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Abstract

The trade-off between a machine learning (ML) and deep learning (DL) model’s predictability and its interpretability has
been a rising concern in central nervous system-related quantitative structure–activity relationship (CNS-QSAR) analysis.
Many state-of-the-art predictive modeling failed to provide structural insights due to their black box-like nature. Lack of
interpretability and further to provide easy simple rules would be challenging for CNS-QSAR models. To address these
issues, we develop a protocol to combine the power of ML and DL to generate a set of simple rules that are easy to interpret
with high prediction power. A data set of 940 market drugs (315 CNS-active, 625 CNS-inactive) with support vector machine
and graph convolutional network algorithms were used. Individual ML/DL modeling methods were also constructed for
comparison. The performance of these models was evaluated using an additional external dataset of 117 market drugs (42
CNS-active, 75 CNS-inactive). Fingerprint-split validation was adopted to ensure model stringency and generalizability. The
resulting novel hybrid ensemble model outperformed other constituent traditional QSAR models with an accuracy of 0.96
and an F1 score of 0.95. With the power of the interpretability provided with this protocol, our model laid down a set of
simple physicochemical rules to determine whether a compound can be a CNS drug using six sub-structural features. These
rules displayed higher classification ability than classical guidelines, with higher specificity and more mechanistic insights
than just for blood–brain barrier permeability. This hybrid protocol can potentially be used for other drug property
predictions.
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Introduction
Over the past several decades, the growing needs of neu-
rodegenerative diseases and neuropsychiatric disorders have
become increasingly evident. Due to a rapidly aging population,
Alzheimer’s, Parkinson’s and other neurodegenerative diseases
have played a substantial role in the growing healthcare
expenditures [1–4]. Neuropsychiatric disorders, such as schizo-
phrenia, depression and autism, among other mood disorders,
are the leading risk factors for suicide and are responsible for
a large portion of the global disease burden [4–6]. These factors
have all resulted in a greater demand for CNS drug development
[1].

CNS drug development has several significant challenges.
The most significant is the presence of the blood–brain barrier
(BBB), a selective semipermeable membrane that serves the
purpose of preventing injury to the CNS from external insults
and toxins [1, 3, 7, 8]. Consequently, the BBB could make drugs
that had previously been proven effective in other body parts
unusable for CNS targets [7]. Additionally, the limited clinically
relevant animal models for CNS drug testing and an incom-
plete understanding of complex CNS pathogenesis have further
hindered the progress of CNS drug development [3, 9–11].

Quantitative structure–activity relationship (QSAR) modeling
has been widely used for CNS drug research over the past decade
[4, 7, 8, 11, 12]. QSAR modeling is used to predict the effectiveness
of drug candidates and to provide useful insight to scientists
such as structural features for the BBB penetration [11, 13]. There
are many descriptors calculated by previous QSAR models that
play a significant role in determining absorption and perme-
ability. Lipophilicity was one of the first significant properties
discovered, specifically keeping a LogP under five [14–17]. Low
molecular weight has also been shown to result in a higher like-
lihood of passive lipid-mediated transport across the BBB [14].
High hydrogen bonding was found to inhibit BBB penetration;
hence, a low hydrogen bond donor (HBD) count correlated well
[8, 17]. Many researchers have used TPSA as a predictor of BBB
penetration, with CNS drugs having significantly lower TPSAs [1,
14]. Strong acids such as carboxylic acids have performed poorly
in CNS applications, with pKa being another potent descriptor [1,
8, 14]. Pajouhesh and Lenz determined that keeping a low num-
ber of rotatable bonds (≤10) improved permeability. Researchers
had dedicated themselves to incorporate existing knowledge
into simple practical rules for CNS drug design. For instance,
a set of rules for good CNS penetration has been proposed by
Lipinski; Molecular weight ≤ 400; Log p ≤ 5; HBD ≤3; Hydrogen
bond acceptor ≤7 [14].

