signaling as a key factor in the immune-
mediated processes of HPCs in the niche.

REDOX BIOLOGY AND OXIDATIVE
STRESS IN LIVER DISEASES

Reactive species are highly unstable compounds classified as free
radicals (characterized by one or more unpaired electrons in their
outer shell) and non-radical derivatives (Table 1). These include
reactive oxygen (ROS) and e nitrogen species (RNS), also named
oxidants (Sies et al., 2017). In particular, ROS are mostly (but not
exclusively) generated in mitochondria by the electron transport
chain (Sohal et al., 1990; St-Pierre et al., 2002), and maintained at
low concentrations by both the cytosolic and the mitochondrial
antioxidant system, represented by enzymes such as superoxide
dismutase, catalase, peroxidases, and non-enzymatic scavengers
such as reduced glutathione (Mates and Sanchez-Jimenez, 1999).
Reactive species act as second messengers at low concentrations,
being involved in different processes such as apoptosis, cell
proliferation, metabolism, and immunity (Laloi et al., 2004;
Serviddio et al., 2013a; Holmstrom and Finkel, 2014; Liang and
Ghaffari, 2014). On the contrary, exceeding oxidants induce
oxidative stress, with damage to biological macromolecules,
impaired cellular function and compromised cell viability (Mates
and Sanchez-Jimenez, 1999; Ott et al., 2007; Bigarella et al., 2014).

Characterized by intense metabolic activity, the liver is
determinant for the overall redox state of the organisms.
Several enzymes may produce reactive species in the liver,
such as diamine oxidase, dehydrogenases, and the cytochrome
P450 system. In particular, mitochondria and cytochrome P450
enzymes in hepatocytes, Kupffer cells, and neutrophils are the
main sources of oxidants. Acute and chronic liver diseases are
characterized by high production of reactive species (Roskams
et al., 2003), which disrupt metabolism and cell cycle in
hepatocytes, activate Kupffer cells, trigger collagen production by
stellate cells and angiogenesis (Muriel, 2009).

The progression of liver damage during chronic viral
hepatitis is also determined by oxidative stress. Hepatitis B

virus (HBV) proteins trigger the production of reactive species:
HBV X protein (HBx) localizes within mitochondria and
alters transmembrane potential with consequent generation of
reactive species (Rahmani et al., 2000; Henkler et al., 2001;
Waris et al., 2001), which in turn activate signaling pathways
promoting hepatocellular transformation (Chen and Siddiqui,
2007). Oxidative damage in hepatitis C infection is caused by
chronic inflammation, iron overload, but also directly by hepatitis
C virus (HCV) proteins (Choi and Ou, 2006). Indeed, the non-
structural protein 5 A disrupts intracellular Ca2+ signaling,
triggering mitochondrial production of radical species (Gong
et al., 2004). Furthermore, the HCV core protein may cause
oxidative damage with a direct effect on mitochondria (Okuda
et al., 2002), and HCV proteins disrupt mitochondrial calcium
homeostasis, leading to both bioenergetic impairment and nitro-
oxidative stress (Piccoli et al., 2009). Increased reactive species
production is also extensively described in acute or chronic
alcohol consumption and related to the oxidant properties of
ethanol (Cederbaum et al., 2009). Alcohol is mainly oxidized into
acetaldehyde in a NAD+-dependent process catalyzed by alcohol
dehydrogenase and by the microsomal ethanol oxidation system,
based on cytochromes P450. After oxidation, most acetaldehyde
is converted into acetate by cytosolic and mitochondrial aldehyde
dehydrogenase in another NAD+-dependent process. Ethanol
oxidation leads to ROS production, mainly hydrogen peroxide
and superoxide anion (Cederbaum et al., 2009). Since these
ROS are characterized by high reactivity and short half-life,
they quickly bind to ethanol or iron atoms to form hydroxyl
radical, ferrous oxide or hydroxyethyl radical, accounting for
lipid peroxidation of cell membranes. Mitochondria (through
the respiratory chain), the endoplasmic reticulum (through
cytochrome P450) and Kupffer cells (through NADPH oxidase)
are the main sources of ROS (Louvet and Mathurin, 2015). An
impairment in redox balance is also described in non-alcoholic
fatty liver disease (NAFLD), where free fatty acid excess causes
overproduction of reactive species mostly by mitochondria and
cytochrome P450 (Serviddio et al., 2011a,b, 2013b; Bellanti
et al., 2017, 2018), which lead to a pro-oxidative environment
triggering the release of pro-inflammatory cytokines, which
in turn activate hepatic stellate cells to produce connective

TABLE 1 | Metabolic reactions give rise to reactive oxygen and nitrogen species (ROS and RNS, respectively), generally named oxidants.

