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Abstract

Motivation: Oxford Nanopore sequencing is a rapidly developed sequencing technology in recent

years. To keep pace with the explosion of the downstream data analytical tools, a versatile

Nanopore sequencing simulator is needed to complement the experimental data as well as to

benchmark those newly developed tools. However, all the currently available simulators are based

on simple statistics of the produced reads, which have difficulty in capturing the complex nature of

the Nanopore sequencing procedure, the main task of which is the generation of raw electrical cur-

rent signals.

Results: Here we propose a deep learning based simulator, DeepSimulator, to mimic the entire

pipeline of Nanopore sequencing. Starting from a given reference genome or assembled contigs, we

simulate the electrical current signals by a context-dependent deep learning model, followed by a

base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure

more naturally. The thorough experiments performed across four species show that the signals gener-

ated by our context-dependent model are more similar to the experimentally obtained signals than the

ones generated by the official context-independent pore model. In terms of the simulated reads, we

provide a parameter interface to users so that they can obtain the reads with different accuracies rang-

ing from 83 to 97%. The reads generated by the default parameter have almost the same properties as

the real data. Two case studies demonstrate the application of DeepSimulator to benefit the develop-

ment of tools in de novo assembly and in low coverage SNP detection.

Availability and implementation: The software can be accessed freely at: https://github.com/

lykaust15/DeepSimulator.

Contact: xin.gao@kaust.edu.sa or sheng.wang@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next-generation sequencing (NGS) technologies allow researchers to

sequence DNA and RNA in a high-throughput manner, which have

facilitated numerous breakthroughs in genomics, transcriptomics and

epigenomics (MacLean et al., 2009; Metzker, 2010; Shi et al., 2016;

Wu et al., 2017). The most popular NGS technologies on the market

include Illumina, PacBio and Nanopore. Unlike the other sequencing

technologies, Nanopore, whose core component is the pore chemistry

that contains a voltage-biased membrane embedded with nanopores,

would detect the electrical current signal changes when DNA or RNA

molecules are forced to pass through the pore by voltage. Inputting

the detected signals to a basecaller specifically designed for Nanopore,

one can obtain the nucleotide sequence reads. Benefited from the

underlying design, Nanopore sequencing owns the advantages of

long-reads (Byrne et al., 2017), point-of-care (Lu et al., 2016) and

PCR-free (Simpson et al., 2017), which enable de novo genome or
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transcriptome assembly with repetitive regions, field real-time analysis

and direct epigenetic detection, respectively.

Along with the rapid development in Nanopore sequencing, the

downstream data analytical methods and tools have also been rapid-

ly emerging. For example, Graphmap (Sovi�c et al., 2016),

Minimap2 (Li, 2017) and MashMap2 (Jain et al., 2017) were

designed to map the Nanopore data to the genome. Canu (Koren

et al., 2017) and Racon (Vaser et al., 2017) were created to assemble

long and noisy reads produced by Nanopore. It is foreseeable that

an even larger number of methods and tools would be developed in

the near future. Therefore, it is quite important to benchmark those

new methods using either empirical data (i.e. experimentally

obtained) or simulated data (Escalona et al., 2016). Although it is

essential that one should finally run the method on the empirical

data, the empirical data are sometimes difficult and expensive to ob-

tain, with unknown ground truth. On the contrary, the simulated

data can be easily obtained at a low cost, and its ground truth can

be under full control. These features allow the simulated data to

serve as the cornerstone to benchmark new methods.

Despite the existence of more than twenty simulators for NGS

technologies (Escalona et al., 2016), there are only three simulators

created for the Nanopore sequencing, namely ReadSim (Lee et al.,

2014), SiLiCO (Baker et al., 2016) and NanoSim (Yang et al.,

2017). Although there are some differences between the three simu-

lators (shown in Section S1), they share the same property of gener-

ating simulated data utilizing the input nucleotide sequence and the

explicit profiles (Here the profiles refer to a set of parameters, such

as insertion and deletion rates, substitution rates, read lengths, error

rates and quality scores. For instance, ReadSim uses the fixed pro-

file; SiLiCO uses the user provided profile; and NanoSim uses the

user provided empirical data to learn the profile which would be

used in the simulation stage.) with a statistical model. However,

those simulators do not truly capture the complex nature of the

Nanopore sequencing procedure, which contains multiple stages

including sample preparation, current signal collection and basecall-

ing (Fig. 1A). More importantly, the current signal is the essence of

Nanopore sequencing, yet there is no such simulator that attempts

to mimic the signal generation step.

Instead of following the commonly adapted scenario of design-

ing a simulator from the statistical aspect, we tackle the problem

from a different angle, proposing a novel simulator that is designed

more naturally for Nanopore sequencing. To run the simulator, the

user just need to input a reference genome or assembled contigs,

specifying the coverage or the number of reads. The sequence would

first go through a preprocessing stage, which produces several

shorter sequences, satisfying the input coverage requirement and

the read length distribution of real Nanopore reads. Then, those

sequences would pass through the signal generation module, which

contains the pore model component and the signal repeating compo-

nent. The pore model component is used to model the expected

current signal of a given k-mer (k usually equals to 5 or 6 and here

we use 5-mer without loss of generality), which is followed by

the signal repeating component to produce the simulated current

signals. These simulated signals are similar to the real signals in

both strength and scale. Finally, the simulated signal would go

through Albacore (https://community.nanoporetech.com/protocols/

albacore-offline-basecalli/v/abec_2003_v1_revad_29nov2016/linux),

the Oxford Nanopore Technology (ONT) official basecaller, to pro-

duce the final simulated reads.

