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Objective: To determine the effects of age and topographic location on gene expression
in human neural retina. Methods: Macular and peripheral neural retina RNA was isolated
from human donor eyes for DNA microarray and quantitative RT-PCR analyses. Results:

Total RNA integrity from human donors was preserved. Hierarchical clustering analysis
demonstrates that the gene expression profiles of young, old, macula, and peripheral retina
cluster into four distinct groups. Genes which are highly expressed in macular, peripheral,
young, or old retina were identified, including inhibitors of Wnt Signaling Pathway (DKK1,
FZD10, and SFRP2) which are preferably expressed in the periphery. Conclusion:The tran-
scriptome of the human retina is affected by age and topographic location. Wnt pathway
inhibitors in the periphery may maintain peripheral retinal cells in an undifferentiated state.
Understanding the effects of age and topographic location on gene expression may lead
to the development of new therapeutic interventions for age-related eye diseases.
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INTRODUCTION
In the normal human eye the neural retina develops from meso-
derm and forms a multilaminated structure with highly specialized
functions for light detection and signal processing (Ye et al., 1999).
During retinal aging, neuronal components of retina develop
structural and functional changes that can adversely affect retinal
function. Examples of age-dependent diseases of the retina include
glaucoma and age-related macular degeneration (AMD), in which
structural changes leading to visual loss develop in ganglion cells
or outer retina, RPE, and choriocapillaris (Nag et al., 2006). The
human macula, which is an anatomic region approximately 6 mm
in diameter delineated by the optic nerve and the superior and
inferior temporal vascular arcades, is adversely affected in AMD
(Hornan et al., 2007). As a disease AMD is characterized by cel-
lular changes in RPE, choriocapillaris, and outer retina and by
structural changes in Bruch’s membrane (Del Priore and Tezel,
1998; Spraul et al., 1999). Cellular changes that occur in AMD
include atrophy of the RPE, choriocapillaris, and outer retina in
non-exudative AMD as well as the development of choroidal or
intraretinal neovascularization in exudative AMD (Chader, 2002).
Ultimately some changes in cellular behavior may be initiated by
or reflected in alterations in the gene expression profile of the cells
(Radeke et al., 2007; Chen et al., 2008; Kurji et al., 2009; Stadler
and Come, 2009). A systematic comparison of the gene expres-
sion profiles of young vs. older neural retina is thus important,

as analysis of the retinal transcriptome may allow us to define a
role for some genes in either initiating or responding to the cel-
lular changes that occur in age-dependent diseases such as AMD.
Topographic location may also affect gene expression profiling,
since some diseases such as AMD affect the macula and periphery
differently (van Soest et al., 2007).

To this end we have compared the gene expression profiles
of young vs. old human neural retina, using both macular and
peripheral neural retinal explants. In essence, macular and periph-
eral neural retinas were harvested from young and older human
donor eyes and the retinal gene expression profiles were deter-
mined using the Affymetrix DNA microarray chip U133 plus 2.
We were able to test the expression profile of 54,600 gene probes
and determine genes whose expression level (mRNA) was altered
by temporal (young vs. older) or spatial (macular vs. peripheral)
factors. Knowledge of the function of genes with an altered expres-
sion profile may provide insight into the role of age-related changes
in gene expression in the pathogenesis of human ocular disease.

MATERIALS AND METHODS
PREPARATION OF ADULT HUMAN RETINAL TISSUES
Twelve human donor eyes without recorded eye disease history
from the National Disease Research Interchange (NDRI, Philadel-
phia, PA, USA) ranged in donor age from 18 to 79 years. Eyes
were separated into a younger (18, 21, 32, 32, 35, and 43-year-old
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Table 1 | Human retina donor information.

Tissue ID Death-to-enucleation

time (h)

Enucleation to retina

extraction time (h)

Age (year-old) Gender and races Cause of death

FOR DNA MICROARRAY STUDY

Sample 1 7 11 18 CM Trauma

Sample 2 10 20 21 CM Breast cancer

Sample 3 3 26 32 CM Motor vehicle accident

Sample 4 2 29 32 CF Seizures

Sample 5 6 16 35 CM Cerebrovascular accident

Sample 6 10 18 43 CF Motor vehicle accident

Sample 7 8.5 23 72 CM Head trauma

Sample 8 2 21 74 CM Cardiac arrest

Sample 9 6.5 14 74 CF Breast cancer

Sample 10 10 10 74 CM Lung cancer

Sample 11 4 20 75 CM Anoxic encephalopathy

Sample 12 3.5 12 79 CF Respiratory failure

FOR RT-PCR

Sample 13 7 10 34 CM Head trauma

Sample 14 13.5 10 38 CM Unknown

Sample 15 7 23 78 BM Cardiac arrest

Sample 16 5 10 81 CM colon cancer

Human retina donor information for microarray and real time qRT-PCR. All donor eyes were enucleated within 10 h of death and subsequently shipped to the lab

within 32 h of death. All samples passed quality control using the hybridization signals from 3′, middle, and 5′ fragment of mRNA of housekeeping genes coded in

the Affymetrix DNA chips (see Figure 1), suggesting that there is reasonable stability of RNA isolated from cadaver human donor eyes. C, Caucasian; B, black; M,

male; F, female.

Table 2 | Primers used and the result of semi-quantitative RT-PCR compared to DNA microarray.

Gene Name Gene Symbol Oligo sequence Fold changes Tissue compared

Microarray RT-PCR

Protein tyrosine kinase-2 PTK2 Fwd-GCCTATTAAATGGATGGCTCCAG 2.9 2.3 Young/old macula

Rev-AATTCGACCGATTACATCATTGTTCT

Brain-derived neurotrophic

factor

BDNF Fwd-AAGATACATTTGTATGTTGTGAAGATGTTT 2.5 4.9 Young/old macula
Rev-GCTTACTCTGACCAACGCC

XIAP associated factor-1 XAF1 Fwd-CGAGCAGGGTTTCTTTATACTGG 2.3 2.5 Young/old macula

Rev-TGTAGACTGCGTGGCACT

Cadherin 8, type 2 CDH8 Fwd-CTACTGAAATTAGGAACCACAGTCAGAT 2.2 3.0 Young/old macula

Rev-CTAACAGTTTGAATGACTTGGCCG

Chloride intracellular

channel 4

CLIC4 Fwd-CTGAATCACTTAAGAATTTCAGAATACCCT 3.0 2.5 Old/young macula
Rev-ACCATGATTTATTGGGAGATGTTTATGTC

Nuclear receptor

co-repressor 2

NCOR2 Fwd-GGGCCACGTCATCTACGA 2.6 3.3 Old/young macula
Rev-CTCCATCATGTCATAGGTGCG

Dickkopf homolog 1 DKK1 Fwd-GGAATCCTGTACCCGGGC 6.6 2.4 Periphery/macula (all ages)

Rev-CTGCAGGCGAGACAGATTTG

Secreted frizzled-related

protein 2

SFRP2 Fwd-GGAGATAACCTACATCAACCGAGATAC 5.7 2.1 Periphery/macula (all ages)
Rev-GTCCCATGACCAGATAGGGC

Frizzled homolog 10 FZD10 Fwd-CCGGCTTCGTGCTCATT 3.0 2.2 Periphery/macula (all ages)

Rev-CAGCACAGAGAAGAGCCCGATA

Genes and corresponding oligonucleotide primers used for selective real time polymerase chain reaction (qRT-PCR). The last two columns show the ratio of mRNA

expression levels from DNA microarray or qRT-PCR studies. Changes in expression are always in the same directions for qRT-PCR compared to microarray data,

although the magnitude of the change can vary.
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cadaver donors) and older (72, 74, 74, 74, 75, and 79-year-old
cadaver donors) age group. All donor eyes were enucleated within
10 h of death and processed in the lab within 32 h of death
(Table 1). Since the study involved postmortem tissue without
identification of individual patients it was exempt from Institu-
tional Review Board (IRB) approval. Upon receipt in the labora-
tory, eyes were cleaned of extraocular tissue. The eyes were placed
in carbon dioxide-free media (Gibco, Grand Island, NY, USA) and
an incision was made through the sclera 3 mm posterior to the
limbus and extended circumferentially. Four radial incisions were

FIGURE 1 | Ratio of the 3′ and 5′ signal obtained from human house

keeping gene GAPDH using microarray. Study was performed to assess
mRNA quality isolated from human donor eyes. Young samples and older
samples are presented in order of donor age for both macular and
peripheral samples. There is no correlation between donor age and signal
ratio. The average of 3′/5′ signal ratio of all samples is 1.152 ± 0.07, which
denotes good quality.

then made through the sclera and the sclera was peeled away.
A full-thickness circumferential incision was made 1 mm poste-
rior to the ora serrata; the anterior segment; and vitreous were
removed and discarded. The posterior pole of each eyecup was
inspected visually with direct and retroillumination under a dis-
secting microscope and globes were discarded if there was any
evidence of subretinal blood, extensive drusen, or irregular pig-
mentation of the macular RPE. The choroid-Bruch’s membrane-
RPE complex was removed after trimming its attachment to the
optic nerve using forceps, leaving the intact human retina as a
flat mount. After rinsing three times with cold Dulbecco’s Phos-
phate Buffered Saline (PBS) the macular retina was isolated from
each eye using a 5-mm circular punch; a 5 mm punch of periph-
eral retina was then obtained by trephination of a circular region
whose posterior border was at least 10 mm away from the macular
punch. Cut tissues were rinsed again and stored at −80˚C prior to
isolating RNA. Twelve pairs of eyes from human donors were inde-
pendently (not pooled samples) used for DNA microarray study;
given the expense and availability of human tissue, similar small
sample sizes have been used in the past to generate important data
on gene expression in human tissue (Wistow et al., 2002; Chowers
et al., 2003; Hollborn et al., 2005). Four additional retinal explants
(donor age 34, 38, 78, and 81), independent of the samples used
in the DNA microarray studies, were also harvested for confir-
matory qRT-PCR (quantitative reverse transcriptase polymerase
chain reaction) using independent samples (not pooled, Table 1).