With the advanced machine learning (ML) development, ML
algorithms are used more often to construct CNS-QSAR models
such as support vector machine (SVM) [18, 19], decision tree (DT)
[20, 21] and random forest (RF) [22, 23]. SVM is a non-probabilistic
binary linear classifier, meaning it separates samples into one
category or the other [7, 11, 24, 25]. This separation is achieved by
mapping the samples into a higher order feature space and then
finding a linear hyperplane with as large of a gap as possible,
separating the two categories. Once the model is trained, new
inputs can be mapped into that same space and are measured to
see which side of the hyperplane they fall into. A DT is a white-
box model that constructs a binary tree of decision nodes that
can either use regression or classification. DT’s main advantage
lies in the visual interpretability of the trained models, which
makes it especially appealing to scientists [11, 12]. RF is an
ensemble learning algorithm that utilizes the building of mul-
tiple DTs. This process helps circumvent DT’s main drawback

of overfitting to the training set, causing RF to be very popular
in scientific works [11, 12]. With the recent improvement in
computing capabilities, a different type of learning called deep
learning (DL) has become more popular. Among all DL models,
the graph convolutional network (GCN) has become a prevalent
one in drug discovery. The GCN employs a DL technique of using
weighted nodes to make decisions in an attempt to mimic the
neural networks of biological brains [24, 26–28]. This method
can extract meaningful features from simple descriptions of the
graph structure to form molecular-level representations that can
be used in place of fingerprint descriptors from conventional ML
applications.

Other than ML, DL has been shown to produce incredible
results in computer vision [29], speech recognition [30], rein-
forcement learning [31], text analysis [32] and even CNS drug
research [33]. A recent study by Miao in BBB drug classification
employed DL algorithms to achieve an accuracy of 0.97, an AUC
ROC of 0.98 and an F1 score of 0.92, which is a benchmark result
among CNS drug studies [33]. While this result is impressive, it
succumbs to the same problems as most DL models, namely, the
lack of interpretability. This black-box quality does not improve
scientists’ understanding of CNS drug design [7]. Furthermore,
the size of the collected compound collection used for the train-
ing and validation of DL models in Miao’s study was restricted to
a relatively small dataset. This size results in a limitation of the
scope and applicability domains of the models [33].

Most importantly, Miao’s study adopted a 5-fold cross-
validation based on random partitioning of datasets. This could
lead to significant redundancies between training and validation
data, resulting in undetected overfitting and overestimation of
model performance. Studies suggested that the recent accuracy
improvements in QSAR modelling were due to memorization
of the similarity among scaffold-based substructures, which
has been a long-existing issue in ML model training known as
‘data leakage’ [34]. Results based on random split methods were
less reflective of real-world drug research settings and there
existed concerns over model generalizability. A scaffold-split [35]
is therefore recommended, which allocates different compound
scaffolds to the training and validation sets. Similar splitting
methods, such as a fingerprint splitter, could also provide
challenging arrangements for evaluating model performance
[36, 37].

In this study, we developed and demonstrated a new hybrid
approach first using a DL GCN technique to generate an addi-
tional descriptor of probability showing whether a compound
is considered ‘a CNS compound’ for each compound and then
combine this additional descriptor along with other structural
descriptors to generate an SVM model. This ensemble protocol is
able to utilize the high prediction power from DL GCN and struc-
tural descriptors selected from the final SVM model. Eventually,
a set of six sub-structural features were proposed to also provide
a quick assessment for CNS drug classification. This set of rules
displayed higher classification ability than classical guidelines,
with higher specificity and more mechanistic insights.

Method
Compound collection

We initially collected a high-quality, diverse, heterogeneous
compound set (N = 943 from the literature by Arup et al. as
our main dataset [38] and an external dataset (N = 125) from
Seelig’s studies as our extended testing set used to evaluate
our model’s applicability [17]. The four redundant compounds
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Table 1. The summary of our collected dataset

CNS drug Non-CNS drug

Main Set (N = 940)
from Arup et al. [39]

n = 315/940 n = 625/940

External Testing Set (N = 117)
from Seelig et al. [17]

n = 42/117 n = 75/117

(valproic acid, meprobamate, amobarbital and amantadine)
between the two datasets were removed from the external
dataset. We only included the approved drugs in our dataset
since any lead compounds or drug candidates that fail during
preclinical toxicity studies and investigational drugs that fail
during clinical trials can distort our models. The classification
of those compounds has been carefully investigated by previous
studies [17, 38]. In the two datasets, the CNS drugs were known
to have a strong tendency of penetration into the brain according
to proven clinical or experimental evaluations, while the non-
CNS drugs were validated with low or no tendency of BBB
penetration or with no binding affinity or pharmacologic effect
to any receptors in the brain. Arup et al. confirmed that the 943
compounds were all oral drugs. Drugs with CNS side effects
at therapeutic doses were also removed from the non-CNS
drugs. We further checked and curated the whole dataset again
according to these conditions and literature surveys. A small
fraction of compounds for which classification was ambiguous
in both sets was also disregarded. A summary of the two
finalized datasets is shown in Table 1. Our main set included 940
compounds (315 CNS and 625 non-CNS drugs), while there were
117 compounds (42 CNS and 75 non-CNS drugs) in the external
testing set. The full datasets are provided in Supplementary
Table S1, see Supplementary Data available online at http://bib
.oxfordjournals.org/.