It is obvious that the core component of our simulator is the pore

model in the signal generation module. Currently, all the existing

pore models (https://github.com/nanoporetech/kmer_models) are

context-independent, which assign each 5-mer a fixed value for the

expected current signal regardless of its location on the nucleotide se-

quence. In order to further polish our simulator, we propose a novel

context-dependent pore model, taking advantage of deep learning

techniques, which have shown great potential in bioinformatics (Dai

et al., 2017; Li et al., 2018). Nonetheless, it is not straightforward to

train the deep learning model because of the fact that the current sig-

nal is usually 8–10 times longer than the nucleotide sequence. To

conquer this difficulty, we propose a novel deep learning strategy,

BiLSTM-extended Deep Canonical Time Warping (BDCTW), which

combines bi-directional long short-term memory (Bi-LSTM) (Graves

and Schmidhuber, 2005) with deep canonical time warping (DCTW)

(Trigeorgis et al., 2016) to solve the scale difference issue.

As described above and shown in Figure 1B, our DeepSimulator

is ‘deep’ in two folds. First, instead of being a simulator that only

mimics the result, our simulator mimics Nanopore sequencing deep-

ly by simulating the entire processing pipeline. Secondly, when

translating the sequences into the current signals, we build a

context-dependent pore model using deep learning methods. By

mimicking the way Nanopore works, our simulator simulates the

complete Nanopore sequencing process, producing both the simu-

lated current signals and the final reads. Besides, employing the offi-

cial basecaller, our simulator not only eliminates the procedure of

learning the parameters in the profile, but also indeed deploys the

actual parameters implicitly. Furthermore, by dividing the

Fig. 1. (A) The Nanopore sequencing procedure. (B) The main workflow of

DeepSimulator. It simulates the entire pipeline of the empirical Nanopore

sequencing experiment, producing both the simulated signals and the final

simulated reads. In addition, DeepSimulator is highly modularized, which

means it can be customized and updated easily to keep up with the develop-

ment pace of the Nanopore sequencing technologies. Unlike the real data,

the ground truth and the annotation of the simulated reads are easy to ac-

quire. In the simulated reads on the bottom of the figure, the red colored

bases are the mismatches. The green colored bases indicate that there are

indel (insertion and deletion) before them
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simulation procedure into several modules, our simulator offers

more flexibility. For instance, the user can choose to use a different

basecaller (Bo�za et al., 2018; Teng et al., 2018), or tune the parame-

ters in the signal generation module to obtain the final reads with

different accuracies.

In summary, the main contributions of this paper are as follows:

1. We propose the first process-based simulator, DeepSimulator,

which can fully simulate the entire procedure of Nanopore

sequencing, producing not only the final simulated reads but

also the intermediate electrical current signals.

2. We propose a novel method to simultaneously handle the temporal

alignment and the correlation analysis between the current signals

and the DNA sequence that have large differences in the temporal

scale. In doing so, our method is based on DCTW with Bi-LSTM

as the feature mapping function to handle the sequential data.

3. We propose the first context-dependent pore model, which can

accurately and specifically predict the expected current signal for

each 5-mer of the DNA sequence, taking into account the se-

quentially contextual information.

2 Materials and methods

2.1 Main workflow
The main workflow of our DeepSimulator is shown in Figure 1.

Unlike the previous simulators (Baker et al., 2016; Yang et al.,

2017) that only simulate the final reads from statistical models, our

simulator attempts to mimic the entire pipeline of Nanopore

sequencing. There are three main stages in Nanopore sequencing.

The first stage is sample preparation which would result in the nu-

cleotide specimen used in the experiment. After obtaining the speci-

men, the next stage is to measure the electrical current signals of the

nucleotide sequences using a Nanopore sequencing device, such as

the MinION. These collected signals are usually stored in a FAST5

file. Finally, we would obtain the reads by applying a basecaller to

the current signals. Correspondingly, DeepSimulator has three mod-

ules. The first module is the sequence generator. Providing the whole

genome or the assembled contigs, as well as the desired coverage re-

quirement, DeepSimulator generates relatively short sequences,

which satisfy the coverage requirement and the length distribution

of Nanopore reads. The read length distribution is described in

Section 2.2. Then, those generated sequences are fed into the second

module, namely the signal generation module. As the core module

of DeepSimulator, it is used to generate the simulated current signals

which aim to approximate the current signals produced by the

MinION. There are two components within this module: the pore

model component and the signal simulation component. The pore

model component takes as input a nucleotide sequence and outputs

the context-dependent expected current signal for each 5-mer in the

sequence, which is discussed in details in Section 2.3. The signal

simulation component repeats an expected signal several times at

each position based on the signal repeat time distribution and

then adds random noise to produce the simulated current signals.