ISOLATION OF TOTAL RNA
Human macula and peripheral retina were taken from a −80˚C
freezer and total RNA was isolated and purified using a Qia-
gen RNeasy Mini Kit according to manufacturer’s instructions
as described previously (Cai and Del Priore, 2006; Gong et al.,
2008). Briefly, retinal tissue was disrupted and 600 μl of lysing
buffer (RLT) was added to cells in a 1.5-ml microfuge tube. The
cell lysate was loaded onto a QIAshredder spin column and spun
for 2 min at 13,000 rpm. The homogenized lysate was then mixed

FIGURE 2 | Human retina donor information. (A) Human Retina Donor
Age vs. Death-To-Enucleation Time (B). Human Donor Age vs.
Death-to-RNA-Extraction Time. Data showed that no bias was introduced

by handling younger and older tissue differently, as there is no correlation
between donor age and either death-to-enucleation or death-to-RNA
isolation time.
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FIGURE 3 | Death-to-RNA-Extraction time vs. GAPDH 3′/5′ ratio in

macular tissue. Data shows no correlation between enucleation time and
the quality of RNA (the closer the ratio is to 1, the better the RNA quality)
within the 31.5 h death-to-RNA-extraction time.

FIGURE 4 | Hierarchical clustering analysis of retinal samples shows

old and young retina (macular and peripheral) cluster separately,

suggesting that aging changes the expression profile more than

location (macula vs. periphery). Young macular and peripheral samples
were from different individuals for this analysis. Likewise older macular and
peripheral samples were from different individual donors.

with 600 μl of 70% ethanol and applied to an RNeasy mini spin
column and centrifuged for 15 s at 13,000 rpm. The specimen was
then washed twice by adding 700 μl of Buffer RW1 and Buffer RPE,
with subsequent spinning. Sixty microliters RNase-free water was

used to elute total RNA from an RNeasy column. Approximately
8 μg of total RNA were extracted from macular and peripheral
tissues (one punch each) of one pair of donor eyes. The quality
of total RNA was assessed with the RNA denaturing agarose gel
electrophoresis and microarray assay (see below).

DNA MICROARRAY EXPERIMENTS
A T7-(dT)24 oligomer, superscript reverse transcriptase II and
DNA Polymerase I (Gibco BRL) were used for first-strand and
second-strand cDNA synthesis using 5 μg of total RNA as tem-
plates for each sample. Double-stranded cDNA was cleaned with
Phase Lock Gels-Phenol/Chloroform extraction and ethanol pre-
cipitation. Biotin-labeled antisense cRNA was produced by an
in vitro transcription reaction (ENZO BioArray High Yield RNA
Transcript Labeling Kit) and incubated with fragmentation buffer
(Tris-acetate, KOAc and MgOAc) at 94˚C for 35 min. Target
hybridization, washing, staining, and scanning probe arrays were
done following an Affymetrix GeneChip Expression Analysis Man-
ual. All human retinal samples are processed with individual
microarray chips independently. The data then averaged/pooled
for analysis and compared (MIAME accession # GSE32614).

QUALITY CONTROLS, DEFINITIONS OF GENE PRESENCE OR ABSENCE
AND STATISTICAL ANALYSIS
For assessing the quality of retinal RNA, 1% agarose gel with
0.22 M formaldehyde was used for RNA electrophoresis. One
microgram of total RNA isolated from peripheral retinal sam-
ples was mixed with 2× loading buffer (Fisher Scientific) and run
with 1× MOPS [3-(N -morpholino)propanesulfonic acid] buffer
(Fisher Scientific). After ethidium bromide staining RNA bands
were visualized with a UV transilluminator and 28S and 18S rRNA
band patterns were analyzed.

For quality control the U133 plus 2 DNA microarray chips
(Affymetrix, Santa Clara, CA, USA) used include housekeeping
gene probes to measure the consistency of the hybridization signals
from their 3′, middle, and 5′ fragment of these mRNA coding
regions (Hubbell et al., 2002). Gene expression analyses, including
global normalization, scaling, and Gene Ontology analysis were
performed using the Affymetrix Expression Console (Ver. 1.1.) and
GeneSifter Genetic Analysis system (Geospiza, Inc., Seattle, WA,
USA). For the purpose of this study, gene expression was labeled
as being differentially expressed if they were detected as present in
the samples compared (i.e., young vs. old or macula vs. periph-
eral retina), had expression levels >50 in densitometry, and there
was at least 2.0-fold difference in expression level that was statisti-
cally significant (p < 0.05 with Benjamini and Hochberg adjusted
Student’s t -test; Benjamini et al., 2001). We calculated a z-score
to determine the relative gene expression changes (Doniger et al.,
2003) and thereby identify biological processes, cellular compo-
nents, and molecular group functions of those genes that warrant
further study (Ashburner et al., 2000).

REAL TIME QUANTITATIVE RT-PCR
Real time Quantitative RT-PCR (qRT-PCR) was performed on
retinal samples harvested from different donors (ages 34, 38, 78,
and 81 years) than those used to generate the microarray data
(Table 1). The LightCycler system (Roche Diagnostics Corp.) was
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Table 3 | Genes highly expressed (up-regulated) in macula compared to peripheral retina.

Gene title Gene

Symbol

GO biological process term Gene expression

fold-change

p-Value

Peripherin PRPH Intermediate filament cytoskeleton organization 8.3 2.45E−11

POU class 4 homeobox 2 POU4F2 Negative regulation of transcription from RNA

polymerase II promoter

7.86 8.10E−12

Serpin peptidase inhibitor, clade E (nexin,

plasminogen activator inhibitor type 1), member 2

SERPINE2 Nervous system development 6.87 8.73E−10

Transmembrane protein 163 TMEM163 Integral to membrane 6.72 1.02E−10

Popeye domain containing 3 POPDC3 Integral to membrane 6.54 4.22E−14

AHNAK nucleoprotein 2 AHNAK2 Keratinization; cell differentiation 6.33 1.86E−12

POU class 4 homeobox 1 POU4F1 Nervous system development; axonogenesis;

synaptogenesis

6.03 1.10E−10

Iroquois homeobox 2 IRX2 Regulation of transcription; transcription factor

activity

6.01 4.26E−13

Sodium channel, voltage-gated, type I, beta SCN1B Ion transport 5.81 7.36E−13

Neurofilament, heavy polypeptide 200 kDa NEFH Nervous system development 5.66 2.48E−11

Early B-cell factor-1 EBF1 Regulation of transcription 5.54 6.66E−12

Annexin A2 ANXA2 Skeletal development 5.51 3.93E−15

Regulator of G-protein signaling 7 binding protein RGS7BP Negative regulation of signal transduction 5.32 2.53E−06

Fatty acid binding protein 3, muscle, and heart

(mammary-derived growth inhibitor)

FABP3 Negative regulation of cell proliferation 5.25 4.97E−10

Male sterility domain containing 1 FAR2 Lipid biosynthetic process; oxidation reduction 5.15 2.07E−09

Microtubule-associated protein 1A MAP1A Sensory perception of sound 5.05 6.92E−10

Peripheral myelin protein 2 PMP2 Establishment of localization; lipid binding 4.93 3.04E−05

Sushi-repeat-containing protein, X-linked SRPX Cell adhesion 4.87 1.81E−08

Iroquois homeobox 1 IRX1 Regulation of transcription 4.76 4.48E−09

Neurofilament, light polypeptide 68 kDa NEFL Neurofilament bundle assembly 4.69 2.43E−11

Sulfotransferase family 4A, member 1 SULT4A1 Lipid metabolic process 4.65 2.13E−08

Low density lipoprotein receptor (familial

hypercholesterolemia)

LDLR Lipid metabolic process 4.58 7.77E−10

Visinin-like 1 VSNL1 Neuronal calcium sensor 4.38 6.37E−08

RAB37, member RAS oncogene family RAB37 Protein transport 4.32 8.19E−07

24-Dehydrocholesterol reductase DHCR24 Anti-apoptosis; response to oxidative stress;

neuroprotection

4.27 1.63E−10

Complexin 1 CPLX1 Neurotransmitter transport; synaptic

transmission

4.23 1.38E−09

ELAV (embryonic lethal, abnormal vision,

Drosophila)-like 4 (Hu antigen D)

ELAVL4 Cellular macromolecule metabolic process 4.15 1.22E−08

Sodium channel, voltage-gated, type IV, beta SCN4B Ion transport 3.81 2.66E−12

Cholinergic receptor, nicotinic, beta-3 CHRNB3 Signal transduction 3.76 2.57E−08

Adenylate cyclase 3 ADCY3 Intracellular signaling cascade; response to

stimulus

3.75 6.55E−11

Multiple C2 domains, transmembrane 1 MCTP1 Calcium-mediated signal transduction 3.72 5.52E−07

RNA binding protein with multiple splicing 2 RBPMS2 Nucleotide binding 3.72 1.98E−11

Leucine rich repeat containing 8 family, member C LRRC8C Protein binding; integral to membrane 3.68 1.28E−09

Microtubule-associated monooxygenase,

calponin, and LIM domain containing 2

MICAL2 Electron transport 3.62 5.36E−10

RNA binding protein with multiple splicing RBPMS RNA processing; nucleic acid binding 3.58 2.10E−12