Descriptor calculation

In our study, molecular descriptors and several fingerprints were
used, alone or in combination, to develop classification models
for the identification of CNS drug candidates. All the descrip-
tors were calculated by PaDEL-Descriptor [39], software devel-
oped by the National University of Singapore. PaDEL descriptors
were calculated with the aid of the Chemistry Development
Kit and several additional programs, including atom-typed elec-
trotopological state descriptors, Crippen’s LogP, molar refrac-
tivity, extended topochemical atom descriptors and molecular
linear free energy relation descriptors. The PaDEL descriptors
contain 1444 1D and 2D descriptors, 431 3D descriptors and
12 types of fingerprints. We chose only 1D and 2D descrip-
tors, along with nine types of fingerprints in our studies. We
also removed some descriptors that cannot be normally com-
puted by PaDEL-Descriptor. The final list of 17 473 descrip-
tors was composed of 1381 1D and 2D molecular properties
and 16 092 fingerprints. The frequency distribution of these
descriptors was analyzed in the results section to ensure the
diversity of the chemical and physiochemical properties in our
dataset.

QSAR ML model construction

The protocol of this study is illustrated in Figure 1. We devel-
oped and evaluated a series of QSAR models to identify and
predict potential CNS drugs. We first systematically built three

nonlinear categorical models based on traditional ML methods,
including DT, RF and SVM. These models were implemented
using the Python Scikit-learn package [40]. The main set of 940
drugs was divided into a training set and a validation set at
an 80:20 ratio, based on the Tanimoto similarity of their ECFP4
fingerprints [41, 42], a 1024D extended connectivity fingerprint
system which is not included in the PaDEL descriptors. This
fingerprint partitioning method aims to make molecular prop-
erties in each dataset as different as possible from the ones in
the other datasets. We further used a web-based visualization
tool [43] to visualize how our datasets were split in different
datasets based on the ECFP4 fingerprints. The rendering was
provided in Supplementary Figure S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/. The training,
validation and testing sets were, respectively, projected into a 3D
chemical space obtained by principal component analysis. The
figure showed that the training and validation set were generally
distributed in a diverse and heterogeneous region. The training
set was used to generate and fit the models, while the valida-
tion set was used to tune and optimize the models. We tuned
model hyperparameters according to the performance of the
validation dataset, avoiding our models generating predictions
via memorization instead of generalization, a long-existing issue
in ML model training known as ‘data leakage’ [34]. We further
imported an external testing set (N = 117) to evaluate model
performance.

The models were optimized mainly via descriptor selection
and parameter adjustment. Model performances are evaluated
based on the accuracy of the validation set. According to Lo
et al. [28], a small and non-redundant descriptor set could not
only provide a more cost-effective calculation of descriptors but
also help to understand the underlying relationship between
those physicochemical descriptors and the property of interest.
As PaDEL descriptors comprise many inter-correlated molecular
features, potentially causing multi-collinearity or overfitting. As
a result, we screened out irrelevant descriptors according to the
literature reviewed in the introduction section and used descrip-
tor importance to select a minimum subset of descriptors that
are most related to the prediction of CNS drugs. The descriptor
importance is calculated in different ways across various ML
models. In DT and RF models, the importance of a descriptor
can then be evaluated by the mean decreased Gini index on
that descriptor across the trees [44]. We utilized the feature
importance information to understand underlying mechanisms
behind our ML models and provide insights for feature selection.
In SVM models, the classification result is a hyperplane that
separates the classes as best as possible. There are weights rep-
resenting this hyperplane, by giving the coordinates of a vector
that is orthogonal to the hyperplane—these are the coefficients
given by SVM models. We interpreted these coefficients as the
importance of different features.