This component is discussed in Section 2.4. The last module of

DeepSimulator is the commonly used basecallers.

Notice that during the entire simulating process, we do not expli-

citly introduce mismatches and indels (insertions and deletions),

which is usually performed in the statistical simulators (Baker et al.,

2016; Yang et al., 2017) directly at the read-level. Instead, we try to

mimic the current signal produced by Nanopore sequencing as simi-

lar as possible, making the basecaller introduce mismatches and

indels by itself. Thus, the mismatches and indels in our method are

implicitly introduced at the signal-level, which is more reasonable

and closer to the real-world situation.

2.2 Sequence generation
The first module of our simulator is the sequence generator. Given

the user-specified reference genome or assembled contigs, as well as

the desired coverage or the number of reads, the sequence generation

module randomly chooses a starting position on the genome or con-

tigs to produce the relatively short sequences, which satisfy the

coverage requirement and the length distribution of the experimen-

tal Nanopore reads.

As discussed in the previous papers (Baker et al., 2016; Yang

et al., 2017), the read length of Nanopore sequencing is not very

straightforward to model. Many factors, such as the experimental

purpose and the experimenter’s experience, would influence the read

length distribution greatly. By investigating the dataset published by

Nanoporetech and datasets provided by our collaborators (in Section

2.5), we find that the distribution of the read length can be catego-

rized into three patterns by using DBSCAN (Ester et al., 1996) as the

clustering method and histogram intersection (Swain and Ballard,

1991) as the distance metric (Fig. 2). For the first pattern shown in

Figure 2A, we use an exponential distribution to fit it (e.g. reads from

the human genome). For the second pattern shown in the Figure 2B,

we use a beta distribution to fit it (e.g. reads from the E. coli gen-

ome). For the last pattern shown in Figure 2C, it is not easy to fit it

using a single distribution (e.g. reads from the lambda phage gen-

ome). To deal with this pattern, we use a mixture distribution with

two gamma distributions to fit it. When using the simulator, the users

can choose either of the three patterns. The distribution details could

be referred to Section S2. Alternatively, the user can also specify the

other distribution patterns for the read length.

2.3 Context-dependent pore model
Given a nucleotide sequence, the first step to simulate its corre-

sponding electrical current signals (i.e. raw signal) is the

Fig. 2. The three common read length distribution patterns in Nanopore sequencing. The distribution of the experimental reads from (A) human, (B) E.coli K-12

sub-strain MG1655 and (C) lambda phage
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transformation to its expected current signals via the pore model. In

this subsection, we would first formulate the problem of building

the pore model, followed by the proposed solution, BiLSTM-

extended Deep Canonical Time Warping (BDCTW). We divide

BDCTW into three parts: general framework of deep canonical time

warping, feature representation and neural network architecture.

Finally, we introduce our context-dependent pore model.

2.3.1 Problem formulation

A pore model is defined as the correspondence between the expected

current signal and the 5-mer nucleotide sequence that is in the pore

at the same time (Deamer et al., 2016). The pore model

prediction problem is formulated as follows: given an input nucleo-

tide sequence X ¼ x1;x2; . . . ; xT1
with T1 nucleotides where xi is a

4-state nucleotide base that can take one of the four values

from fA;T;C;Gg for DNA or fA;U;C;Gg for RNA, we need to

predict the corresponding expected electrical current signals

Y ¼ y1; y2; . . . ; yT1�4, where yi is the predicted expected current sig-

nal of a 5-mer starting from position i in X (e, g, ‘ACGTT’).

Here, we propose a novel method for building the pore model

in consideration of the contextual information. Specifically, our

method learns the context-dependent (or position-specific) pore

model Ydep with length T1 � 4 for the nucleotide sequence X with

length T1 from the raw signals (i.e. the observed electrical current

signals from a Nanopore sequencing device) bY with length T2.

There are three challenges for learning the context-dependent

pore model.

• Scale difference. Since the frequency of the electrical current

measurements (taken at 4000 Hz) is about 8-10 times faster than

the speed at which the single-strand nucleotide sequence passes

through the pore (the translocation speed is around 450 bases

per second for Rapid Kit, for example) (Stoiber and Brown,

2017), the temporal scale difference between the raw signals bY
and the nucleotide sequence X is large.

• Dimensionality difference. The feature space dimensionality is

different between X and bY , due to the fact that bY is a one-

dimensional electrical current signal sequence whereas X is a nu-

cleotide sequence with the feature dimension being at least four.

This is because in order to preserve the original sequence infor-

mation, one-hot encoding is commonly used (Graves, 2013) and

thus four-dimension is needed to encode the four nucleotide

bases.
• Complex non-linear correlation. The measurement of the raw sig-

nals bY is under a noisy sequencing environment because of voltage

changes, noise and interactions between nanopore channels, etc

(David et al., 2017). Thus, the relationship between X and bY is

very complex, having high-order or non-linear correlation.