Ras-like without CAAX 2 RIT2 Synaptic transmission 3.5 4.66E−10

GNAS complex locus GNAS Protein targeting; signal transduction 3.46 7.02E−08

Growth associated protein 43 GAP43 Nervous system development; cell

differentiation

3.35 1.44E−05

Trophoblast glycoprotein TPBG Cell motility; cell adhesion 3.32 5.90E−06

(Continued)
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Table 3 | Continued

Gene title Gene

Symbol

GO biological process term Gene expression

fold-change

p-Value

Brain expressed, associated with Nedd4 BEAN Protein binding; integral to membrane 3.29 1.53E−10

Sodium channel, voltage-gated, type I, alpha

subunit

SCN1A Ion transport 3.28 3.83E−07

Methylenetetrahydrofolate dehydrogenase

(NADP+ dependent) 2, methenyltetrahydrofolate

cyclohydrolase

MTHFD2 One-carbon compound metabolic process 3.28 2.33E−04

Ectonucleoside triphosphate diphosphohydrolase 3 ENTPD3 Nucleoside diphosphate catabolic process 3.22 4.16E−05

Potassium intermediate/small conductance

calcium-activated channel, subfamily N, member 2

KCNN2 Ion transport 3.21 1.06E−09

EPH receptor A4 EPHA4 Signal transduction; axon guidance 3.1 7.37E−07

ELAV (embryonic lethal, abnormal vision,

Drosophila)-like 2 (Hu antigen B)

ELAVL2 Regulation of transcription, DNA-dependent 3.09 3.05E−08

Eukaryotic translation initiation factor 5A2 EIF5A2 Translational initiation; polyamine homeostasis 3.04 1.11E−10

KISS1 receptor KISS1R Negative regulation of cell proliferation 3.04 5.44E−08

Leucine rich repeat and fibronectin type III domain

containing 5

LRFN5 Intracellular membrane-bounded organelle 3.02 1.63E−06

Deleted in liver cancer 1 DLC1 Regulation of cell adhesion 2.98 2.08E−11

Neuritin 1 NRN1 Axonal regeneration; experimental diabetic

neuropathy

2.94 6.76E−11

Solute carrier family 17 (sodium-dependent

inorganic phosphate cotransporter), member 6

SLC17A6 Transport 2.94 7.92E−11

Synuclein, gamma (breast cancer-specific protein 1) SNCG Intracellular non-membrane-bounded organelle 2.94 2.66E−08

L1 cell adhesion molecule L1CAM Cell adhesion; nervous system development 2.92 3.78E−11

HIV-1 Tat interactive protein 2, 30 kDa HTATIP2 Regulation of apoptosis; regulation of

angiogenesis

2.9 7.43E−09

Myocardial infarction associated transcript

(non-protein coding)

MIAT Associated with myocardial infarction 2.9 1.88E−07

Ankyrin 1, erythrocytic ANK1 Exocytosis; maintenance of epithelial cell

polarity

2.89 4.38E−08

Synaptic vesicle glycoprotein 2C SV2C Neurotransmitter transport 2.83 5.85E−10

Eomesodermin homolog (Xenopus laevis) EOMES Anatomical structure morphogenesis; cell

differentiation

2.82 2.06E−09

Heparan sulfate 6-O-sulfotransferase 3 HS6ST3 Transferase activity; integral to membrane 2.73 3.05E−10

Collagen, type IV, alpha 4 COL4A4 Long-term strengthening of neuromuscular

junction

2.71 3.25E−10

Thy-1 cell surface antigen THY-1 Angiogenesis; retinal cone cell development;

focal adhesion

2.7 2.88E−10

Cholinergic receptor, nicotinic, alpha 6 CHRNA6 Synaptic transmission 2.68 7.26E−10

Stearoyl-CoA desaturase (delta-9-desaturase) SCD Lipid metabolic process; iron ion binding 2.66 2.77E−09

Lanosterol synthase (2,3-oxidosqualene-lanosterol

cyclase)

LSS Lipid biosynthetic process 2.63 6.13E−10

Neurofilament, medium polypeptide 150 kDa NEFM Intermediate filament cytoskeleton organization

and biogenesis

2.63 2.85E−12

Contactin 2 (axonal) CNTN2 Neuron migration; cell adhesion; integral to

plasma membrane

2.57 1.24E−08

Vesicle-associated membrane protein 1

(synaptobrevin 1)

VAMP1 Vesicle-mediated transport 2.53 1.19E−12

Hypothetical protein FLJ33996 FLJ33996 EST sequence; function known 2.52 3.82E−09

Lipin 1 LPIN1 Required for normal adipose tissue

development

2.43 3.08E−03

(Continued)
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Table 3 | Continued

Gene title Gene

Symbol

GO biological process term Gene expression

fold-change

p-Value

Thyroid hormone responsive (SPOT14 homolog,

rat)

THRSP Regulation of transcription; lipid metabolic

process

2.29 1.09E−09

Calsyntenin 2 CLSTN2 Cell adhesion; calcium ion binding; postsynaptic

membrane

2.25 7.39E−08

Stathmin-like 2 STMN2 Intracellular signaling cascade; neuron

differentiation

2.2 2.10E−11

Early B-cell factor 3 EBF3 Regulation of transcription 2.18 1.42E−05

Glutaredoxin (thioltransferase) GLRX Electron transport 2.16 4.73E−09

SLIT-ROBO Rho GTPase activating protein 2 SRGAP2 GTPase activator activity 2.15 3.63E−07

Nicotinamide nucleotide adenylyltransferase 2 NMNAT2 NAD biosynthetic process;

nucleotidyltransferase activity

2.13 1.89E−07

Protein phosphatase 2 (formerly 2A), regulatory

subunit B, gamma isoform

PPP2R2C Signal transduction 2.09 3.15E−09

Histone deacetylase 9 HDAC9 Regulation of transcription, DNA-dependent 2.07 1.33E−07

RAB15, member RAS oncogene family RAB15 Small GTPase mediated signal transduction;

GTP binding

2.04 5.61E−08

Kinesin family member 5A KIF5A Microtubule-based movement; ATP-binding 2.03 2.21E−07

Genes highly expressed (up-regulated) in macular compared to peripheral retina (all ages). For changes in gene expression level we used a cutoff of >2.0-fold higher

expression level in macular vs. peripheral retina (p < 0.05, Benjamini and Hochberg adjusted Student’s t-test; expression level >50 on densitometry).These genes have

a wide array of functions, including lipid metabolism, ion transport, neuronal differentiation and regulation of transcription, cell adhesion and motility, and differentiation.

used for real time quantitative RT-PCR. An RNA Amplification
Kit SYBR Green I (Roche Molecular Biochemicals, Mannheim,
Germany) was used to synthesize the first-strand cDNA and
subsequent amplification using gene specific primers (Table 2).
The PCR reaction solution contains 0.5 μg of total RNA, 6 mM
MgCl2, and 0.5 μM of each primer. Other components in qRT-
PCR master mix contain buffer, enzyme, SYBR green and dNTP.
For reverse-transcription, reaction capillaries containing 20 μl RT-
PCR reaction mix were incubated at 55˚C for 10 min, followed
by incubation at 95˚C for 30 s. qRT-PCR was performed using
an initial denaturation for 1 s at 95˚C, followed by 35 cycles of
denaturation for 1 s at 95˚C, annealing for 10 s at 55˚C, and exten-
sion for 13 s at 72˚C in a programmable LightCycler. A melting
curve analysis was performed by following the final cycle with
incubation at 95˚C for 1 s, 65˚C for 10 s, followed by a tempera-
ture transition rate of 20˚C/s to reach 95˚C. Negative controls for
the qRT-PCR analysis, which contained all reaction components
except for RNA, were performed simultaneously to determine
when the non-specific exponential amplification cycle number was
reached.

RESULTS
SAMPLE QUALITY CONTROL ASSESSMENT
To determine the quality of the RNA isolated from human eyes,
we determined the ratio of the 28S and 18S bands in the iso-
lated RNA. The intensity ratio of 28S/18S was approximately 2.0:
1 without any significant smearing of the leading edges of either
band (Data not shown). In addition a quality control analysis was
performed using the hybridization signals from 3′, middle, and
5′ fragment of mRNA of endogenous housekeeping genes and
exogenous “spiking” genes coded in the Affymetrix DNA chips

(Hubbell et al., 2002; Archer and Guennel, 2006). All 24 samples
passed the pre-established quality control criteria, which was
detection of signal from each of the control genes (Figure 1). To
exclude any potential bias due to differences in handling of young
vs. older tissue, we demonstrated that there was no correlation
between donor age and death-to-enucleation time (Figure 2A) or
death-to-RNA-extraction time (Figure 2B). In addition, there was
no correlation between the 3′/5′ ratio for the housekeeping gene
GADPH and the death-to-RNA-extraction time (Figure 3).

GLOBAL AND HIERARCHICAL CLUSTERING ANALYSIS
We detected the expression of approximately 26,700 gene probes
out of 54,600 gene probes present on the Affymetrix Human
Genome U133 plus 2 chip. There was no statistically signifi-
cant difference in the total number of genes expressed between
human young macula (26686 ± 319), old macula (26956 ± 275),
young peripheral retina (27122 ± 108), or old peripheral retina
(26533 ± 490; data not shown). There was also no statistically
significant difference in the standard deviations of the number
of genes expressed among these four groups (F-test, p > 0.05).
Hierarchical clustering analysis of 24 samples showed that the
transcriptome of the older macula and peripheral retina cluster
together and young macula and peripheral retina cluster together
as well (Figure 4), suggesting that there is a significant effect
of aging on the gene expression profile of the human neural
retina.