In terms of parameter adjustment, we chose hyperparam-
eters that could provide general and accurate predictions. We
tuned DT models by hyperparameters including the maximum

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/
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Figure 1. Overall protocol of the studies. (i) Compound collection: Our main data set contained 940 market drugs and was later split into training (N = 752) and

validation (N = 188) sets using fingerprint-based partitioning. An additional external dataset of 117 market drugs was imported to evaluate model performance. (ii)

Model construction: Three traditional ML models (DT, RF and SVM) were built using PaDEL descriptors. A Graph Convolution Network DL model was also built, which

input SMILES notations and output the predicted probability of each compounds being a CNS active drug (Prob_pred). Lastly, a hybrid ensemble SVM model took in

Prob_pred and important descriptors learned from traditional ML models to predict CNS-activeness. (iii) Accuracy: The hybrid ensemble SVM model exhibited the

highest accuracy. Training Set (N = 752).

depth, the maximum number of leaf nodes and the minimum
weighted fraction of the sum total of weights required to be at a
leaf node. The RF model hyperparameters being tuned included
the number of trees in the forest, the maximum depth and the
max number of features considered for splitting a node. The SVM
model was tuned mainly by the regularization parameter C that
determines the trade-off between tolerating training errors and
forcing rigid margins [40]. Detailed hyperparameter ranges are
exhibited in Supplementary Table S3, see Supplementary Data
available online at http://bib.oxfordjournals.org/.

GCN DL model construction

We further adopted a GCN architecture [27] to build a CNS
drug classifier. The same datasets used in the ML models were
applied in this study, with a main dataset (split by fingerprints)
and an external testing dataset. The GCN model was imple-
mented by DeepChem 2.0 [41], a popular open-source library for
DL implementation in drug discovery. DL approaches perform
automatic feature extractions during the learning processes.
We directly imported the simplified molecular input line entry
system (SMILES) notations of the compounds as input into the
GCN model without prior calculations nor a manual selection of
descriptors.

We used Adam algorithms [45] to optimize the GCN models
with a learning rate of 0.001. The training procedures were
tuned by different hyperparameters, including batch size, size
of graph convolution matrix, dense layer size and dropout rate.
The ranges of these hyperparameters are exhibited in Sup-
plementary Table S2, see Supplementary Data available online
at http://bib.oxfordjournals.org/. Each model was trained with
an epoch size of 300 due to limitations in time and graphics
processing unit efficiency. The GCN model also calculated the
predicted probability of each compound being a CNS active drug
(Prob_pred).

Comprehensive model construction combined with ML
and DL approaches

Following the results from the former section, we developed
a novel hybrid model, adding the predicted probability of CNS
activity (Prob_pred) generated by the GCN to the best performing
ML model (SVM) as an additional descriptor input. We used
the same training, validation and external testing sets as those
in previous ML and DL models. The process for tuning this
final model was similar to the process used for our QSAR mod-
els, in which several descriptor sets and algorithm hyperpa-
rameters were tested to achieve the best model performance.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/
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Figure 2. Distribution of important descriptors in the three datasets. The x-axis represented values of the selected nine descriptors including MW, nRing, nHBondDonor,

nHBondAcceptor, nOrtatableBond, nN + O, CrippenLogP and TopoPSA. The y-axis represented a likelihood that a molecule obtains the corresponding value of the x-axis

in the data set, and the values were evaluated by probability density function. The blue, orange and green curves illustrated the distribution in the training, validation

and testing data sets, respectively. The plots demonstrated the training set and validation set covers diverse, heterogeneous distribution.

Finally, descriptor importance scores were calculated, which we
reviewed in Results section.

Results
Chemical space

First, we analyzed the descriptors known to be determinants
of CNS activity to compare the chemical space of our three
datasets [11]. In Figure 2, we used probability density function
to demonstrate the distribution of the eight descriptors in the
three datasets. The molecules in the validation set have explic-
itly different distribution in molecular weight, number of rings,
number of rotatable bonds and logP compared with the training
set. The distribution of compounds in testing set covers obvi-
ous diversity compared with the training and validation set in
most of the descriptors, except for the number of HBDs and
logP. This result implied that the splitting method was effec-
tive in generating two datasets with different molecular prop-
erties, so predicting the validation sets would require extrap-
olating far outside the training data, which could potentially
prevent data leakage caused by overfitting, ensuring the gen-
eralization of the ML and DL models. Furthermore, the selected
external testing set was suitable to confirm the performance of
the model.

Overall results from the ML models

Using three different algorithms and multiple subsets of the
available molecular descriptors, hundreds of CNS activity
prediction QSAR models were trained. The best performance
in each ML model was listed in Table 2.1 and the optimized
hyperparameters were described in Figure 1. Our benchmark
ML model was the linear SVM classification model with
regularization parameter C equal to 0.01, using 58 physicochem-
ical descriptors. This hyperparameter and descriptor setting
avoided overfitting and allowed this SVM model to achieve an
accuracy of 0.81 on the validation set and 0.88 on the external
testing set, performing the best among all other ML models
(see Figure 3).