2.3.2 General framework of deep canonical time warping

The goal of deep canonical time warping (DCTW) is to discover a

hierarchical or recurrent non-linear relationship between two input

linearly structured datasets X1 and X2 with different lengths T1, T2

and feature dimensionality d1, d2 (i.e. Xi 2 Rdi�Ti ) (Trigeorgis et al.,

2016). That is, DCTW simultaneously performs spatial transform-

ation and temporal alignment between the two input data sequen-

ces. In our case, the two inputs are the nucleotide sequence X and

the observed electrical current signal sequence bY . As shown in

Figure 3, after DCTW, the transformed features from X and bY are

not only temporally aligned with each other, but also maximally

correlated. To this end, let us consider that Yi ¼ Fi Xi; hið Þ represent-

ing the activation function of the final layer of the corresponding

deep neural network (DNN) for Xi, which has d maximally corre-

lated units where d � min d1; d2ð Þ. Such an operation reduces the

input data samples to the same feature dimension and then performs

a maximal correlation analysis, which essentially resembles the clas-

sical canonical correlation analysis (CCA) (Akaike, 1976).

Consequently, we try to optimize the following objective function,

argminh1 ;h2 ;D1 ;D2
jjF1 X1; h1ð ÞD1 � F2 X2; h2ð ÞD2jj2F

subject to : Fi Xi; hið ÞDi1T ¼ 0d;

Fi Xi; hið ÞDiD
>
i Fi Xi; hið Þ> ¼ Id;

F1 X1; h1ð ÞD1D
>
2 F2 X2; h2ð Þ> ¼ Dd;

Di 2 f0;1gTi�T ; i ¼ f1; 2g

(1)

where X1¼X and X2 ¼ bY . T1, T2 and T are the length of X, bY and

the final alignment, respectively. Di are the binary selection matrices

that encode the alignment paths for Xi. That is, D1 and D2 remap the

nucleotide sequence X with length T1 and raw signals bY with length

T2 to a common temporal scale T. D is a diagonal matrix. I is the

identity matrix. And 1 (0) is an appropriate dimensionality vector of

all 1’s (0’s).

Such an objective function can be solved via alternating

optimization (Trigeorgis et al., 2016). Specifically, given the final

layer output Fi Xi; hið Þ, we employ dynamic time warping (DTW)

(Salvador and Chan, 2007) to obtain the optimal warping matrices

Di which temporally align the input sequence Xi and the final align-

ment. After obtaining the warping matrices Di via DTW, we infer

the maximally correlated nonlinear transformation on the temporal-

ly aligned input features Fi Xi; hið Þ by maximizing the following

function,

corr F1 X1; h1ð ÞD1; F2 X2; h2ð ÞD2ð Þ ¼ jjKDCTW jj�; (2)

where jj:jj� is the nuclear norm, KDCTW ¼ bR�1=2

11
bR12
bR�1=2

22 is the ker-

nel matrix of DCTW, bRij ¼ 1
T�1 Fi Xi; hið ÞDiCTD>j Fj Xj; hj

� �>
denotes

the empirical covariance between the transformed datasets, where

CT is the centering matrix, CT ¼ I� 1
T 11>.

The gradient of the objective function jjKDCTW jj� with respect to

the activation layer of one neural network, such as Y1 ¼ F1 X1; h1ð Þ,
can be calculated as

@jjKDCTW jj�
@Y1

¼ 1

T � 1
F posð Þ � F negð Þ
� �

;

F posð Þ ¼ bR�1=2

11 UV>bR�1=2

22 Y2D2CT ;

F negð Þ ¼ bR�1=2

11 USU>bR�1=2

11 Y1D1CT ;

(3)

where USV> ¼ KDCTW is the singular value decomposition (SVD) of

the kernel matrix KDCTW. By employing this equation as the subgra-

dient, we can optimize the parameters hi in each neural network via

back-propagation.

Since the electrical current signal of a 5-mer could be influenced

by the surrounding sequences, we extend the feature function F1

X1; h1ð Þ in the original DCTW with bi-directional long short-term

memory (Bi-LSTM) (Bo�za et al., 2017) to incorporate the contextual

information. Section S1 gives a brief introduction to Bi-LSTM. The

DNN architecture in Figure 3 is further elucidated in Figure 4,

which is introduced in details in Sections 2.3.3 and 2.3.4.

2.3.3 Feature representation

To preserve the original sequence information, we use one-hot

encoding as the representation of the nucleotide sequence X. When

a nucleotide sequence passes through the nanopore, each 5-mer

2902 Y.Li et al.



inside the pore will cause a change in the magnitude of the electrical

current. Thus, instead of just considering one nucleotide (41¼4

combinations) at position t, we encode the 3-mer (43¼64 combina-

tions) and the 5-mer (45¼1024 combinations) centered at t as well.

Specifically, we use one 1 and (4k – 1) 0’s to represent each k-mer

(k 2 f1; 3; 5g). Then for each nucleotide sequence X with length T1,

the one-hot encoding would produce three feature matrices with

dimensions T1�4, T1�64 and T1�1024, respectively. Each row

in the feature matrix represents a specific position and each column

represents the appearance of a certain k-mer.