GENE EXPRESSION ANALYSIS
There are 81 genes among approximately 26,700 gene probes that
are expressed at higher levels (Table 3) in macula compared to
peripheral retinal samples (combining all age groups) using the
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Table 4 | Genes highly expressed in peripheral compared to macular retina.

Gene title Gene symbol GO biological process term Periphery vs. macula

(all ages) gene expression

fold-change

p-Value

Forkhead box G1 FOXG1 Regulation of transcription 7.1 5.21E−14

Dickkopf homolog 1 (Xenopus laevis) DKK1 Wnt receptor signaling pathway 6.59 3.44E−05

Secreted frizzled-related protein 2 SFRP2 Wnt receptor signaling pathway 5.69 6.70E−08

Hydroxysteroid (17-beta) dehydrogenase 2 HSD17B2 Lipid biosynthetic process 5.08 9.67E−09

Collagen, type II, alpha-1 (primary

osteoarthritis, spondyloepiphyseal

dysplasia, congenital)

COL2A1 Phosphate transport 4.54 4.42E−08

Zic family member 1 (odd-paired

homolog, Drosophila)

ZIC1 Nervous system development 3.68 2.40E−07

Frizzled homolog 10 (Drosophila) FZD10 Wnt receptor signaling pathway 2.96 2.12E−07

Inhibitor of DNA binding 3, dominant

negative helix-loop-helix protein

ID3 Negative regulation of transcription 2.75 4.49E−04

LIM homeobox 9 LHX9 Regulation of transcription, DNA-dependent 2.69 1.21E−09

Potassium inwardly rectifying channel,

subfamily J, member 13

KCNJ13 Ion transport 2.68 5.79E−05

Histone cluster 2, H2aa3 HIST2H2AA3 Nucleosome assembly 2.64 6.86E−04

Zic family member 2 (odd-paired

homolog, Drosophila)

ZIC2 Multicellular organismal development 2.53 1.70E−07

Histone cluster 1, H2bb HIST1H2BB Nucleosome assembly 2.52 3.43E−03

Myoneurin MYNN Regulation of transcription, DNA-dependent 2.48 1.51E−06

Protein phosphatase 1, regulatory

(inhibitor) subunit 3C

PPP1R3C Carbohydrate metabolic process 2.44 9.18E−06

STEAP family member 4 STEAP4 Ion transport 2.44 1.81E−06

Histone cluster 1, H2bc HIST1H2BC Nucleosome assembly 2.43 2.41E−03

ATPase, Na+/K+ transporting, alpha 2 (+)

polypeptide

ATP1A2 ATP biosynthetic process 2.28 8.95E−06

FXYD domain containing ion transport

regulator 6

FXYD6 Ion transport 2.28 6.45E−07

Cysteine and glycine-rich protein 2 CSRP2 Multicellular organismal development 2.26 6.46E−08

Tigger transposable element derived 2 TIGD2 Cellular biopolymer biosynthetic process 2.13 2.34E−05

Nuclear receptor subfamily 4, group A,

member 2

NR4A2 Nervous system development 2.12 9.61E−03

Rhodopsin RHO Rhodopsin mediated signaling pathway 2.05 4.17E−05

Histone cluster 1, H4b HIST1H4B Phosphoinositide-mediated signaling 2.01 6.47E−03

Genes highly expressed in peripheral compared to macular retina (all ages). For changes in gene expression level we used a cutoff of >2.0-fold higher expression

level in peripheral vs. macular retina (p < 0.05, Benjamini and Hochberg adjusted Student’s t-test; expression level >50 on densitometry). Note that DKK1, FZD10,

and SFRP2 are expressed at higher levels in the peripheral retina than macular retina, suggesting that there is inhibition of the Wnt signaling pathway in the periphery

compared to the human macula.

definition described above. These genes have a wide array of
functions, including lipid metabolism, ion transport, neuronal
differentiation and regulation of transcription, cell adhesion and
motility, and differentiation. There are 24 genes expressed at higher
levels (Table 4) in the peripheral vs. macular retina (combin-
ing all age groups). These genes include those that are involved
in the Wnt receptor signaling pathway, including DKK1 (Dick-
kopf homolog 1), FZD10 (frizzled homolog), and SFRP2 (secreted
frizzled-related protein; Table 4; Robitaille et al., 2002; Kubo et al.,
2003; Liu et al., 2007).

Aging alters the expression profile of numerous genes within
the human macula. There are 85 genes that were expressed at

higher levels (Table 5) in young macula compared to older
macula. This includes genes with a diverse range of func-
tions, including cell metabolism, cell regulation, development,
and other cellular processes (Figure 5A). There are 55 genes
that were expressed at higher levels (Table 6) in older com-
pared to younger human macula. This includes genes with
a wide role in cell proliferation, survival, and differentiation
(Figure 5B).

There are 52 genes that were expressed at higher levels (Table 7)
in younger peripheral vs. older peripheral retina. There are 34
genes that were expressed at higher levels (Table 8) in older vs.
younger peripheral retina. The functions of these genes with
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Table 5 | Genes highly expressed in young compared to old macular retina.

Gene title Gene symbol GO biological process term Young vs. older macula

gene expression

fold-change

p-Value

Chitinase 3-like 1 (cartilage glycoprotein-39) CHI3L1 Carbohydrate metabolic process 9.26 1.80E−04

Peripheral myelin protein 2 PMP2 Transport; lipid binding 5.31 6.88E−04

Interferon-induced protein with

tetratricopeptide repeats 3

IFIT3 Receptor binding 3.86 1.96E−02

Fatty acid binding protein 5

(psoriasis-associated)

FABP5 Lipid metabolic process 3.82 5.56E−04

Autocrine motility factor receptor AMFR Ubiquitin cycle; signal transduction 3.76 3.47E−08

Chemokine (C-X-C motif) ligand 2 CXCL2 Inflammatory response; G-protein-coupled

signaling pathway

3.43 4.36E−03

Serpin peptidase inhibitor, clade E (nexin,

plasminogen activator inhibitor type 1)

SERPINE1 TGF-beta signaling pathway; regulation of

angiogenesis

3.43 9.28E−03

Cytoplasm; intracellular part IFI44L Interferon-induced protein 44-like 3.27 8.04E−04

Matrix Gla protein MGP Cartilage condensation; cell differentiation m ion 3.19 4.62E−03

Defensin, beta 119 DEFB119 Defense response 3.05 2.68E−02

Immune response GBP1 Guanylate binding protein 3 3.04 7.91E−04

metabolic process MICAL2 Microtubule-associated monooxygenase,

calponin, and LIM domain containing 2

2.99 7.62E−03

Nucleoside diphosphate catabolic process ENTPD3 Ectonucleoside triphosphate

diphosphohydrolase 3

2.98 4.88E−03

Regulation of transcription, DNA-dependent BACH2 BTB and CNC homology 1, basic leucine zipper

transcription factor 2

2.96 5.92E−05

Angiogenesis ELK3 ELK3, ETS-domain protein (SRF accessory

protein 2)

2.96 2.81E−02

Cell-substrate junction assembly ITGA6 Integrin, alpha 6 2.95 4.23E−02

Protein binding SNCG Synuclein, gamma (breast cancer-specific

protein 1)

2.94 2.45E−06

Regulation of ARF protein signal

transduction

PSD3 Pleckstrin and Sec7 domain containing 3 2.93 3.15E−03

Regulation of transcription, DNA-dependent STAT1 Signal transducer and activator of transcription

1, 91 kDa

2.93 2.52E−04

Positive regulation of cell proliferation TIMP1 TIMP metallopeptidase inhibitor 1 2.93 2.31E−03

ATP biosynthetic process ATP2B3 ATPase, Ca++ transporting, plasma

membrane 3

2.92 5.38E−03

Ubiquitin-dependent protein catabolic

process

PSMB9 Proteasome (prosome, macropain) subunit, beta

type, 9 (large multifunctional peptidase 2)

2.92 5.17E−03

Extracellular region CCDC80 Coiled-coil domain containing 80 2.91 7.56E−04

Multicellular organismal development ELAVL3 ELAV (embryonic lethal, abnormal vision,

Drosophila)-like 3 (Hu antigen C)

2.91 7.25E−04

Regulation of transcription, DNA-dependent NHLH2 Nescient helix-loop-helix 2 2.91 3.08E−03

Glutamate decarboxylation to succinate GAD1 Glutamate decarboxylase 1 (brain, 67 kDa) 2.9 1.15E−02

Suckling behavior POU4F1 POU class 4 homeobox 1 2.9 2.46E−03

Protein tyrosine kinase-2 PTK2 Neuron migration; cell motility;

integrin-mediated signaling pathway

2.9 7.78E−12

Protein modification process PCMTD2 Protein-l-isoaspartate (d-aspartate)

O-methyltransferase domain containing 2

2.89 6.55E−03

Ion transport SCN2B Sodium channel, voltage-gated, type II, beta 2.89 9.94E−03

Ion transport KCNQ2 Potassium voltage-gated channel, KQT-like

subfamily, member 2

2.88 1.21E−03

Structural molecule activity MAP1A Microtubule-associated protein 1A 2.88 5.96E−06

Multicellular organismal development EMP1 Epithelial membrane protein 1 2.8 1.14E−02

(Continued)
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Table 5 | Continued

Gene title Gene symbol GO biological process term Young vs. older macula

gene expression

fold-change

p-Value

Vitronectin VTN Inflammatory response pathway; cell adhesion 2.7 1.42E−03

Cell adhesion TPBG Trophoblast glycoprotein 2.64 6.54E−03

CART prepropeptide CARTPT neuropeptide signaling pathway; transmission

of nerve impulse

2.62 7.06E−03

One-carbon compound metabolic process MTHFD2 Methylenetetrahydrofolate dehydrogenase