Reactive Oxygen Species (ROS) Reactive Nitrogen Species (RNS)

Radicals Non-Radicals Radicals Non-Radicals

O2
−
• Superoxide H2O2 Hydrogen peroxide NO • Nitric Oxide ONOO− Peroxynitrite

HO • Hydroxyl 1O2 Singlet oxygen NO2 • Nitrogen dioxide ROONO Alkyl peroxynitrites

HOO • Hydroperoxyl O3 Ozone N2O3 Dinitrogen trioxide

L • Lipid radical LOOH Lipid hydroperoxide N2O4 Dinitrogen tetroxide

LOO • Lipid peroxyl HOCl Hypochlorite HNO2 Nitrous acid

ROO • Peroxyl NO2
+ Nitronium anion

LO • Lipid alkoxyl NO− Nitroxyl anion

RS • Thiyl radical NO+ Nitrosyl cation

P • Protein radical NO2Cl Nitryl chloride

These reactive species can be classified as free radicals, characterized by one or more unpaired electrons in their outer shell, and non-radical derivatives.
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tissue; moreover, oxidative stress stimulates Kupffer cells and
leads to hepatocellular apoptosis mediated by the expression of
death receptor Fas-ligand (Koek et al., 2011). Reactive species
are the most relevant cause of cellular disruption in hepatic
ischemia/reperfusion (Bellanti, 2016). Oxidant injury is triggered
by Kupffer cells and further amplified by polymorphonuclear
leukocytes (Jaeschke and Farhood, 2002). Oxidative stress is
involved in autoimmune hepatitis, providing a mechanism which
links hepatic necroinflammation to fibrogenesis and disease
progression (Pemberton et al., 2004). Catalase is one of the
autoantigens in primary sclerosing cholangitis, suggesting that a
redox unbalance caused by catalase antibodies could contribute
to its pathogenesis (Orth et al., 1998). Oxidative stress is also a
determinant for liver damage during cholestasis (Arduini et al.,
2011), in which it is particularly marked in liver mitochondria
(Serviddio et al., 2004). The molecular damage induced by
oxidants is also a common pathway to several toxic agents and
may lead to drug-induced liver injury, since this organ is the
primary entrance for ingested drugs and is provided of several
metabolizing enzymes (Krahenbuhl, 2001). A classic example of
liver redox balance impairment by a toxic compound is provided
by acetaminophen, whose hepatic metabolism is mediated
by UDP-glucuronosyltransferases, sulfotransferases, and other
cytochrome P450 enzymes which produce a reactive intermediate
that can bind to sulfhydryl groups, deplete liver glutathione

(GSH), and modify cellular proteins, leading to oxidative stress
and mitochondrial damage (McGill and Jaeschke, 2013). Chronic
inflammation associated with severe oxidative stress mediates
hepatocarcinogenesis (Seitz and Stickel, 2006). The extent of
oxidants is increased in hepatocellular carcinoma tissue rather
than in non-cancerous liver (Iwagaki et al., 1995). Oxidative
stress may boost the malignancy of hepatocellular carcinoma by
triggering telomerases and angiogenesis (Nishikawa et al., 2009;
Jo et al., 2011).

REDOX MODULATION OF THE HEPATIC
IMMUNE RESPONSE

Oxidative changes are determinant for the immune response
and inflammation, which is induced by tissue damage and
infection, favoring the removal of damaged/foreign components
and resulting in tissue repair. The immune response can be
classified into innate and acquired. Innate immunity is a
primitive response characterized by lack of specificity, where the
main actors are macrophages, neutrophils and dendritic cells,
which recognize foreign bodies through the toll-like receptors
(TLR) and activate other cells by secreting several cytokines or
by presenting antigens on their membrane surfaces (Takeda,
2005). Even though innate immunity is generally considered

TABLE 2 | A comprehensive but not exhaustive overview on the current knowledge about the main immunologic pathways and redox-dependent mechanisms involved
in the pathogenesis of liver diseases.