Results from the GCN models

In the configuration of the final optimum model, the batch
size was 16, the size of the graph convolution matrix was
64 ∗ 64, the dense layer size was 16 and the dropout rate
was 0.4. Table 2.2 shows the scores of our benchmark GCN
model, whose performance is comparable with the optimum
SVM model. Compared with the former ML models, the
GCN approach provided higher accuracy in the validation
set.
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Table 2. Comparison among the five models in the study

Fingerprint-split validation Random-split validation

Accuracya AUC F1 score Accuracya AUC F1 score

Table2.1 ML models
SVM Training Set 0.912 (±0.000) 0.962 0.877 0.937 (±0.000) 0.974 0.893

Validation Set 0.809 (±0.000) 0.820 0.667 0.872 (±0.000) 0.948 0.853
External Testing
Set

0.882 (±0.000) 0.948 0.837 0.907 (±0.000) 0.957 0.801

DT Training Set 0.883 (±0.016) 0.974 0.893
Validation Set 0.798 (±0.023) 0.753 0.825
External Testing
Set

0.851 (±0.013) 0.913 0.856

RF Training Set 0.978 (±0.000) 0.998 0.969
Validation Set 0.792 (±0.000) 0.818 0.636
External Testing
Set

0.874 (±0.000) 0.957 0.835

Table 2.2 DL models (GCN)
GCN Training Set 0.963 (±0.000) 0.976 0.948 0.949 (±0.000) 0.998 0.925

Validation Set 0.803 (±0.002) 0.901 0.734 0.867 (±0.006) 0.871 0.733
External Testing
Set

0.916 (±0.001) 0.878 0.909 0.924 (±0.000) 0.873 0.905

Table2.3 Comprehensive models (SVM + GCN)
SVM + GCN Training Set 0.949 (±0.000) 0.987 0.925 1.000 (±0.000) 1.00 1.000

Validation Set 0.846 (±0.000) 0.842 0.781 0.989 (±0.000) 1.000 0.984
External Testing
Set

0.958 (±0.000) 0.983 0.955 0.974 (±0.000) 0.978 0.963

aEach accuracy data field displays average ± std of 50 repeated trials’ accuracy scores, while the AUC and the F1 score fields only showed average score for simplicity.

Results from the hybrid model

After testing many descriptor subsets to optimize the hybrid
ensemble model, we settled on a set of eight descriptors. The
set of molecular features with the highest importance scores
from our optimum ensemble model are listed in Table 3 and
Figure 4. The determinant descriptors included heterocycles
(MACCSFP121), hydrogen bonding (nHBDon_Lipinski, MLFER_BH),
acidity (nAcid), aromatic structure (MACCSFP65, MACCSFP19),
charge (MACCSFP49) and electronegativities (Mpe). The frequency
distribution of these descriptors (see Table 3) is significantly
different among CNS and non-CNS data sets (P < 0.01), indicating
the high importance of these descriptors to distinguish CNS
drugs. These properties were also in line with previous studies
which pointed out these properties’ impact on drug permeability
through the BBB [46, 47] but not fairly reflected in the GCN model.

For comparison, we also trained the model using random-
split validation methods. The results revealed a potentially
inflated predictivity under the random split method, with an
accuracy 1.00 on the training set and 0.99 on the validation set
(see Table 2.3).

Discussion
Advantages in hybrid model construction and
evaluation

In this work, the new hybrid ensemble model outperformed any
other separate conventional ML/DL models. The separate models
encountered accuracy bottlenecks despite a series of tuning and
optimization processes [48]. The proposed hybrid ensemble pro-
tocol, where both SVM and GCN classification algorithms were
used, broke the glass ceiling of model performance. Compared
with the benchmark ML model, the hybrid ensemble model

increases the accuracy of the training, validation and external
testing sets, by 4, 4 and 8%, respectively. The performance was
achieved mainly through improvements in model specificity.
Past studies suggested hybrid models performed better in a
probabilistic approach, rather than deterministic. This modeling
method could combine complementary properties exhibited by
single existing models and further augment the generalization
capability [49].