(NADP+ dependent) 2,

methenyltetrahydrofolate cyclohydrolase

2.62 2.81E−02

Golgi associated PDZ and coiled-coil

motif-containing

GOPC ER to Golgi vesicle-mediated transport; Golgi to

plasma membrane transport

2.6 9.99E−04

Chromosome 8 open reading frame 4 C8orf4 Apoptosis 2.57 1.79E−02

Tumor necrosis factor receptor superfamily,

member 12A

TNFRSF12A Angiogenesis; apoptosis; cell motility 2.53 4.51E−04

Brain-derived neurotrophic factor BDNF Positive regulation of neuron differentiation;

anti-retinal programmed cell death

2.51 2.19E−03

Protein phosphatase 2 (formerly 2A),

regulatory subunit B, gamma isoform

PPP2R2C Signal transduction; protein phosphatase type

2A regulator activity

2.51 3.18E−07

Solute carrier family 1 (neuronal/epithelial

glutamate transport)

SLC1A1 Transport; dicarboxylic acid transport; synaptic

transmission

2.49 2.79E−03

Mitogen-activated protein kinase kinase

kinase 14

MAP3K14 Protein amino acid phosphorylation 2.47 5.84E−06

Signal transduction GNG4 Guanine nucleotide binding protein (G-protein),

gamma 4

2.46 5.07E−03

Paraneoplastic antigen MA2 PNMA2 Transport 2.46 2.38E−04

Thyrotropin-releasing hormone TRH Cell-cell signaling; hormone-mediated signaling 2.44 1.08E−03

mRNA catabolic process HSPA1B Heat shock 70 kDa protein 1B 2.4 2.95E−02

Selenocysteine incorporation DIO2 Deiodinase, iodothyronine, type II 2.39 9.55E−03

Cell surface receptor linked signal

transduction

IFITM1 Interferon-induced transmembrane protein 1

(9–27)

2.39 7.94E−04

Interleukin 8 IL8 Angiogenesis; cell motility; chemotaxis 2.39 1.33E−02

Myxovirus (influenza virus) resistance 1,

interferon-inducible protein p78 (mouse)

MX1 Induction of apoptosis; defense response 2.38 1.17E−02

Regulation of cell growth TMEM97 Transmembrane protein 97 2.38 1.09E−03

Cas-Br-M (murine) ecotropic retroviral

transforming sequence

CBL Cell surface receptor linked signal transduction 2.37 1.28E−02

Type I interferon biosynthetic process IRF9 Interferon regulatory factor 9 2.36 1.71E−04

Dihydropyrimidinase-like 2 DPYSL2 Nucleobase, nucleoside, nucleotide, and nucleic

acid metabolism

2.35 1.17E−03

p21 (CDKN1A)-activated kinase 6 PAK6 Protein amino acid phosphorylation 2.34 4.12E−05

Zinc finger protein 441 ZNF441 Transcription; regulation of transcription,

DNA-dependent

2.32 5.24E−04

Ubiquitin specific peptidase 31 USP31 Ubiquitin-dependent protein catabolism;

ubiquitin cycle

2.29 3.81E−03

Transmembrane 4 L six family member 1 TM4SF1 Integral to plasma membrane 2.28 5.72E−03

Protein binding DTX3L Deltex 3-like (Drosophila) 2.26 1.66E−02

Response to stress HSPA1A Heat shock 70 kDa protein 1A 2.26 5.88E−03

Kruppel-like factor 7 (ubiquitous) KLF7 Transcription; regulation of transcription from

RNA polymerase II promoter

2.26 2.42E−04

XIAP associated factor-1 XAF1 Apoptosis; negative regulation of cell cycle 2.26 3.94E−05

Pleckstrin homology domain containing,

family G (with RhoGef domain)

PLEKHG4 Cell death; regulation of Rho protein signal

transduction

2.24 4.53E−04

(Continued)
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Table 5 | Continued

Gene title Gene symbol GO biological process term Young vs. older macula

gene expression

fold-change

p-Value

Complement component 1, r

subcomponent

C1R Proteolysis; complement activation, classical

pathway

2.21 5.17E−03

Cadherin 8, type 2 CDH8 Cell adhesion; homophilic cell adhesion; cell

adhesion

2.2 2.40E−03

Regulation of cell growth GAP43 Growth associated protein 43 2.19 1.32E−03

Regulation of translational initiation HSPB1 Heat shock 27 kDa protein 1 2.18 4.51E−02

Keratinization AHNAK2 AHNAK nucleoprotein 2 2.17 1.04E−03

Regulation of cell growth CD44 CD44 molecule (Indian blood group) 2.16 4.18E−02

Regulation of neurotransmitter levels GABRA2 Gamma-aminobutyric acid (GABA) A receptor,

alpha 2

2.14 5.48E−03

Regulation of cell growth SOCS3 Suppressor of cytokine signaling 3 2.12 1.09E−04

Protein import into nucleus, docking XPO1 Exportin 1 (CRM1 homolog, yeast) 2.1 9.11E−03

Proteolysis PAPPA Pregnancy-associated plasma protein A,

pappalysin 1

2.09 7.73E−04

Apoptosis PRUNE2 Prune homolog 2 (Drosophila) 2.09 6.46E−04

Protein binding TRIM9 Tripartite motif-containing 9 2.09 9.77E−03

Intrinsic to membrane MYADM Myeloid-associated differentiation marker 2.08 6.84E−06

FOS-like antigen 2 FOSL2 Regulation of transcription from RNA

polymerase II promoter; cell death

2.07 3.65E−02

Protein amino acid O-linked glycosylation LDLR Low density lipoprotein receptor (familial

hypercholesterolemia)

2.07 1.68E−04

Cell adhesion FAT3 FAT tumor suppressor homolog 3 (Drosophila) 2.04 1.44E−02

Carbohydrate metabolic process FUT9 Fucosyltransferase 9 (alpha (1,3)

fucosyltransferase)

2.04 3.84E−03

Regulation of transcription, DNA-dependent IRX1 Iroquois homeobox 1 2.02 1.78E−02

Histidine catabolic process MOXD1 Monooxygenase, DBH-like 1 2.01 4.51E−04

Response to unfolded protein HSPH1 Heat shock 105/110 kDa protein 1 2.00 1.73E−02

For changes in gene expression level we used a cutoff of >2.0-fold higher expression level in young vs. older macula (p < 0.05, Benjamini and Hochberg adjusted

Student’s t-test; expression level >50 on densitometry). Note that the expression level of genes known to be important for retinal survival/protection such as X-linked

inhibitor of apoptosis (XAF1), Cadherin (CDH8), PTK2 protein tyrosine kinase (PTK2), and brain-derived neurotrophic factor (BDNF) decrease in the aging retina.

high z-scores (Doniger et al., 2003) are grouped with ontology
(Figures 5C,D).

SELECTIVE QUANTITATIVE RT-PCR
We then performed semi-quantitative RT-PCR on several selected
genes that were altered in the microarray data that had played a role
in retinal survival, cellular apoptosis, or were involved in the Wnt
pathway. These genes code for the X-linked inhibitor of apoptosis
(XAF1, Renwick et al., 2006), cadherin 8 (CDH8, Chen and Ma,
2007), protein tyrosine kinase-2 (PTK2, Finnemann, 2003), brain-
derived neurotrophic factor (BDNF, Wilson et al., 2007), nuclear
receptor co-repressor 2 (NCOR2, Tsai et al., 2004; Jepsen et al.,
2007), chloride intracellular channel 4 (CLIC4, Chen et al., 2004),
DKK1, FZD10, and SFRP2 (Robitaille et al., 2002; Kubo et al.,
2003; Liu et al., 2007). In all cases, the changes in expression level
detected with the microarray data are in the same direction (i.e., up
or down) as the changes in expression level detected by qRT-PCR.
There is reasonable agreement between the relative expression level
of each of these genes when comparing younger vs. older samples
as detected by microarray data and qRT-PCR (Table 2).

DISCUSSION
We have used the Affymetrix DNA microarray chip U133 plus
2 to study the gene expression profile of the human retina as a
function of age and topographic location (macula vs. peripheral
retina). We were able to confirm the microarray findings with qRT-
PCR of selected genes. There is some variation in the exact relative
expression level between qRT-PCR and microarray data, but in
every case, the relative expression levels using the microarray data
and qRT-PCR were always in the same direction (Table 2).

We were able to detect the presence of approximately 26,700 out
of 54,600 gene probes present on the Affymetrix Human Genome
U133 plus 2 chip in all four groups; namely, young macula, young
periphery, older macula, and older periphery. The number of gene
probes that we detected in human retina is about 10,000 more
than those reported in RNA extracted from human retinal gan-
glion cells (Kim et al., 2006). This was probably due to the fact that
our samples contained multiple retinal cell types. A priori we rea-
soned that aging of the macula and/or periphery might increase
either the number of genes expressed throughout the retina or the
variation in the number of genes expressed in older peripheral vs.
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FIGURE 5 | Gene ontology of biological processes (high z-score) involved

with genes. (A) Up-regulated; (B) down-regulated in young macula compared
with older macula; (C) up-regulated; (D) down-regulated in young compared

with older peripheral retina. Note that genes involved with “growth” are only
shown in young macula and peripheral retina but missing in older macula and
periphery.

macular samples; however, there was no significant difference in
the average number or standard deviation of the number of genes
expressed in young vs. older macular or peripheral samples (data
not shown).