2.3.4 Neural network architecture

To simplify our model architecture, we use an identical transform-

ation as the feature mapping to deal with the raw signal data. That

is, we set F2 X2; h2ð Þ ¼ bY . For the other feature mapping function

F1(X1; h1) for the nucleotide sequence, we use the Bi-LSTM architec-

ture. Specifically, as shown in Figure 4, for each feature matrix, we

use a Bi-LSTM block to obtain the hidden representation, with 50

forward LSTM cells and 50 backward LSTM cells. After concate-

nating the obtained hidden representations of different feature

matrices, we feed it into a fully-connected layer with 200 nodes,

which is followed by a regression layer. All the weights are initial-

ized using the Xavier method. To avoid overfitting, we utilize weight

decay with the coefficient as 1e–4. We choose Adam (Kingma and

Ba, 2014) as the optimizer with the learning rate 1e–4. Deploying

batch normalization (Ioffe and Szegedy, 2015) to accelerate training,

we set the batch size as 64 during training. The deep neural network

model is implemented using Tensorflow (Abadi, 2016) and can con-

verge within 6 h with the help of two Pascal Titan X cards.

2.3.5 Context-dependent pore model

The deep neural network in deep canonical time warping for feature

mapping of the input nucleotide sequence (Fig. 4) becomes the

context-dependent pore model after training. To use it, the pore

model first uses one-hot vector encoding of k-mers, where k¼1, 3,

5, to encode the input sequence. The encodings then go through

BiLSTM layers, fully-connected layers as well as the final regression

layer to generate the expected electrical signals. The training process

of the model is illustrated in Figure 5, which shows the loss value

change with respect to the training iteration steps.

2.4 Signal simulation
After obtaining the expected current signals of a given nucleotide se-

quence, the second step of simulating its corresponding electrical

current signals is to repeat the signal at each position and add ran-

dom noise. It is well-known that during sequencing, the raw signal

acquisition speed is much faster than the DNA or RNA moving

speed, causing a certain 5-mer being measured multiple times. Thus,

to convert the expected signals produced by the pore model to the

electrical current signals which can be put into a basecaller, we need

to repeat a certain position on the expected signal several times.

Similar to the read length, we manage to model the repeat time using

a mixture alpha distribution. When running the simulator, the re-

peat time would be drawn from the distribution for each position on

the expected signal, generating the simulated current signal by

repeating that position for a certain number of times. The details of

the distribution and the parameters could be referred to Section S3.

It should also be noted that the raw signals are extremely noisy due

to the complicated sequencing environment (David et al., 2017).

Therefore, we add Gaussian noise with the user-defined variance

parameter to each position of the simulated signals.

The main difficulty of this step is to get the statistics of the repeat

time, as shown in Figure 6. Currently, it is almost impossible to get

the precise repeat time of a certain 5-mer, but it is possible to obtain

the approximate repeat time statistics. Here we show the four basic

Fig. 3. Illustration of the deep canonical time warping (DCTW) architecture

with two deep neural networks (DNNs), one for the input nucleotide sequence

(here we use one-hot encoding for each nucleotide and thus the feature di-

mension is four) and the other for the observed electrical current measure-

ments (denoted as raw signals with feature dimension one). We train this

model in an end-to-end manner, which first performs a spatial transformation

that efficiently reduces the input data samples to the same feature dimension,

followed by a temporal alignment that effectively maps the samples of each

input sequence to a common temporal scale. The objective function of the

model is to make the transformed input data samples to be maximally corre-

lated under the canonical correlation analysis (CCA) loss

Fig. 4. Detailed architecture of the deep neural network in deep canonical

time warping for feature mapping of the input nucleotide sequence. Here we

apply Bi-LSTM with three feature matrices (described in Section 2.3.3): Seqk

represents the feature matrix by one-hot vector encoding of k-mers where

k¼ {1, 3, 5}, respectively. After training, this model becomes the context-de-

pendent pore model

DeepSimulator: a deep Nanopore sequencing simulator 2903



steps for obtaining the statistics. (i) Taking as input the reference

genome, raw signals produced by the MinION, and the basecalled

reads from Albacore, we first map the reads on to the reference gen-

ome by Minimap (Li, 2016), which would mark out the ground

truth (at least approximate) sequence that corresponds to the raw

signal. (ii) With the ground truth sequence, we can get the expected

signal of each 5-mer in the sequence using the context-independent

pore model. (iii) We then apply dynamic time warping (DTW)

(Salvador and Chan, 2007) to map the raw signal and the expected

signal, which is based on the fact that those two signals should have

similar shapes. (iv) Based on the mapping, we can find out the repeat

time from the raw signal positions that correspond to each expected

signal position. Performing the above procedure on a large dataset,

we can get a stable statistic of the repeat time. We then fit the distri-

bution as a mixture model (Section S3).