Another advantage of our study was that we strictly evalu-
ated the model’s performance to ensure generalization capabil-
ity. We adopted a fingerprint-splitting method to generate an
internal validation data set. This splitting method could ensure
a better examination of ML/DL models’ true learning abilities
[35]. Based on our validation set, a variety of hyperparameters
and descriptor sets were adopted to tune the model. The result
revealed that even in the most extreme case, in which the
distribution of the testing data was extremely different from
the training data, we could still guarantee accuracy of 0.85
(see Table 2.3), showing that the hyperparameters were tuned
effectively to help models adapt and react properly to unseen
data. This could provide future researchers insights in tun-
ing models when considering enhancing model generalization
ability.

Key feature interpretation

The optimal hybrid ensemble suggested eight determinant
descriptors for CNS drug classification. While literature had
pointed out the relationship between CNS activeness and
these eight descriptors, it did not adequately emphasize their
significant impacts based on the results of our analysis. Herein,
we would discuss these features one by one, in the order of their
importance ranking suggested by our model. We performed
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Figure 3. The correlation between regularization parameter and accuracy of the SVM model. With greater value of C, the SVM algorithm more correctly got all the

training compounds classified while leading to a stifled predictive performance in the validation and test sets. When C is equal to 0.01, the model achieved the best

performance for the validation set and still kept a higher accuracy for the external testing set.

Table 3. Predictor importance for the SVM classification model

Predictors
(abbreviation)

Predictor Interpretation Coeff Mean of
CNS Drugs

Mean of
Non-CNS Drugs

P-value

1 pred_prob The probability of becoming CNS
drugs, predicted by the benchmark
GCN model

1.504 0.80 0.05 <0.01

2 MACCSFP121a Nitrogen heterocycle 0.244 0.76 0.49
3 nHBDon_Lipinski Number of HBDs −0.185 0.93 2.48
4 nAcid Number of acidic groups −0.164 0.04 0.4
5 MACCSFP65a Aromatic bond between carbon and

nitrogen, denoted by C%N
−0.149 0.18 0.27

6 MACCSFP19a Seven-membered ring 0.129 0.23 0.05
7 MACCSFP49a charge −0.113 0.02 0.08
8 Mpe Mean atomic Pauling

electronegativities
−0.098 0.96 0.98

9 MLFER_BH Overall or summation solute
hydrogen bond basicity

−0.056 1.36 1.79

aThe MACCS Fingerprints are binary encoded descriptors, using the digits 0 and 1 to represent the presence or absence of particular functional groups, atoms or
fragments.

frequency distribution analysis on these physicochemical
descriptors using all compounds (N = 1057) in our study,
including the main set (N = 940) and the external testing set
(N = 117). By this, we could see how these physicochemical
properties could separate CNS drugs from non-CNS drugs.

First, MACCSFP121 (the existence of the nitrogen heterocycle)
was the most important molecular feature. In our study, 76%
of CNS drugs had at least one nitrogen heterocycle, while only
49% of non-CNS drugs had any nitrogen heterocycles. Nitrogen-
based heterocycles could display a broad range of biological



8 Yu et al.

Figure 4. Predictor importance for the SVM classification model. The chart depicted model coefficients—a measure of feature importance in an SVM—in the order of

importance with green bars representing positive coefficients and pink bars representing negative coefficients.

Figure 5. The illustration of proposed guideline to determine CNS activeness. A well-known CNS drug, Clobazam and a common non-CNS drug Adefovir were taken

as examples to illustrate how our guideline classifies CNS drugs. Proposed guideline on the left lists rulesets proposed and the calculated descriptor values of the two

molecules on the right. Each rule was marked in different colors. Corresponding features in the molecule which matched to the rule were also highlighted with the

same color of the rule in the structure scheme.

activities and have therefore become a useful tool to manipu-
late lipophilicity, polarity and hydrogen bonding capacity, due
to the broad range of biological activities. Among all nitrogen
heterocyclic compounds, morpholine—with the presence of a

nitrogen at the opposite position of an oxygen atom—have a
peculiar pK value and a flexible structure, helping it reach a
hydrophilic–lipophilic balance, enhancing blood solubility and
brain permeability [50, 51].
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Figure 6. Frequency distribution of CNS drugs based on the proposed guideline. The x-axis represented the number of rules satisfied (out of the six rules specified above)

and the y-axis represented the percentage of compounds satisfying the rules. The bars outlined in red were the suggested threshold of this classification guideline.

There were two groups of compounds: CNS (orange) and Non-CNS (blue).