Hierarchical clustering analysis is a statistical technique used
to sort heterogeneous samples into several distinct groups that
contain genes with similar expression patterns (Eisen et al., 1998;
Krajewski and Bocianowski, 2002). Clustering analysis suggests
that aging changes the expression profile more than the location
of retina (macular vs. peripheral; Figure 4). To circumvent the
possibility that the macula from a donor is simply clustering with
the periphery from the same donor, this analysis was repeated
with a smaller subset of eyes so that young macula and young
peripheral samples were obtained from unrelated individuals, as
were young and old peripheral samples. This did not alter the
clustering pattern seen in Figure 4 (data not shown).

Previous authors have also sought to determine the retinal
gene expression profile as a function of age in both macular
and peripheral retina using smaller sample sizes (Yoshida et al.,
2002; Hornan et al., 2007; Ben-Shlomo et al., 2008). Yoshida et al.
developed gene expression profiles of young and elderly human
retinas using microarray slides containing 2400 human genes that
were primarily neuronal. More than 50% hybridized to the reti-
nal cDNA targets. Northern blot analysis and qRT-PCR results
confirmed the changes in expression in 8 of 10 genes exam-
ined, including an increase in IFN-responsive transcription factor

subunit (ISGF3G), creatine kinase B (CKB), and pancreatic amy-
lase (AMY2A), and a decrease in TGF-beta receptor interacting
protein 1 (TRIP1), LPS-induced TNF-alpha factor (PIG7), alpha-
1 (E)-catenin (CTNNA1), ubiquitin hydrolase (USP9X), GABA
receptor beta-3 subunit (GABRB3), and alpha-1 Type VII colla-
gen (COL7A1). Hornan et al. compared the expression profile of
cone-rich macular vs. rod rich peripheral retina using 2–4 mm reti-
nal punches from human retina, and demonstrated that macula
transcripts were enriched for nuclear pore complex interacting
protein (NPIP) and eukaryotic translation initiation factor 2 alpha
kinase (GCN2), with these protein products being detected in cone
outer segments. Ben-Shlomo et al. examined the gene expres-
sion profile over the first 20 weeks of life in rat retina dissected
during the first 20 weeks of life at 2 different time points and
identified 603 differentially expressed genes, which were grouped
into six clusters based on changes in expression levels during the
first 20 weeks of life. A bioinformatic analysis of these clusters
revealed sets of genes encoding proteins with functions relevant
to retinal maturation, such as potassium, sodium, calcium, and
chloride channels, synaptic vesicle transport, and axonogenesis.
Schippert et al. (2009) compared the expression profile of wild
type and Egr-1 knockout mice, which have longer eyes and a more
myopic refractive error compared to their wild-types. Changes
in expression were confirmed in four genes by RT-PCR, includ-
ing nuclear prelamin A recognition factor (Narf), oxoglutarate
dehydrogenase (Ogdh), selenium binding protein 1 (Selenbp1),
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Table 6 | Genes highly expressed in old compared to young macula.

Gene title Gene symbol GO biological process term Older vs. young macula

gene expression

fold-change

p-Value

Dickkopf homolog 1 (Xenopus laevis) DKK1 Negative regulation of Wnt receptor signaling

pathway

5.98 2.55E−10

G-protein-coupled receptor 177 GPR177 Positive regulation of I-kappaB

kinase/NF-kappaB cascade

3.43 3.58E−03

Triadin TRDN Muscle contraction 3.35 2.05E−03

Synapse defective 1, Rho GTPase, homolog

2 (C. elegans)

SYDE2 Signal transduction 3.24 2.24E−03

Ectonucleotide

pyrophosphatase/phosphodiesterase 2

(autotaxin)

ENPP2 Phosphate metabolic process 3.21 6.16E−05

Prolactin PRL Prostaglandin synthesis regulation; cell surface

receptor linked signal transduction

3.18 3.93E−03

Solute carrier family 6 (neurotransmitter

transporter, taurine), member 6

SLC6A6 Beta-alanine transport 3.11 9.26E−03

Potassium inwardly rectifying channel,

subfamily J, member 13

KCNJ13 Potassium ion transport 3.09 3.37E−06

Epididymal sperm binding protein 1 ELSPBP1 Single fertilization 3.04 6.30E−03

Aquaporin 4 AQP4 Nervous system development 2.98 1.42E−05

Chloride intracellular channel 4 CLIC4 Negative regulation of cell migration; transport;

chloride transport

2.98 8.59E−03

Rho GTPase activating protein 29 ARHGAP29 Rho protein signal transduction 2.95 1.98E−04

ATP-binding cassette, subfamily G (WHITE),

member 1

ABCG1 Lipid transport 2.78 1.50E−04

Cerebellar degeneration-related protein 2,

62 kDa

CDR2 Regulation of translation 2.74 4.51E−03

Cell division cycle 42 (GTP binding protein,

25 kDa)

CDC42 Nuclear migration 2.66 9.55E−04

Cell division cycle associated 7 CDCA7 Transcription; regulation of transcription 2.66 1.05E−04

ADAM metallopeptidase with

thrombospondin type 1 motif

ADAMTS5 Proteolysis; protein amino acid prenylation;

proteolysis

2.63 1.89E−04

Cyclin-dependent kinase inhibitor 3 CDKN3 Cell cycle; cell cycle arrest; negative regulation

of cell proliferation

2.6 6.04E−05

Nuclear receptor co-repressor 2 NCOR2 Negative regulation of transcription,

DNA-dependent

2.58 2.05E−05

Palmdelphin PALMD Regulation of cell shape 2.57 2.38E−03

5-Nucleotidase, ecto (CD73) NT5E DNA metabolic process 2.51 4.99E−03

Sarcospan (Kras oncogene-associated

gene)

SSPN Muscle contraction; cell adhesion 2.51 4.11E−05

Ras responsive element binding protein 1 RREB1 Ras protein signal transduction 2.45 3.41E−06

Zinc finger and BTB domain containing 1 ZBTB1 Transcription; regulation of transcription,

DNA-dependent

2.41 8.92E−03

Lin-7 homolog C (C. elegans) LIN7C Neurotransmitter secretion 2.4 6.13E−05

Zic family member 1 (odd-paired homolog,

Drosophila)

ZIC1 Brain development 2.39 5.63E−04

Tetraspanin 2 TSPAN2 Cell motility; cell adhesion; cell proliferation 2.36 8.05E−03

Hydroxysteroid (17-beta) dehydrogenase 2 HSD17B2 Steroid biosynthetic process 2.35 5.87E−03

ATP-binding cassette, subfamily A (ABC1),

member 4

ABCA4 Transport; visual perception; phototransduction,

visible light

2.34 5.58E−03

Metallothionein 1F MT1F Copper ion binding 2.34 6.45E−03

(Continued)
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Table 6 | Continued

Gene title Gene symbol GO biological process term Older vs. young macula

gene expression

fold-change

p-Value

ATPase, H+ transporting, lysosomal

56/58 kDa

ATP6V1B1 Ossification; ion transport; sensory perception

of sound

2.33 8.70E−03

Inhibitor of DNA binding 3, dominant

negative helix-loop-helix protein

ID3 Negative regulation of transcription from RNA

polymerase II promoter

2.33 3.51E−02

UDP-GlcNAc:betaGal

beta-1,3-N -acetylglucosaminyltransferase 7

B3GNT7 Protein amino acid glycosylation 2.32 2.01E−03

Solute carrier family 26 (sulfate

transporter), member 2

SLC26A2 Inorganic anion transport 2.32 3.10E−08

Coiled-coil and C2 domain containing 1A CC2D1A Positive regulation of I-kappaB

kinase/NF-kappaB cascade

2.31 1.88E−04

Growth arrest-specific 7 GAS7 Cell cycle arrest 2.31 1.57E−04

Leucine rich repeat containing 57 LRRC57 Protein binding 2.31 2.57E−04

Cholecystokinin CCK Neuron migration; axonogenesis; neuropeptide

hormone activity

2.3 1.49E−04

Collagen, type II, alpha-1 COL2A1 Visual perception 2.3 5.61E−04

Cytochrome P450, family 26, subfamily B,

polypeptide 1

CYP26B1 Cell fate determination; retinoic acid receptor

signaling pathway

2.29 2.97E−07

Calsequestrin 1 (fast-twitch, skeletal

muscle)

CASQ1 Calcium ion binding 2.28 5.97E−03

Protein phosphatase 1, regulatory (inhibitor)

subunit 3C

PPP1R3C Carbohydrate metabolic process 2.27 2.43E−04

Chloride intracellular channel 5 CLIC5 Ion transport 2.26 2.25E−05

Matrix-remodeling associated 7 MXRA7 Integral to membrane 2.26 6.69E−04

Kelch-like 14 (Drosophila) KLHL14 Protein binding 2.25 6.75E−06

Phosphodiesterase 1A,

calmodulin-dependent

PDE1A Signal transduction; signal transduction 2.25 1.75E−03

Carboxylesterase 1 (monocyte/macrophage

serine esterase 1)

CES1 Metabolic process 2.24 3.28E−03

RAB23, member RAS oncogene family RAB23 Signal transduction; nervous system

development

2.24 1.64E−02

Myeloid cell nuclear differentiation antigen MNDA Regulation of macromolecule metabolic process 2.22 5.92E−03

Family with sequence similarity 108,

member B1

FAM108B1 Hydrolase activity 2.21 6.61E−03

Zinc finger, DBF-type containing 2 ZDBF2 Nucleic acid binding 2.21 3.18E−05

Tigger transposable element derived 4 TIGD4 Regulation of transcription 2.19 1.30E−03

2-Oxoglutarate and iron-dependent

oxygenase domain containing 1

OGFOD1 Protein metabolic process 2.17 4.45E−03

Heterogeneous nuclear ribonucleoprotein F HNRNPF RNA splicing, via transesterification reactions 2.15 9.09E−03

Enolase 3 (beta, muscle) ENO3 Cellular macromolecule catabolic process 2.07 4.54E−03

Genes highly expressed in old compared to young macula retina. For changes in gene expression level we used a cutoff of >2.0-fold higher expression level in old

vs. young macula (p < 0.05, Benjamini and Hochberg adjusted Student’s t-test; expression level >50 on densitometry). Note that aging increased the expression of

genes related to aging and apoptosis, such as genes coding for the nuclear receptor co-repressor 2 (NCOR2) and chloride intracellular channel 4 (CLIC4).

and Pcdhb9. Glenn et al. (2009) showed that glycation of the
basement membrane causes a significant reduction in cathepsin-
D activity in ARPE-19 (p < 0.05) and an increase in lipofuscin
accumulation (p < 0.01). Chen et al. (2008) compared the tran-
scriptional profiles of the RPE/choroid from young and old mice.
There were 315 genes differentially expressed with age; most of
these genes were related to immune responses and inflammatory

activity. There was increased gene expression and protein lev-
els of leukocyte attracting signal, chemokine ligand 2 (Ccl2) in
aged RPE/choroid. These studies cover a wide range of conditions,
including using different array chips, and comparing young vs. old,
and macula vs. peripheral, in several species, including humans.
Despite these differences, our data (Tables 3, 4, and 6) is consistent
with prior published studies showing up-regulation of HNRPF
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Table 7 | Genes highly expressed in young compared to old peripheral retina.