2.5 Datasets
Four Nanopore sequencing datasets from different species are used

in this paper: ranging from the in-house datasets lambda phage,

E.coli K-12 sub-strain MG1655, Pandoraea pnomenusa strain

6399, to the public available human data. The three in-house data-

sets were prepared and sequenced by Prof. Lachlan Coin’s lab at

University of Queensland. In particular, all the samples were

sequenced on the MinION device with 1D ligation kits on R9.4

flow cells (SQK-LSK108 protocol). The publicly available human

dataset is the human chromosome 21 from the Nanopore WGS

Consortium (Jain et al., 2018). The samples in this dataset

were sequenced from the NA12878 human genome reference on

the Oxford Nanopore MinION using 1D ligation kits (450 bp/s)

with R9.4 flow cells. The Nanopore raw signal datasets in the

FAST5 format were downloaded from nanopore-wgs-consortium

(http://s3.amazonaws.com/nanopore-human-wgs/rel3-fast5-chr21.

part03.tar). The reference genomes of the four datasets were down-

loaded from NCBI (https://www.ncbi.nlm.nih.gov/nuccore/J02459,

https://www.ncbi.nlm.nih.gov/nuccore/U00096, https://www.ncbi.

nlm.nih.gov/nuccore/JTCR01000000, https://www.ncbi.nlm.nih.go

v/nuccore/NC_000021).

The context-dependent pore model of the second module in

DeepSimulator was trained on the Pandoraea pnomenusa dataset.

To construct the dataset used in Section 3.2, which is used to check

the performance of the pore models, we randomly sampled 700

reads from each of remaining three species to form a dataset con-

taining 2100 reads.

In addition to the four species for which we have both the refer-

ence genome and the empirical experimental data, we also include

another extremely small genome, mitochondria, for which we only

have the reference genome (https://www.ncbi.nlm.nih.gov/nuccore/

AY172335). We used the E.coli K-12 genome, the lambda phage

genome and the mitochondrial genome to perform the assembly

experiments in Section 3.4. Finally, the mitochondrial genome and

lambda phage genome were used for the single nucleotide polymor-

phisms (SNP) calling experiments in Section 3.5.

3 Results

We comprehensively evaluated each of the three modules in

DeepSimulator. In summary, the results in this section show that

(i) the length distribution of the simulated reads satisfies the empiric-

al read length distribution; (ii) the signals generated by our context-

dependent pore model are more similar to the experimental signals

than the signals generated by the official context-independent pore

model; and (iii) the final reads generated by DeepSimulator with the

default parameter have almost the same profile as the experimental

data. We finally show that DeepSimulator can benefit the develop-

ment of tools or methods in de novo assembly and low coverage

SNP detection. All the parameter setting related to the experiments

can be found in Supplementary Table S4 and all the parameter defi-

nitions can be found in Section S4.

3.1 Read length distribution
As mentioned in Section 2.2, for an input genome sequence,

DeepSimulator generates reads whose length distribution satisfies

the empirical length distribution. In order to find the distributions of

the Nanopore sequencing reads, we applied the DBSCAN clustering

algorithm with histogram intersection as the distance metric to the

datasets, which found three distinguished patterns from the data.

We used three distributions, beta distribution, exponential distribu-

tion and the mixed gamma distribution to fit the three patterns. The

three distributions are thus provided as options in DeepSimulator.

The parameters of these distributions are given in Section S2. In gen-

eral, the mixed gamma distribution is often the most suitable length

distribution. As a result, we set it as the default length distribution

pattern. In addition to that, considering the property of different

sequencing tasks, some biological experiments may be designed on

purpose so that the read length distribution would satisfy a prede-

fined distribution. In order to simulate this case, we also provide

the interface for the user-defined read length distributions.

Fig. 5. The loss value change with respect to the training iteration steps.

Since we use the stochastic optimizer during training, which only evaluates

the loss function of a small batch of data points, the original loss value curve

is very noisy. Thus, we apply a Hanning filter with the window size 10 to the

original loss curve to smooth it

Fig. 6. The distribution of the signal repeat times of 5-mer nucleotides
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The distributions of the length of the simulated reads by

DeepSimulator on human, E.coli K-12 sub-strain MG1655

and lambda phage are very similar to that of the experimental

reads (Section S5). SiLiCO and Nanosim also investigated the

read length distribution fitting problem. More detailed discussion of

their methods could be found in (Baker et al., 2016; Yang et al.,

2017).

3.2 Simulated signals
To check the signal-level similarity between the simulated signals

generated by DeepSimulator and the experimental ones produced by

the MinION (i.e. the raw signals), we employed dynamic time warp-

ing (DTW) (Salvador and Chan, 2007) which is the standard way of

checking the difference between two signals (see Section S6 for

details). We test the performance on the randomly selected 2100

reads from lambda phage, E.coli K-12 sub-strain MG1655 and

human (as described in Section 2.5). The average deviation between

the simulated signals and the raw signals is 0.175. We also per-

formed the same analysis using the official content-independent

pore model followed by the same signal repeat component used in

DeepSimulator to obtain the context-independent simulated signals.

Using the same set of reads, the average deviation of the context-

independent signals to the raw ones is 0.185, which is about 5.7%

higher than that of DeepSimulator. Furthermore, we performed an-

other experiment on the reads generated by NanoSim (Yang et al.,

2017) to derive the simulated signals by the context-independent

pore model. The average deviation of the NanoSim signals to the

raw ones is 0.210, which is 20% higher than that of DeepSimulator.

Figure 7 shows the comparison of the deviation scores of the

DeepSimulator signals and that of the context independent signals

as well as that of the NanoSim signals for the 2100 reads. Notice

that DeepSimulator was trained solely on Pandoraea pnomenusa

and tested on the three other species, which demonstrates the gener-

ality of our model.