Liver disease Immune response Redox involvement

Hepatitis B Innate immunity is triggered by viral nucleic acids and proteins.
Recruitment of the adaptive immune system, functional development and
expansion of distinctive B- and T-cell clones.
Generation of a memory response (Tan et al., 2015).

Reactive species promote Raf-1 translocation within
mitochondria, contributing to the onset of hepatocellular
carcinoma (Chen and Siddiqui, 2007).

Hepatitis C HCV replication triggers pathogen-associated molecular patterns (PAMPs), which in
turn stimulate IFN and the expression of IFN-stimulated genes (ISGs). IFNs, ISGs,
cytokines, and other signals resulting from infected hepatocytes sustain the
initiation and modulation of the adaptive immune response (Dustin, 2017).

Overproduction of reactive species induced by HCV
proteins leads to intrahepatocellular events, promoting the
progression of hepatic and extrahepatic complications of
HCV infection (Choi and Ou, 2006).

Alcoholic
hepatitis

Early stage: impaired barrier function of the intestinal mucosa leads to increased
lipopolysaccharide (LPS) to the portal circulation, with further activation of innate
immunity via Toll-like receptors (TLRs).
Late stage: alcohol oxidative products inhibit natural killer (NK) cells that induce
apoptosis of activated hepatic stellate cells (HSCs) to limit fibrosis. Cytokines
produced by inflammatory macrophages and Kupffer cells activate quiescent
HSCs, leading to the proliferation of myofibroblasts that produce extracellular matrix
proteins. CD8+ T-lymphocytes further contribute to HSCs activation (Li et al., 2019).

Reactive species produced by ethanol metabolism act
directly on the transcriptional network that modulates both
lipid metabolism and fibrogenesis, also promoting
mutagenesis (Ceni et al., 2014).

Non-alcoholic
fatty liver
disease

Innate immunity: activation of the Nod-like receptor protein 3 (NLRP3)
inflammasome components and Toll-like receptors (TLRs) by several ligands.
Adaptive immunity: activation of Kupffer cells and release of proinflammatory
cytokines, leading to the recruitment of bone marrow-derived monocytes and
neutrophils that further contribute to the inflammatory response. B cells, Th1- and
Th17-derived cytokines worsen the hepatic damage (Parthasarathy et al., 2020).

Reactive species promote the release of pro-inflammatory
cytokines, which in turn activate hepatic stellate cells to
produce connective tissue; moreover, reactive species
activate Kupffer cells and lead to hepatocellular apoptosis
mediated by the expression of death receptor Fas-ligand
(Koek et al., 2011).

Autoimmune
hepatitis

The inflammation seems to be secondary to both cell-mediated (T-cell) and humoral
(B-cell) activity. A molecular mimicry activates an immune response directed
towards self-proteins structurally like foreign pathogens. These proteins activate T
cells which initiate and perpetuate liver injury (Kerkar and Chan, 2018).

Reactive species production is associated with T-cell
activation and proliferation, but continued oxidants
exposure induces T-cell hyporesponsiveness
(Lee et al., 2016).

Cholestasis Cholestatic hepatocytes start inflammatory response by cytokine release, with
consequent neutrophil chemotaxis. IL-17 released by neutrophils and Th-cells
stimulates Kupffer cells to produce proinflammatory and fibrogenic cytokines
(Li et al., 2017).

Reactive species are mainly produced by bile acid toxic
induction in hepatocytes, and by neutrophils. Oxidants
promote proliferation, migration and collagen production by
hepatic stellate cells (Copple et al., 2010).
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non-specific and characterized by basic mechanisms, there is
consistent evidence to support a high degree of cell type and
stimulus specificity in its responses, also showing aspects of
immunological memory (Smale et al., 2014; Sun et al., 2014).
On the other side, adaptive immunity is highly specific and
systematically organized, providing enduring protection with
immunological memory (Shuai et al., 2016). Cells of the innate
immune response may produce high levels of reactive species,
leading to tissue damage and inflammation (Matsuzawa et al.,
2005). Other than the oxidative burst, redox balance plays an
important role in both the innate and the adaptive immune
response, taking part to the macrophage, lymphocyte and
dendritic cell signaling, or modulating the cytokine production
(Yang et al., 2013).