Gene title Gene

symbol

GO biological process term Young vs. older periphery

gene expression

fold-change

p-Value

Heat shock 70 kDa protein 6 (HSP70B′) HSPA6 Response to stress; response to unfolded

protein

9.2 1.54E−02

Histone cluster 1, H2bc HIST1H2BC nucleosome assembly 5.16 8.79E−03

Autocrine motility factor receptor AMFR Ubiquitin cycle; ER-associated protein catabolic

process

4.69 1.39E−08

Chitinase 3-like 1 (cartilage glycoprotein-39) CHI3L1 Carbohydrate metabolic process 3.81 8.35E−03

Heat shock 70 kDa protein 1B HSPA1B Anti-apoptosis; response to stress 3.78 3.17E−03

Phorbol-12-myristate-13-acetate-induced

protein 1

PMAIP1 Release of cytochrome c from mitochondria 3.69 2.91E−03

Histone cluster 2, H2aa3/histone cluster 2,

H2aa4

HIST2H2AA3 Nucleosome assembly 3.61 8.23E−03

CDC14 cell division cycle 14 homolog B (S.

cerevisiae)

CDC14B Protein amino acid dephosphorylation 3.42 2.23E−03

Ciliary rootlet coiled-coil, rootletin-like 1 CROCCL1 Structural component of the ciliary rootlet 3.09 9.20E−05

CART prepropeptide CARTPT Activation of MAPKK activity 2.97 9.13E−03

Calcium channel, voltage-dependent, L

type, alpha-1D subunit

CACNA1D Ion transport 2.96 2.47E−04

Heat shock 70 kDa protein 1A HSPA1A Anti-apoptosis; response to stress 2.96 8.55E−03

Integrin, alpha 6 ITGA6 Cell-substrate junction assembly 2.95 9.69E−03

Glutathione-S-transferase theta 1 GSTT1 Glutathione metabolic process 2.94 1.97E−03

Histone cluster 1, H2bh HIST1H2BH Nucleosome assembly 2.94 1.68E−03

GUF1 GTPase homolog (S. cerevisiae) GUF1 Nucleotide binding 2.92 5.45E−05

Syntaxin binding protein 6 (amisyn) STXBP6 Vesicle-mediated transport 2.92 9.20E−04

Growth arrest and DNA-damage-inducible,

gamma

GADD45G Activation of MAPKKK activity; response to

stress; cell differentiation

2.84 8.31E−03

SLIT-ROBO Rho GTPase activating protein 1 SRGAP1 Signal transduction 2.73 5.44E−04

Spectrin, beta, non-erythrocytic 1 SPTBN1 Barbed-end actin filament capping 2.7 7.17E−05

Vitronectin VTN Inflammatory response pathway; histidine

biosynthetic process

2.6 8.44E−03

Enhancer of polycomb homolog 1

(Drosophila)

EPC1 Regulation of cell growth; transcription 2.54 2.59E−03

Choroideremia (Rab escort protein 1) CHM Blood vessel development; visual perception 2.49 1.49E−03

Monooxygenase, DBH-like 1 MOXD1 Histidine catabolism; catecholamine metabolism 2.44 6.69E−04

Sideroflexin 4 SFXN4 Protein biosynthesis; transport; ion transport 2.42 5.52E−03

ATG9 autophagy related 9 homolog B ATG9B Autophagic vacuole formation 2.37 7.15E−03

Mdm2, transformed 3T3 cell double

minute 2

MDM2 Negative regulation of transcription 2.37 9.13E−03

Fatty acid binding protein 5

(psoriasis-associated)

FABP5 Lipid metabolic process 2.36 3.22E−03

Ring finger protein 103 RNF103 Central nervous system development 2.35 8.83E−03

Solute carrier family 20 (phosphate

transporter), member 1

SLC20A1 Phosphate metabolic process 2.35 1.42E−03

Mortality factor 4 like 2 MORF4L2 Regulation of cell growth 2.31 3.55E−02

Secreted frizzled-related protein 2 SFRP2 Somitogenesis, Wnt signaling pathway 2.31 3.75E−03

Zinc finger and BTB domain containing 24 ZBTB24 Cellular biopolymer biosynthetic process 2.31 8.73E−03

Zinc finger protein 664 ZNF664 Regulation of transcription, DNA-dependent 2.29 5.14E−03

RNA binding motif protein 4 RBM4 mRNA processing; RNA splicing 2.28 6.20E−03

Protein tyrosine phosphatase, receptor

type, G

PTPRG Protein amino acid dephosphorylation 2.27 2.51E−02

Prostaglandin reductase 1 PTGR1 Leukotriene metabolic process 2.26 4.13E−03

(Continued)

Frontiers in Aging Neuroscience www.frontiersin.org May 2012 | Volume 4 | Article 8 | 15

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Cai et al. Gene expression of human retina

Table 7 | Continued

Gene title Gene

symbol

GO biological process term Young vs. older periphery

gene expression

fold-change

p-Value

Quaking homolog, KH domain RNA binding

(mouse)

QKI Multicellular organismal development 2.25 6.86E−05

Neuronal PAS domain protein 4 NPAS4 Regulation of transcription, DNA-dependent 2.19 3.13E−03

Hypothetical protein KIAA1434 RP5-1022P6.2 Carbohydrate metabolic process 2.17 2.33E−06

Growth associated protein 43 GAP43 Regulation of cell growth 2.16 9.22E−03

Musashi homolog 2 (Drosophila) MSI2 Nucleotide binding 2.16 9.72E−03

Phosphodiesterase 4D interacting protein

(myomegalin)

PDE4DIP Cytoskeleton organization 2.16 4.60E−06

SVOP-like SVOPL Establishment of localization 2.16 3.48E−04

Ubiquitin-like modifier activating enzyme 6 UBA6 Protein modification process 2.13 5.69E−03

Serine/threonine kinase receptor

associated protein

STRAP mRNA processing 2.12 2.17E−03

Rap guanine nucleotide exchange factor

(GEF) 2

RAPGEF2 MAPKKK cascade 2.1 9.72E−10

Exportin 1 (CRM1 homolog, yeast) XPO1 Protein import into nucleus, docking 2.09 1.60E−03

Ring finger protein 12 RNF12 Regulation of transcription, DNA-dependent 2.02 1.88E−03

Splicing factor, arginine/serine-rich 1

(splicing factor 2, alternate splicing factor)

SFRS1 Nuclear mRNA splicing, via spliceosome 2.02 2.68E−03

Solute carrier family 6 (neurotransmitter

transporter, GABA), member 13

SLC6A13 Neurotransmitter transport 2.01 1.77E−03

5-Nucleotidase, ecto (CD73) NT5E DNA metabolic process 2.00 9.69E−03

For changes in gene expression level we used a cutoff of >2.0-fold higher expression level in young vs. older peripheral retina (p < 0.05, Benjamini and Hochberg

adjusted Student’s t-test; expression level >50 on densitometry).

(heterogeneous nuclear ribonucleoprotein F) and ENO3 (Mus-
cle specific enolase) in older retina; (Yoshida et al., 2002) higher
expression levels of RHO (rhodopsin) in periphery; and higher
expression levels of HDAC9 (histone deacetylase 9) and SRGAP2
(Rho GTPase activating protein 2) in the macula (Hornan et al.,
2007).