3.3 Simulated reads
The read-level outputs are also of significant importance for se-

quence level analysis. This section further investigates whether

DeepSimulator can simulate reads with the same profile as the real

reads from the Nanopore sequencing. For the read-level outputs, we

provided a parameter interface in DeepSimulator, which can be

adjusted continuously so that the user could control the final read

basecalling accuracy as well as the indel ratio. Internally, the param-

eters change the noise and the signal repeat time distribution, which

are the two factors that affect the read profile greatly. To check the

read profile of the simulated reads, for a given input ground truth se-

quence, we ran DeepSimulator to obtain the simulated read.

Performing BLAST (Altschul et al., 1997) between the simulated

read and the ground truth read, we can calculate the profiles such as

the accuracy, mismatch number and gap numbers. According to our

experiment, the output reads of DeepSimulator can have a basecall-

ing accuracy ranging from 83 to 97%. Table 1 shows the profile of

the real reads and the profiles of DeepSimulator reads using

four typical parameter settings. In addition, we also checked the pro-

file of the reads generated from the official context-independent

pore model, whose output is extended using the noise-free

repeat time distribution and further basecalled using Albacore,

which is shown in the third column of Table 1. Due to the modulari-

zation of DeepSimulator, we know the ground truth of each read

from the Sequence Generator module. As a result, we can run

BLAST and obtain the exact profile. As for the reads from other

baseline methods, of which it is difficult to determine the ground

truth, we performed a global mapping of the reads to first find

the regions of the reference genome that are the most similar to

the reads, followed by a BLAST analysis to approximate the

true profile.

Fig. 7. Comparison of the context-dependent pore model component of

DeepSimulator with the context-independent pore model on the signal-level.

Each point represents an input read. The x-axis represents the DTW deviation

of the DeepSimulator signals of the input read from the real raw signals. The

y-axis represents the DTW deviation of the signals generated from context-

independent pore model from the real raw signals (context-independent pore

model with our signal repeat component in blue, and context-independent

pore model with NanoSim in cyan). The red line is the diagonal line. Any

point above the red line means our simulation is better, whereas any point

below means the existing method is better

Table 1. The profiles of different types of reads, tested on the dataset described in Section 3.2, which are basecalled using Albacore

Criteria Real data OPM DS (noise free) DS (high acc) DS (med acc) DS (low acc) NanoSim

Accuracy 88.49% 95.99% 97.01% 92.96% 88.78% 83.45% 83.80%

Mismatch 2.88% 1.24% 0.94% 1.87% 2.74% 4.36% 4.51%

Gap open 5.38% 2.21% 1.69% 3.63% 5.28% 7.08% 7.31%

Gap total 8.62% 2.77% 2.04% 5.17% 8.48% 12.19% 11.69%

Note: DS represents the reads generated from DeepSimulator. Here we show the profiles of four typical settings (the parameter can be adjusted continuously,

not just four choices) of DeepSimulator, noise free, high accuracy, middle accuracy (aimed at simulating the empirical data profile) and low accuracy. OPM

(official pore model) shows the read profile generated by the official context-independent pore model, whose output is extended using the noise-free repeat time

distribution and further basecalled using Albacore, given an input ground truth sequence. We also provide the profile of reads generated by NanoSim, with the

pre-trained E.coli R9 profile from the NanoSim official website, on the test dataset. In this table, ‘Gap open’ represents the total number of gaps in the alignment

between the simulated reads and the reference genome divided by the length of alignment, excluding the head and tail gaps. ‘Gap total’ represents the total number

of bases included in the gaps divided by the length of alignment, excluding the head and tail gaps. The parameter manual of DeepSimulator can be referred to

Section S4. Note that since NanoSim and DeepSimulator tackle the simulation problem from different angles, this comparison is not completely fair, although we

tried to make it as fair as possible. The detailed description of how we ran NanoSim could be referred to Section S9.
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3.4 De novo assembly
Because of long reads, Nanopore sequencing has higher potential in

genome assembly than the other short-reads sequencing technologies

(Cao et al., 2017). Thus, one of the main applications for Nanopore

sequencing is de novo assembly. We used two widely recognized de

novo assembly pipelines, Canu (Koren et al., 2017) and Miniasm

(Li, 2016) with Racon (Vaser et al., 2017), to perform such a task

on two different sets of simulated reads generated by DeepSimulator

from the E.coli K-12 genome and the lambda phage genome, re-

spectively. Both experiments succeeded in assembling the simulated

reads into one contig. The comparison between the assemblies and

the reference genome is plotted using MUMmer (Delcher et al.,

1999), as shown in Figure 8A and C. As a comparison, we also

show the assembly results of E.coli K-12 and lambda phage using

the empirical data (Fig. 8B and D). It is clear that the results of the

empirical data show similar patterns as the results of the simulated

data. In addition to the relatively large genome, E.coli K-12, which

is 4.6 Mbp, and a small genome, lambda phage, which is 48 Kbp,

we also performed another experiment on an extremely small

genome, the mitochondrial genome (16 Kbp). Miniasm with Racon

also succeeded in assembling the simulated reads into one contig

(Section S7).