The following descriptors were nHBDon_Lipinski (the number
of HBDs) and nAcid (the number of acid groups). The impor-
tance of HBDs had been emphasized in most CNS QSAR model-
ing, representing hydrogen bond-forming potential. Increasing
hydrogen bonding decreases BBB penetration. Many CNS drug
research measure hydrogen bonding ability by simply counting
the number of hydrogen bond acceptors or donors [14]. In our
study, 74% of the CNS drugs were with less than or equal to
2 HBDs, while the percentage was about half as many among
the non-CNS drugs (39%), indicating a significant difference.
In terms of nAcid, strong acids tend to be precluded from BBB
penetration [52]. Most of the CNS drugs (97%) in our data set had
no acid groups, and only a few of them (3%) possessed one acid
group. Interestingly, nearly half of the compounds with one acid
group possessed an amino acid, for example Gabapentin. Several
amino acids transport ligands into the CNS via selective efflux
transporter P-glycoprotein [38].

The rest of the determinant descriptors were less discussed
in the literature, yet they were still proven to be related to
CNS activeness. MACCSFP 65 (the existence of an aromatic bond
between carbon and nitrogen, denoted by C%N) was evaluated as
a negative factor in our model that could decrease a compound’s
likelihood to overcome the BBB. The addition of aromatic rings
could lead to an increase in log P, enhancing lipophilicity; how-
ever, it was also likely to increase the topological polar surface
area of the molecule and therefore compromise lipophilicity [1,
14, 53]. The combination of the two descriptors, MACCSFP 121

(N-Heterocycle) and MACCSFP 65 (C%N), could help reach an
optimal balance of log P and TPSA. With the existence of nitrogen
heterocycles, a compound’s basic level of log P was ensured; on
the other hand, the absence of aromatic bonds between carbons
and nitrogens could limit a TPSA increase. Empirically, among
all nitrogen heterocyclic compounds, 76% of CNS drugs did
not have any C%N substructures (44% among non-CNS drugs).
This indicated that a compound with nitrogen heterocycles, but
without C%N, displayed higher brain uptake.

MACCSFP 19 represents the existence of seven-membered
rings. Common seven-membered rings, including azepines,
benzodiazepines and diazepines, demonstrate a broad range
of biological activities and have been important structural
scaffolds of CNS drugs [54]. In our study, 23% of CNS drugs had
seven-membered ring structures, while that of non-CNS drugs
was only 5%. In terms of MACCSFP 49 (charge), a significant
electrostatic charge could prohibit passive diffusion into the
BBB [55]. In our study, 97% of CNS drugs have zero net charges.
Mpe (Mean atomic Pauling electronegativities) and MLFER_BH
(Overall or summation solute hydrogen bond basicity) were
computed values related to hydrogen bonding properties,
which had been discussed above in the nHBDon_Lipinski
subsection [56–58].

Seeing that structural features have higher importance
scores in our model and can provide synthetically tractable
insights; here, we thoroughly discussed the top six descriptors.
A compound is more likely to be CNS-active if it has
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Figure 7. Frequency distribution of CNS drugs based on RoCNS. The x-axis represented the number of rules satisfied (out of the four rules in RoCNS) and the y-axis

represented the percentage of compounds satisfying the rules. The bars outlined in red were the suggested threshold of this classification guideline. There were two

groups of compounds: CNS (orange) and Non-CNS (blue).

(i) zero charge
(ii) zero acid groups

(iii) zero aromatic C-N bonds
(iv) at least one nitrogen heterocycle
(v) at least one seven-membered ring

(vi) less than two HBDs (sum of O-Hs and N-Hs).

To further show that the above rules are effective for
the classification of CNS drugs versus non-CNS drugs, a t-
Distributed Stochastic Neighbor Embedding method (t-SNE)
[59] was employed, projecting the whole dataset from the nine
descriptors listed in Table 3 into a 2D chemical space (see
Supplementary Figure S2, see Supplementary Data available
online at http://bib.oxfordjournals.org/). Supplementary Figure
S2, see Supplementary Data available online at http://bib.oxfo
rdjournals.org/, was used to represent the similarity of the
features between the compounds on a 2D embedding space.
We specifically selected five clusters of compounds that are
highlighted in Supplementary Figure S2, see Supplementary
Data available online at http://bib.oxfordjournals.org/, for
further the interpretation of our rules. Detailed physiochemical
properties of each cluster were provided in Supplementary
Table S2, see Supplementary Data available online at http://
bib.oxfordjournals.org/, and discussed in the supplementary
file. Each representative compound in the five cluster was also

listed in Supplementary Figure S2, see Supplementary Data
available online at http://bib.oxfordjournals.org/, to enhance the
interpretability of the features. From our analysis, the properties
in the representative five clusters were explicitly matched to our
proposed six rules for the prediction of CNS drugs.