It is interesting to note that there are only 24 genes expressed
at higher levels in the periphery vs. macular retina and 3 of these
genes (namely, DKK1, FZD10, and SFRP2) encode for protein
products that inhibit the Wnt receptor signaling pathway (Table 4).
There are three major types of inhibitors of this pathway in Xeno-
pus that have human homologs, including the secreted frizzled-
related proteins (sFRPs; Melkonyan et al., 1997), Wnt-inhibitory
factor-1 (WIF-1; Hsieh et al., 1999), and Dickkopf (DKK), which
also includes four known human proteins DKK1–4 (Krupnik
et al., 1999). Wnt ligands belong to a highly conserved family
of oncogenes expressed in species ranging from the fruit fly to
man (McMahon and Moon, 1989; Busse and Seguin, 1993; Magee,
1995). Wnt signaling controls many events during embryogenesis
and exerts significant regulation of cell morphology, proliferation,
motility, and cell fate (Parr and McMahon, 1994; Siegfried and
Perrimon, 1994; Turnbull et al., 1995). Inappropriate activation of
the Wnt signaling pathway has been observed in several human
cancers (Spink et al., 2000). Inhibition of the Wnt pathway is cor-
related with preventing cells from moving into a regenerative state,
and Wnt signaling is important in transdifferentiation of ciliary

margin stem cells into neural retina at the ciliary marginal zone
(Robitaille et al., 2002; Kubo et al., 2003; Liu et al., 2007). Addition
of Wnt3a to cultures of ciliary margin cells increased the num-
ber of proliferating cells and allowed the cells to maintain their
multilineage potential (Inoue et al., 2006; Liu et al., 2007). Wnt
signaling may provide a therapeutic strategy for in vitro expan-
sion or in vivo activation of adult retinal stem cells (Inoue et al.,
2006; Liu et al., 2007). Our observation that DKK1, FZD10, and
SFRP2 are expressed at higher levels in the peripheral retina than
those in macular retina (Table 4) suggests that there is inhibition
of the Wnt signaling pathway in the periphery compared to the
macular human retina. A potential strategy for cell replacement
in retinal disorders, including retinitis pigmentosa (Pruett, 1983;
Smith et al., 2009), is to activate this pathway in the peripheral
retina and ciliary marginal zone.

We were able to detect genes whose expression levels change
with aging of the human neural retina, and many of these genes
appear to be related to cell growth, proliferation, and survival.
For instance, aging decreases the expression level of genes known
to be important for retinal survival/protection such as X-linked
inhibitor of apoptosis (XAF1), Cadherin (CDH8), PTK2 protein
tyrosine kinase (PTK2), and BDNF. Aging increases the expres-
sion of genes related to aging and apoptosis, such as genes coding
for the nuclear receptor co-repressor 2 (NCOR2) and chloride
intracellular channel 4 (CLIC4; Tables 2, 5, and 6). These changes
may explain the increasing susceptibility of the human retina to
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Table 8 | Genes highly expressed in old compared to young peripheral retina.

Gene title Gene

symbol

GO biological process term Older vs. young periphery

gene expression

fold-change

p-Value

Ectonucleotide

pyrophosphatase/phosphodiesterase 2

(autotaxin)

ENPP2 Phosphate metabolic process 3.45 9.41E−05

Cholecystokinin CCK Neuron migration 3.42 1.38E−04

Sarcolipin SLN Regulation of calcium ion transport 3.13 1.98E−04

Ribosomal protein S26 RPS26 Negative regulation of RNA splicing 2.99 1.42E−07

2-Oxoglutarate and iron-dependent

oxygenase domain containing 1

OGFOD1 Protein metabolic process 2.98 9.68E−03

Laminin, alpha 3 LAMA3 Cell adhesion 2.96 2.20E−04

Zinc finger protein 43 ZNF43 Cellular biopolymer biosynthetic process 2.95 1.17E−03

Metallothionein 1 M MT1M Copper ion binding 2.94 6.54E−03

Ribosomal protein L31 RPL31 Biopolymer biosynthetic process 2.92 3.08E−04

Leucine rich repeat containing 57 LRRC57 Protein binding 2.9 9.45E−04

Peptidase inhibitor 15 PI15 Endopeptidase inhibitor activity 2.9 6.76E−05

Matrix-remodeling associated 7 MXRA7 Integral to membrane 2.71 1.41E−03

Ras suppressor protein 1 RSU1 Ras protein signal transduction 2.64 2.15E−03

Tudor domain containing 6 TDRD6 Germ cell development 2.53 2.82E−10

Zinc finger and BTB domain containing 1 ZBTB1 Transcription, DNA-dependent 2.52 2.04E−03

Cell division cycle 42 (GTP binding protein,

25 kDa)

CDC42 Small GTPase mediated signal transduction 2.49 1.07E−03

REV1 homolog (S. cerevisiae) REV1 DNA repair; response to UV; response to DNA

damage

2.46 2.00E−04

Ras responsive element binding protein 1 RREB1 Ras protein signal transduction 2.41 5.15E−08

Growth arrest-specific 7 GAS7 Cell cycle arrest 2.39 1.12E−04

Myo-inositol 1-phosphate synthase A1 ISYNA1 Inositol biosynthetic process 2.36 9.41E−03

Thymidylate synthetase TYMS Nucleobase, nucleoside, nucleotide, and nucleic

acid metabolic process

2.36 9.37E−04

Rho GTPase activating protein 29 ARHGAP29 Rho protein signal transduction 2.31 3.53E−04

Zinc finger, DBF-type containing 2 ZDBF2 Nucleic acid binding 2.17 1.68E−04

Pyruvate dehydrogenase phosphatase

isoenzyme 2

PDP2 Protein amino acid dephosphorylation 2.11 6.79E−06

Chromosome 18 open reading frame 1 C18orf1 Intrinsic to membrane 2.08 4.66E−05

Synovial sarcoma translocation,

chromosome 18

SS18 Intracellular membrane-bounded organelle 2.05 3.43E−03

Solute carrier family 6 (neurotransmitter

transporter, taurine), member 6

SLC6A6 Beta-alanine transport 2.03 3.64E−02

Crystallin, mu CRYM Visual perception 2.02 6.02E−04

Fatty acid binding protein 4, adipocyte FABP4 Cytokine production 2.02 7.35E−04

Heterogeneous nuclear ribonucleoprotein

U (scaffold attachment factor A)

HNRNPU Nuclear mRNA splicing, via spliceosome 2.02 4.53E−03

Doublecortex; lissencephaly, X-linked

(doublecortin)

DCX Neuron migration 2.01 1.67E−03

Enhancer of zeste homolog 1 (Drosophila) EZH1 Cellular biopolymer biosynthetic process 2.01 2.44E−04

Metallothionein 1G MT1G Copper ion binding 2.01 2.07E−03

NLR family, pyrin domain containing 2 NLRP2 Apoptosis, positive regulation of caspase activity 2.00 3.32E−03

For changes in gene expression level we used a cutoff of >2.0-fold higher expression level in old vs. young peripheral retina (p < 0.05, Benjamini and Hochberg

adjusted Student’s t-test; expression level >50 on densitometry).

some diseases as patient age increases, such as AMD and glau-
coma. Retinal aging is also associated with changes in expression
of genes involved in the complement cascade; the relationship

of altered expression of these genes to the development of age-
related diseases such as AMD remains to be elucidated. Any
individual change or combination of changes may be responsible
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for altering retinal gene expression (Cai et al., 2006; Han et al.,
2007).

Our gene ontology analysis (Wu et al., 2006; Noel et al., 2007;
Grigoryev et al., 2008) reveals genes whose expression levels change
during retina aging are involved in cellular metabolism, regula-
tion of the cell cycle, cell adhesion, and other biological pathways
(Figure 5). Interestingly, up-regulated genes involved with cell
growth were detected only within younger macula and periph-
eral retina (Figures 5A,C) but not in older macula and peripheral
retina (Figures 5B,D).

We recognize that an intrinsic limitation of using human tissue
is the potential RNA degradation that can occur between death and
RNA isolation; in our view this limitation is counterbalanced by
the fact that the value of data obtained from human retina cannot
be replaced by other means. Several facts suggest that retinal RNA
can be relatively stable between death and RNA isolation within
the time frame we used. First, Malik et al. (2003) conducted an
RNA stability study on neural retina and RPE and concluded that
the RNA from neural retina was stable up to 48 h after death. In
the current study we used a cutoff of 32 h for the death-to-RNA
harvesting time, which is within the period of time that retinal
RNA is stable. Although proteins and RNA degrade by different
mechanisms, there is also tremendous stability of the retinal pro-
teome after harvesting, as there was no significant time-dependent
change in intensity for >95% of retinal proteins examined up
to 48 h postmortem (Ethen et al., 2006). Second, we measured
the relative intensity of the 28S and 18S RNA bands and demon-
strated that there was no significant RNA degradation at the time
of RNA isolation (data not shown). Third, we demonstrated that
there is no significant degradation of the signal from housekeep-
ing genes, as revealed by the stability of the hybridization signals
from 3′, middle, and 5′ fragment of mRNA of housekeeping genes
coded in the Affymetrix DNA chips (Figures 1 and 3). Fourth,

we did not introduce any bias by handling younger and older
tissue differently, as there is no correlation between donor age
and either death-to-enucleation or death-to-RNA isolation time
(Figure 2).

There are other potential limitations to our study. First, it is
likely that there is significant patient-to-patient variation in gene
expression profiling, particularly since our samples may include
patients with normal eyes as well as patients with age-related dis-
ease or dysfunction. Second, we harvested full-thickness human
retina for this analysis. Thus, mixed retinal cell types were present
within our full-thickness retinal punches. Additional studies are
necessary and planned to determine which cell(s) contribute to the
changes in gene expression seen here. Third, there is incomplete
correlation between the transcriptome and proteomics of many
tissues (Hack, 2004; Baginsky et al., 2005; Cox et al., 2007; Fagan
et al., 2007; Hesketh et al., 2007; Dihal et al., 2008). Additional
studies are necessary to determine the effects of aging and topo-
graphic location on retinal proteomics. Fourth, our study does not
consider the effects of aging and/or topographic location on post-
translational protein modification; these effects have been shown
to be significant in other ocular tissues, including lens (Takemoto
and Gopalakrishnan, 1994). As with any other gene expression
studies we cannot discern whether the gene expression changes
that we observe are primary or secondary. Despite these limita-
tions we have obtained important information on changes in the
gene expression that occur in aging human retina. Additional stud-
ies are required to determine the role of specific alterations in the
transcriptome in the pathogenesis of age-related ocular diseases
such as AMD.
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