The regulatory effect of oxidants on immunity was
first evidenced when hydrogen peroxide at micromolar
concentrations was able to activate the transcription factor
nuclear factor-κB (NF-κB), a key determinant of the immune
response; this effect was largely missing after a co-treatment with
the antioxidant N-acetylcysteine (Schreck et al., 1991). Since
then, several investigations addressed the immune-regulatory
properties of oxidants in mild concentration, but also of
oxidoreductant enzymes (Mullen et al., 2019).

Impairment of redox balance and the immune response are
tightly interconnected in several liver diseases (Table 2) (Li
et al., 2016). In alcoholic liver disease, chronic ethanol-induced
production of reactive species dysregulates the production
of cytokines as well as the signaling mediated by the
Toll Like Receptor-4 in Kupffer cells (Cohen et al., 2011).
Alcoholic steatohepatitis (ASH) is also determined by the
activation of Notch1-NF-κB signaling pathway induced by redox
disbalance in hepatocytes (Wang et al., 2014). A further study
suggested that ethanol exposure triggers a distinct cytokine
secretory pattern in Kupffer cells or hepatocytes, since oxidants
differentially modulate the production of pro-inflammatory
cytokines via NF-κB signaling, mRNA stability, and histone
acetylation (Dong et al., 2016). Other than ASH, the link
between redox alterations and immune response during non-
alcoholic steatohepatitis (NASH) is provided by several pieces
of evidence. Despite a substantial literature supporting the
importance of innate immunity, NASH is characterized by
the presence of immunoglobulins against oxidation products,
able to recruit B- and T-lymphocytes which in turn amplify
the activation of macrophages and natural killer (NK) cells,
leading to liver fibrosis (Sutti and Albano, 2019). Furthermore,
reactive species negatively modulate the immune suppression,
promoting the apoptosis of hepatic regulatory T cells and
inhibiting the expansion of hepatic myeloid-derived suppressor
cells (Ma et al., 2007; Resheq et al., 2015). The immune
response triggered by redox imbalance is typically involved in
hepatic ischemia-reperfusion injury (Prieto and Monsalve, 2017).
Indeed, overproduction of reactive species following reperfusion
acutely activates Kupffer cells with consequent release of pro-
inflammatory cytokines (Jaeschke and Ramachandran, 2011).
Next, elevated oxidant levels amplify the inflammatory cascade
through the direct activation of NF-κB, but also increasing the
levels of tumor growth factor-β (TGF-β), tumor necrosis factor

(TNF), and interleukin-1β (Mukhopadhyay et al., 2012). The
involvement of redox signaling in immune response is also
extensively demonstrated in idiosyncratic drug-induced liver
injury, the unpredictable hepatic reaction to drugs (Mak and
Uetrecht, 2017). Through redox alterations, several drugs are
able to expose hepatocytes to cytokines, such as TNF (Han
et al., 2009). For instance, toxicants such as acetaminophen
or chlorpromazine disrupt redox balance with consequent
activation of c-Jun N-terminal kinase (JNK) and/or inhibition
of NF-κB activity, both important in sensitization to TNF
(Gandhi et al., 2010).

REDOX BIOLOGY AND IMMUNE
REGULATION OF HEPATIC
PROGENITOR CELLS

In recent times, more than 170 clinical trials on stem cell-based
therapies in liver diseases have been registered. Most of them
are testing umbilical cord or bone marrow-derived mesenchymal
stem cells, but their transplantation efficiency, clinical reliability,
and long-term safety are very concerned (AdiwinataPawitan,
2019). HPCs are considered an alternative source for cell-based
therapy, but their survival is low in injured liver (Chen et al.,
2020). The key to use HPCs for transplantation relies on the

FIGURE 2 | Redox-modulated cellular and molecular immune-mediators of
hepatic progenitor cell (HPC) activation in the niche. The immune response
triggered by both acute and chronic liver injury is outlined by the involvement
of Kupffer cells, dendritic cells, and lymphocytes in the HPC niche. Progenitor
activation is then initiated by several cytokines including tumor necrosis factor
(TNF), TNF-like weak inducer of apoptosis (TWEAK), interferon-γ, while
epidermal growth factor receptor (EGFR) can be activated by transforming
growth factor-α (TGF-α). Since these cytokines and corresponding pathways
can be redox-modulated, future investigations will clarify the impact of redox
alteration in HPC homeostasis through the immune response.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 May 2020 | Volume 8 | Article 295

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-00295 May 5, 2020 Time: 17:44 # 6

Bellanti et al. Redox-Immune Control of HPCs

effective and stead induction to differentiate into and exert
the function of mature hepatocytes. It is then compulsory to
define the molecular mechanisms involved in the modulation of
HPCs biology, to develop standardized methods for successful
human transplantation.