Clobazam [60], a well-known benzodiazepines for treating
anxiety that was correctly classified as a CNS drug in our dataset,
is chosen as an example to demonstrate how the CNS rules
were applied. Adefovir [61], a common non-CNS drug, is chosen
as a negative example to show how our proposed guideline
rules out a compound failing to penetrate BBB. The rulesets and
the corresponding features are reported in Figure 5. The figure
shows that the marketed CNS drug, Clobazam, does not have any
electric charges, acid groups, aromatic C-N bonds and hydrogen
bonds while having a seven-membered ring with two nitrogen
atoms; this satisfies all six proposed rules to become a CNS drug.
In fact, Clobasam is not the only member of Benzodiazepines
that satisfies the rules. All benzodiazepines are characterized by
their seven-membered nitrogen heterocycles, which could serve
as physiological ligands of specific neuronal binding sites and
ensure pharmacological heterogeneity. Most benzodiazepines
have fewer HBDs and do not have charge and acid groups [62,
63]. These features all contribute to enhance the BBB permeabil-
ity of benzodiazepines, making them common CNS drugs. On
the other hand, Adefovir has two acid groups, eight aromatic

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab377#supplementary-data
http://bib.oxfordjournals.org/


Ensemble modeling with ML and DL 11

C-N bonds, four H-bond donors and zero seven-membered rings.
These properties violate four of our proposed rules (out of six),
making Adefovir less likely to become a CNS drug.

From our analysis, when a compound meets five or more
criteria out of the six, it would exhibit better BBB permeability
(accuracy: 0.77, sensitivity: 0.75, specificity: 0.78). The frequency
distribution in Figure 6 revealed a strong relationship between
the number of criteria met and the likelihood to become a CNS
drug. Compared with most CNS studies, this paper provides a
new angle to this topic, instead of focusing on conventional
descriptors such as TPSA, MW and pKa. We leverage simple
structural features to provide practical insights for novel lead
molecule synthesis and appropriate structural modifications.

In comparison to prevalent theories such as Lipinski’s Rule
for CNS drugs (RoCNS) [14], our rule could better distinguish CNS
and non-CNS-active compounds. In our data set, 75% of CNS
drugs adhere to our guideline, and only 21% of non-CNS drugs
follow this guideline. On the other hand, although 80% of CNS
drugs comply with Lipinski’s RoCNS, 45% of non-CNS drugs also
satisfy the condition (Figure 7), indicating a poor performance in
separate two types of drugs.

Conclusion
This study tackled the classical black-box learning models for
CNS drug classification by (i) novel model ensemble approach, (ii)
knowledge-based descriptor selection and (iii) rigid evaluation
criteria. We used the predicted probabilities (pred_prob) as a way
to access the probabilities of whether a compound can be a
CNS compound generated by the GCN model. These probability
values of each compound were used further as an additional
descriptor in a linear SVM model with other eight determi-
nant molecular features. The model stringency was ensured by
adopting a fingerprint splitter to split the dataset into training
and validation sets, two data subsets with different molecular
properties. Using the validation set for hyperparameter tun-
ing, the model could extrapolate far outside the training data,
rewarding generalization. An external data set was used to eval-
uate model performance. Our model pursued interpretability
and generalizability with due consideration of predictability. The
optimum model reported the accuracy of 0.96, ROC AUC of 0.98
and F1 score of 0.94, comparable with past benchmark CNS QSAR
studies.

Noticeably, the reduced feature dimensionality not only
avoided overfitting but also provided structural insights.
Lipinski’s Rule for CNS drugs was supported by past studies
although the challenges also lied on its over-simplified rules
in sub-structural features. Compared with Lipinski’s rules, the
six sub-structural features proposed by this work have higher
discriminative power for CNS drug classification and provide
more details in sub-structures. This hybrid protocol can also be
used for other endpoints not limited to CNS drug classification.

Key Points
• A new protocol to combine the power of ML and

DL was developed to provide interpretable general-
ized rules with high prediction power for CNS drug
classification.

• The resulting hybrid ensemble model outperformed
past benchmark CNS QSAR studies with an accuracy
of 0.96 and an F1 score of 0.95 while maintaining high
interpretability.

• Our model laid down a set of simple physicochemi-
cal rules to determine CNS activeness using six sub-
structural features with higher discriminative power
and more mechanistic insights.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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