3.5 Low coverage SNP detection
Single nucleotide polymorphisms (SNPs) are found to be involved in

the etiology of many human diseases. For example, hundreds of

SNPs in the mitochondrial DNA (mtDNA) have been linked to

aging-related diseases (Ocampo et al., 2016; Stewart and Chinnery,

2015). Despite the importance of the complete haplotyping of the

mitochondrial genome, the current methods, which are designed for

detecting mitochondrial mutations from a population of cells, would

perform massively parallel sequencing of short DNA fragments,

having difficulty in performing the complete haplotyping. On the

other hand, the Nanopore sequencing, which has the potential of

performing the long-read single-molecular sequencing of mtDNA,

may overcome the hurdle. Under this circumstance, mimicking the

ideal single molecular Nanopore sequencing scenarios, we con-

ducted experiments on the success rate of SNPs detection with re-

spect to sequencing coverage, using the simulated reads from

DeepSimulator.

Considering the basecalling accuracy of the Nanopore sequenc-

ing, although the current basecalling accuracy is not high enough

(around 86–88%), theoretically, we can consider those errors as

random errors instead of systematic errors, and the consensus ana-

lysis could help us get rid of such random noise and detect the sys-

tematic variants which are caused by SNPs.

The results are shown in Figure 9. On the simulated data of

mitochondrial genome, we could detect SNPs when the coverage is

above 6�using the standard pipeline of samtools (Li et al., 2009)

and bcftools (Li, 2011) (Fig. 9A), which is consistent with the con-

clusion in (Zeng et al., 2013). As the number of the implanted SNPs

increases, the coverage should increase to ensure all the SNPs to be

successfully called. Figure 9B shows the same analysis on the lambda

phage genome, which shares the similar pattern as the mitochondrial

experiment. In summary, the detection of the SNPs would become

more difficult as the number of SNPs increases. Our experiments

demonstrate that in general, 6� coverage would be enough to detect

a small number of SNPs.

4 Discussion and conclusion

In this paper, we proposed DeepSimulator, the first Nanopore simu-

lator that aims at mimicking the entire procedure of Nanopore

sequencing. Unlike the previous simulators which only simulate the

reads from the statistical patterns of the real data, DeepSimulator

simulates both the raw electrical current signals and nucleotide

reads.

There are three advantages of DeepSimulator. First of all, our

pipeline is highly modularized, which is easier to be customized by

users. For example, the users can use another basecaller, to replace

Albacore, to obtain the reads with the profile of that basecaller.

Secondly, because of the modularization, compared with other sim-

ulators, it is more likely for our simulator to keep up with the rapid

development of the Nanopore sequencing technology. If one step of

the Nanopore sequencing pipeline is updated, we can also update

the corresponding module without changing the entire pipeline com-

pletely. We further provide an interface of using a customized data-

set to train a customized pore model, which enables DeepSimulator

to keep up with the developing pace of the Nanopore sequencing.

Fig. 8. Mummer plots comparing the reference genome on the x-axis with the assembled genome on the y-axis. (A) The assembly result of the E.coli K-12 gen-

ome by Canu, using simulated reads from DeepSimulator. (B) The assembly result of the E.coli K-12 genome by Canu, using the experimental MinION sequence

data (i.e. empirical data). (C) The assembly result of the lambda phage genome by Miniasm with Racon, using simulated reads from DeepSimulator. (D) The as-

sembly result of the lambda phage genome by Miniasm with Racon, using the empirical data

Fig. 9. (A) The relationship between the SNP detection performance and the

coverage as well as the number of introduced SNPs on the simulated reads

from the mitochondrial genome. (B) The relationship between the SNP detec-

tion performance and the coverage as well as the number of introduced SNPs

on the simulated reads from the lambda phage genome
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Thirdly, in addition to the final simulated reads, we are also able to

obtain the simulated electrical current signals, which are very useful

for the development of basecallers and for the benchmarking of

signal-level read mappers.

There are two potential applications of DeepSimulator. On one

hand, DeepSimulator can generate benchmark datasets to evaluate

the newly developed methods for Nanopore sequencing data ana-

lysis. Unlike the empirical datasets whose ground truth is difficult to

obtain, DeepSimulator can be fully controlled, which makes it a

practical complement to the empirical data. On the other hand, as

shown in the SNP detection experiments, it can act as a guidance to

the empirical experiment by simulating the ideal situation.

Despite the novelty of DeepSimulator, it can still be improved

from various aspects. Since it contains a module based on deep

learning, which is computationally intensive, it is inevitable that

DeepSimulator would require more computational resources and

longer running time than some of the other simulators, such as

NanoSim, as shown in Section S8. The recent development of deep

learning for mobile devices (Zhang et al., 2017) may be useful for

overcoming this bottleneck. In terms of the selection of the deep

learning architecture, several recent works, such as generative adver-

sarial networks (GANs) for sequence data (Rajeswar et al., 2017),

attention networks (Vaswani et al., 2017) and convolutional se-

quence to sequence models (Gehring et al., 2017), are promising

directions which may lead to better context-dependent pore models.
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