The immune system is becoming evident as a determinant
modulator of HPC niches in the adult liver, since several
cytokines and chemokines regulate stemness, proliferation,
activation, and cell fate of HPCs in physiological and pathological
conditions. HPC proliferation occurs with an intrahepatic
immune response, characterized by the recruitment of Kupffer
cells, dendritic cells, and lymphocytes accounting for local
cytokine secretion with mitogen properties (Figure 2), which
stimulate HPC expansion (Strick-Marchand et al., 2008). Indeed,
early activation of HPCs is triggered by several mediators of the
hepatic immune response including TNF, TWEAK, interferon-
γ (IFN-γ), interleukin-6, leukemia inhibitory factor, epidermal
growth factor (EGF), transforming growth factor-α (TGF-α), and
lymphotoxin-β (Lukacs-Kornek and Lammert, 2017). Most of
these cytokines and growth factors are modulated by reactive
species and redox signaling. The following observations, mostly
coming from gene modified mice and models, are strongly
evocative of the involvement of redox alterations in the immune-
mediate regulation of HPC quiescence/activation.

TNF-induced HPC activation may be an important
component of inflammatory injury in the liver, particularly
in chronic inflammation, when TNF and reactive species are
secreted simultaneously. Indeed, TNF receptor type 1 knockout
mice show impairment of HPC proliferation, and a reduction of
TNF-mediated cytosolic oxidant production (Knight et al., 2000;
Hardin et al., 2008). In this scenario, redox changes induced by
oxidants would expose hepatocytes to the lethal actions of TNF,
promoting regeneration via HPCs.
• TWEAK induces multiple pathways of cell death via reactive

species (Nakayama et al., 2003), indicating that redox signaling
could be involved in TWEAK-mediated hepatocellular necrosis,
and at the same time suggesting the activation of HPCs. In fact,
mice lacking TWEAK receptor (Fn14) do not show any HPC
proliferation (Jakubowski et al., 2005), and genetic silencing of
Fn14 stops the TWEAK-induced production of reactive species
in macrophages (Madrigal-Matute et al., 2015).
• Oxidants exert an inhibitory effect on the production of

IFN-γ by T cells (Abimannan et al., 2016), nevertheless hepatic
NK cells are resistant to this inhibitory effect (Zhang et al.,
2003). On the other side, IFN-γ receptor knockout mice exhibit a
higher rate of reactive species production (Espejo et al., 2002).

Since during T cell-mediated hepatitis, the alteration of IFN-γ
secretion impairs hepatocellular regeneration and promotes NK
cell-sensitive HPC expansion (Hines et al., 2007), this process
could be redox-modulated.
• The EGF receptor (EGFR) signaling pathways has been

demonstrated to regulate the liver progenitor cell compartment
(Komposch and Sibilia, 2015). EGFR ligands such as EGF and
TGF-α are determinant in the maintenance of HPC phenotype,
preventing the epithelial-mesenchymal transition which initiates
tumor transformation (Wang et al., 2015). Loss of EGFR
suppresses HPC differentiation toward cholangiocyte promoting
hepatocyte differentiation (Kitade et al., 2013). Reactive species
such as hydrogen peroxide function as second messengers in
the modulation of EGFR signaling (Truong and Carroll, 2012),
suggesting that this pathway could be redox regulated in HPCs
during liver diseases.

Taken together, these data represent a solid background on
which further specific investigations can be based on.

CONCLUSION

In regenerative niches, low levels of oxidants contribute to the
quiescence of stem cells, whereas high amounts of reactive
species promote the activation and differentiation of progenitors.
Redox alterations play a determinant role in both acute and
chronic liver diseases, inhibiting the proliferation of hepatocytes
and increasing the number of HPCs. However, the association
mechanism between redox imbalance and HPC proliferation
is not clearly established. Redox biology is more and more
acknowledged as a main contributor to the immune response,
nevertheless its role in immune-modulated HPC homeostasis
needs to be extensively investigated.

Understanding the underlying molecular mechanisms
involved in the redox regulation of immune function in the
hepatic progenitor niche will provide significant new insights
into the biology of HPCs and liver regeneration.
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